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Abstract— Impairment in persons with multiple sclerosis
(PwMS) can often be attributed to symptoms of motor
instability and fatigue. Symptom monitoring and queued
interventions often target these symptoms. Clinical metrics
are currently limited to objective physician assessments or
subjective patient reported measures. Recent research has
turned to wearables for improving the objectivity and tem-
poral resolution of assessment. Our group has previously
observed wearable assessment of supervised and unsu-
pervised standing transitions to be predictive of fall-risk
in PwMS. Here we extend the application of standing tran-
sition quantification to longitudinal home monitoring of
symptoms. Subjects (N=23) with varying degrees of MS
impairment were recruited and monitored with accelerome-
try for a total of ∼6 weeks each. These data were processed
using a preexisting framework, applying a deep learning
activity classifier to isolate periods of standing transition
from which descriptive features were extracted for analysis.
Participants completed daily and biweekly assessments
describing their symptoms. From these data, Canonical
Correlation Analysis was used to derive digital pheno-
types of MS instability and fatigue. We find these pheno-
types capable of distinguishing fallers from non-fallers, and
further that they demonstrate a capacity to characterize
symptoms at both daily and sub-daily resolutions. These
results represent promising support for future applications
of wearables, which may soon augment or replace current
metrics in longitudinal monitoring of PwMS.

Index Terms— Wearables, digital phenotypes, falls,
fatigue, multiple sclerosis.

I. INTRODUCTION

MULTIPLE Sclerosis (MS) is an immune-mediated,
demyelinating disease of the central nervous system,
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notable for its variable clinical presentation [1]. Persons with
MS (PwMS) may experience a broad range of symptoms
depending on the quantity, localization, and magnitude of
demyelinating lesions. Symptoms often include a combina-
tion of cognitive (e.g., fatigue, dementia) and/or sensorimotor
deficits (e.g., visual impairment, reduced mobility) [1], [2], [3].

Postural instability is a highly prevalent presentation with
significant implications for patient quality of life (QoL).
Ambulation impairment, e.g., presents in up to 75% of
PwMS and can cause significant reduction in patient mobil-
ity and independence [4], [5]. Falls are a particularly fear-
some complication of postural instability and may have
long-term consequences to QoL including injury, further loss
of mobility, persistent fear of falling, and death [6], [7].
Unfortunately, even with close monitoring and queued inter-
ventions, more than 50% of PwMS report falls within any
3-month period [6], [7], [8]. Fatigue also presents prominently,
impacts fall risk, and is often cited as a primary concern in
PwMS [9], [10]. Significant effort has been invested studying
metrics to predict patient symptoms and indicate timely inter-
ventions. Clinical assessments, such as the expanded disability
status scale (EDSS, [11]) and performance based measures
(PBMs), e.g., timed-walk tests provide symptom insight [12].
However, these measures are limited to active observations or
physician assessment [13].

Patient reported measures (PRMs) are perhaps the most
widely used tool for accurate and time-resolved insight on
patient symptoms [14]. The Activity-specific Balance Con-
fidence Scale (ABC or ABCS, [15]) and Modified Fatigue
Impact Scale (MFIS, [16]) have both been seen to corre-
late well with clinical assessments and fall risk (e.g., [9]).
However, PRMs also have limitations; patient adherence to
accurate documentation tends to trend inversely with the
frequency of surveys and PRMs are fundamentally subjective
and so may be influenced by unmodeled factors. Recent
efforts have begun to transition toward objective biomarkers
of symptomology [17], [18]. Applications of wearable devices
have broad potential in this space, ranging from improved
objectivity in standard clinical assessments to remote symptom
monitoring.

A key challenge of remote monitoring is the need to
identify meaningful data to analyze amongst high volume
datasets. One common technique is to inspect data from
standardized tasks, which are either assigned to the patient
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Fig. 1. Summary of approach for identifying digital phenotypes of instability and fatigue from wearables-derived measures of standing transitions.

(e.g., [19], [20], [21]) or performed naturally during daily
life (e.g., [22], [23], [24], [25]). An example of the latter are
daily transitions from sitting to standing (sist) or standing to
sitting (stsi). These transitions have been used extensively to
assess patient stability, dating back to the introduction of the
“get-up and go” test in 1986 [26]. More modernly, wearable
monitoring of such tasks has been applied to augmentation of
PBMs and home-monitoring of symptoms [22], [23], but our
understanding of these metrics remains limited [24], [27].

The purpose of this study is to investigate the ability of
wearables-derived biomarkers from daily standing transitions
to capture the constructs of balance confidence, fatigue, and
fall risk in PwMS (Fig. 1). If successful, these biomarkers
could provide objective and continual monitoring to cap-
ture a more complete picture of patient symptoms and their
fluctuations. These data could be invaluable to expand our
understanding of symptoms and to inform comprehensive care
of PwMS.

II. MATERIALS AND METHODS

A. Experimental Protocol
We considered data from 23 PwMS (5:18 Male:Female,

mean ± standard deviation age 50 ± 9.7 y/o) recruited from
the Multiple Sclerosis Center at University of Vermont Medi-
cal Center (inclusion: no condition affecting balance/mobility
other than MS, ambulatory without aid, no known hypersensi-
tivity to adhesives or hydrogel, not pregnant or breastfeeding).

Participants were asked to complete 12-weeks of at home
monitoring with biweekly sensor wear, yielding 6 weeks of
sensor data for analysis. All participants completed 2 weeks
of sensor wear, 22 participants completed 5 weeks, and
20 completed 6 weeks. During the sensor-wear weeks, subjects
were instrumented with three BioStamp nPoint sensors for all
hours of the day (Fig. 1, left upper chest, bilateral anterior
thigh; recording acceleration - 31.25 Hz, ±16G - and surface
biopotentials - 250 Hz). Participants were asked to complete
a daily 30-second chair stand test, a one-minute walk, and a
30-second standing balance assessment on each sensor-wear
day. Participants also completed a daily falls survey each
evening; survey questions covered the occurrence of “true

fall(s)” (defined: unintentionally coming to rest on the ground,
floor or other lower level) and/or “near fall(s)” (defined: a
period of instability relative to your baseline, but you regain
stability such that you ultimately do not fall) each day and
documented the approximate time of each occurrence. Par-
ticipants were also asked to complete the ABCS nightly and
the Modified Fatigue Impact Scale (MFIS) at the end of each
non-sensor wear week (4-week recall period). Participants
also completed the Patient-Determined Disease Steps (PDDS)
once [28]. The mean (std) survey results for our cohort were:
PDDS 0.88 (1.05); ABCS 77.6 (21.9); MFIS 28.3 (16.1).
Protocol was approved by the UVM Institutional Review
Board (STUDY00000401).

B. Activity Identification and Feature Extraction

To identify daily activity transitions, we employed our
activity classification pipeline, which leverages a deep learning
model trained on 4s observations (n >100,000) of acceler-
ation from a variety of patient populations (as previously
described [23], [24]), to identify periods of walking, sit-
ting, standing, and lying with an accuracy of 96.7% on a
held-out test set. Herein, this model was used to identify
subsequent periods of sitting and standing. From matched
periods, each sist or stsi transition was identified using an
established technique; cranial-caudal acceleration was filtered
and inspected for a transition from 1g towards 0 g (stsi) or
from 0 g to 1g (sist) within an 18-second window of data
centered between the classified activities, automated detec-
tion was previously validated by visual inspection of ∼500
transitions [23]. After identifying transitions, the following
features were calculated from the thigh and chest accelerations
for both the cranial-caudal (CC) and horizontal (horz) planes:
5th/50th/95th acceleration percentile (F5, F50, F95), jerk [23],
5th/50th/95th percentile frequency, total power, and approxi-
mate entropy (ApEn). We also computed (SEF) for both chest
and thigh [29], as well as transition time and postural sway
features (Jerk, Range, and 50th percentile frequency of chest
acceleration) from the standing bout immediately preceding
or following the transition [24], [30]. Data were computed
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from custom MATLAB scripts using Medidata’s Sensor Cloud
Network Analytics service.

C. Defining Constructs of Instability and Fatigue
For this study we focused on symptoms of instability and

fatigue in PwMS. Instability was described by the ABCS,
sampled at daily resolution and well correlated to fall-risk
and physical functioning [9], [15]. Fatigue was described
by the MFIS, which has been validated for high and low
levels of fatigue in PwMS [16], [31]. To match the daily
resolution of ABCS, MFIS was super-sampled and averaged
over overlapping 4-week recall periods. For normalization,
we used published means in similar cohorts – ABCS 63.7
(n = 84, [32]) MFIS 44.2 (n = 268, [31]) – to center and
scale survey results without data leakage in cross-validation.
These scales are not completely independent, ABCS has been
shown to decrease significantly in PwMS who report high
fatigue on the MFIS [33]. In our analysis, we considered each
scale as informative of both symptom constructs, but primarily
descriptive of the designated symptom.

D. Deriving Digital Phenotypes of Instability and Fatigue
All captured transitions across subjects were inspected to

derive digital phenotypes of instability and fatigue. Steps
included 1) data cleaning, aggregation, and reduction, 2) prin-
cipal component analysis, and 3) canonical correlation analy-
sis. Analysis was performed in Python using Numpy (v1.23.1)
[34], Pandas (v1.4.3) [35], SciPy (v1.7.3) [36], Scikit-learn
(v0.24.2) [37], Statannotations [38], and Pingouin [39].

1) Data Cleaning, Aggregation, and Reduction: Extracted
features (m = 42 × 2 transition types = 84, initial features)
were filtered for extreme outliers by masking feature values
with a subject-specific T-Score of greater than 4.0. To reduce
multicolinearity, features for each transition were filtered by
supervised pair-wise correlation to each other using Kendall’s
Tau. Highly correlated feature pairs (|τ | > 0.5, [40], [41]) were
compared to PRM targets (ABCS & MFIS) with a repeated
measures correlation and the least predictive feature in each
pair was dropped to reduce the initial feature set (m = 84 →

52, uncorrelated features). Features were aggregated to daily
resolution for each subject using 9 summary statistics: mean
(mu), standard deviation (sig), minimum (min), median (eta),
maximum (max), and 5/25/75/95-percentiles (m = 52 × 9 =

468, aggregated features). These aggregated features were
again processed for multicollinearity and filtered with the
pair-wise correlation protocol described above to generate a
reduced feature set to be used as “biomarkers” for regression
(m = 468 → 133, uncorrelated aggregated features). To select
a reasonable estimate for the number of necessary features
we applied principal components analysis (method of Tipping
and Bishop [43]) and quantified meaningful dimensions of
our dataset by the method of Gavish and Donoho (m =

133 → 49, selected features, noted in Fig. 3) [44]. A final
dimension reduction was performed by sequential forward
feature selection using ridge regression (tuned by grid search
over α ϵ [10e-2,10e1]) to predict PRM targets, extracting the

most informative and least collinear features [45], [46], [47].
All reduction steps listed in Fig. 1.

2) Canonical Correlation Analysis (CCA): CCA was applied
to identify digital phenotypes, mapping transition biomark-
ers to PRM-defined instability and fatigue [42]. CCA is a
supervised regression method wherein an input feature set,
Xn×m , undergoes change of basis into a new projection,
X̂n×k . Loadings are tuned to optimize correlation of X̂n×k – in
this case a linear combination of transition biomarkers –
onto similarly derived components, Ŷn×k , of a PRM target
set. Subject-stratified k-fold cross-validation was applied to
the CCA model to ensure against over-fitting with the final
reduced feature set. All observations were then used to produce
a best-fit CCA model and paired components of X̂ , Ŷ were
designated as digital phenotypes of Instability and Fatigue
respectively, based upon correlation to PRM surveys.

E. Statistical Analysis
Mann-Whitney U-Test was used to test for significant differ-

ences between groups. Repeated measures correlation, which
compares paired distributions using analysis of covariance to
correct Pearson’s-r for non-independent data samples [48], was
used to evaluate the association between transition features
and the ABCS and MFIS. When interpreting these results,
we note that repeated measures correlation is associated with
higher statistical power than a traditional Pearson’s correlation.
A value of rm = 0.1, with n = 23 subjects and an average
of 30 observations per subject corresponds to a power of
>80% [48]. For Pearson’s-r, effect size must be much greater
(r ≈ 0.55) to achieve power of 80% with n=23 averaged
datapoints, while r = 0.1 would correspond to a power of
only ∼10% [48]. Welch’s one-way ANOVA with subsequent
Tukey-Kramer pairwise comparison was used to test Instability
and Fatigue distributions across subjects [49]. Subject distribu-
tions were first tested for normalcy using a Shapiro-Wilk test
and for equal variance (within a factor of 0.33-3.0) [50], [51].

III. RESULTS

A. Transition Biomarkers Correlate to Symptoms
We observe that features derived from dynamic transitions

act as digital biomarkers and trend predictably with patient
symptoms. E.g., transition time for the sist transition is an eas-
ily interpretable biomarker that trends positively with ABCS,
MFIS, and fall status (Fig. 2). Other less grossly appreciable
biomarkers may also exhibit trends, the 95th percentile of
thigh horizontal acceleration (P95_accel_horz_Thigh) for the
stsi transition demonstrates a negative relationship with fatigue
and fall status, although relates less predictably to balance
confidence (Fig. 2). These patterns imply measures of standing
transitions describe different aspects of symptoms in PwMS.

To further elucidate these relationships, biomarkers were
aggregated with summary statistics to a daily resolution and
each aggregated feature (Xm×n, m = 468 aggregated features,
n = 695 days) was compared to PRMs using repeated
measures correlation.
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Fig. 2. Boxenplots of selected feature distributions stratified by patient
symptom markers. Displayed features are selected only as represen-
tatives of different types of features present in the set. Top: Transition
time for the stand-to-sit transition, Bot: 95th percentile of horizontal
acceleration (recorded at thigh). “ABCS/MFIS Tertiles” calculated from
all recorded scores across subjects, boxes contain all recorded tran-
sitions for all days within tertile. “Subject reported falls” boxes contain
all features for subjects grouped by total reported falls. Color indicates
severity of symptoms as tracked by each target. Line trace on each panel
connects distribution means. All distributions shown were indicated
statistically distinct by pair-wise application of the Mann-Whitney U-test
(α = 0.05).

Fifteen aggregated biomarkers were found to be correlated
at a statistically significant level (α = 0.05) with patient
ABCS and 48 with MFIS, without overlap between the two
constructs (Fig. 3). These significant correlations ranged from
|rm | = 0.076−0.148. Despite low magnitudes (small effect-
size), these may be interpreted to represent significant statis-
tical power for repeated measures correlation as discussed in
Methods (II-E).

Hierarchal clustering grouped biomarkers by similarities
in correlation (Fig. 3). E.g., F50_CC and F95_Horz derived
at either the chest or thigh during sist transitions correlate
with increased fatigue (lower MFIS). Interestingly these same
biomarkers are essentially uncorrelated with PRMs when
derived for the stsi transition. In isolation, these features are
therefore likely to be more important in the sist transition.
Conversely, transition time appears to correlate far better to
PRMs for the stsi transition than the sist transition. Transition
time of the stsi transition also appears to be among the more
important predictors of stability with three aggregation statis-
tics (average, median, and 75th percentile) being significantly
correlated to ABCS.

B. CCA Identifies Phenotypes of Instability and Fatigue
The results of Figs. 2 and 3 suggest that individual features

contain information about patient symptoms and may describe

Fig. 3. Repeated measures correlations of aggregated biomarkers
to target surveys. Biomarkers on the x-axis are those remaining after
supervised correlation filtering. On the y-axis the PRM target, transi-
tion type and aggregation statistic for each correlation are displayed.
Color indicates direction/magnitude of correlation. Dendrogram displays
hierarchical clustering of transition features by similarities in correlation.
We note several groups of features share similarities in the contained
information (e.g. MFIS compared to transitionTime, rangeHorz_Chest,
rangeCC_Chest, and totalPowerHorz_Chest for the stsi transition).
Annotations: biomarkers with statistically significant correlation to target
(†, α = 0.05), selected for CCA (‡), and dropped by filtering (-).

different aspects of those symptoms. To investigate whether
combinations of biomarkers might improve predictive poten-
tial, we applied a more deliberate regression-based approach.
CCA with 49 appropriately selected features demonstrated
successful prediction of test sets on cross-validation (k= 23;
Multiple-R2

= 0.42[0.092], mean[SD]), and the model was
passed all available observations to generate a single best-fit
Multiple-R2

= 0.48 (Fig. 4).
This regression demonstrates correlation between biomark-

ers and components of the ABCS and MFIS, and seems
to treat the two PRMs as largely orthogonal. The primary
direction, X̂1, correlates to Ŷ1 (r2

= 0.62), which exhibits a
high magnitude negative correlation to ABCS and a lesser
positive correlation to MFIS (Fig. 4). As such it might be
considered a digital phenotype of Instability with a higher
X̂1 value predicting a day with lower balance confidence.
In contrast, the secondary direction, X̂2 (r2

= 0.33) is aligned
with a greater positive MFIS correlation, and a negligible
positive correlation to ABCS (Fig. 4). As such this may be
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Fig. 4. Resulting CCA projections X̂ against Ŷ. Scattered data for
all recorded dates across all subjects. Traces display best-fit linear
regression with shaded prediction intervals for future residuals (α =

0.05). Left: phenotype of Instability (survey correlations: r [ABCS, MFIS]
= -0.98, 0.67), best-fit R2

= 0.62. Right: phenotype of Fatigue (r [ABCS,
MFIS] = 0.17, 0.74), best-fit R2

= 0.33. Uncorrelated pairings (X̂1v. Ŷ2
and X̂2v. Ŷ1) not visualized, but R2 values were checked to validate
orthonormalcy (R2 < 0.01).

thought of as a phenotype of Fatigue with X̂2 proportional to
the degree of subject fatigue on a measured day.

C. Phenotypes of Instability and Fatigue Stratify Fall Risk

Treated as phenotypes of Instability and Fatigue, the distri-
bution of daily observations should stratify patients by symp-
toms. Phenotype distributions were isolated for each subject
and compared using Welch’s one-way ANOVA along each
phenotype axis ([Instability, Fatigue]: F(22, 155) = [80.47,
27.11]; p = [<0.01, <0.01], Fig. 5) with Tukey-Kramer
(T-K) groupings.

From this we were able to reject the null hypothesis
that these phenotypes have equivalent means across subjects.
Furthermore, T-K groups allowed us to identify subjects
with similar phenotype distributions (sharing at least one
T-K letter group, Fig. 5), and subject groups that might be
considered statistically distinct (share no letter groups, Fig. 5).
Distributions of Instability stratified subjects such that most
subjects that reported true falls exhibited distributions near
the upper end of the instability spectrum. In fact, all subjects
who reported multiple falls during the study were sorted into
a single Tukey-Kramer grouping (T-K Group ‘B’, Fig. 5A).
In contrast, X̂2◦ seems to contain information less associated
with fall risk. However, X̂2◦ may enhance the ability of X̂1◦ to
discriminate fall risk when used jointly (Fig. 6). E.g., we noted
two subjects – S0026 and S0017 – who each reported a single
fall during the study despite instability distributions toward the
stable end of the spectrum. Interestingly, these subjects share
a Fatigue grouping (T-K group ‘A’, Fig. 5B) with many of the
frequent-fallers, potentially suggesting fatigue independently
contributes to fall-risk.

The joint distribution of Instabilityvs. Fatigue helps to
visualize the differences between subjects who fall more
or less frequently (Fig. 6). When subjects are grouped by
the number of falls reported, never-fallers (reported true

Fig. 5. Left: Boxplots of daily biomarker values for each subject. Color
indicates the total number of reported falls for each subject during the
study as denoted by the legend. Right: Tukey-Kramer groupings for each
subject (a shared letter group between two subjects indicates insufficient
evidence to conclude the means are distinct, α =0.05). Subject SID
annotations denote results of pre-ANOVA tests for normalcy and equal
variance (†= Failed to reject null of non-normalcy, ‡= Variance < 33%
of max).

falls = 0) and frequent-fallers (true falls > 1) exhibit distinct
peak densities.

These groups can be further subdivided to separate days
with/without reported fall events (Fig. 6B). By these metrics,
patients at risk for frequent falls seem equally likely – on any
given day – to experience a true fall, no falls, or a near fall
where some intervention (e.g. catching themselves against a
wall) prevents them from falling to the ground. This favors the
hypothesis that context plays a large role in the manifestation
of true falls. Similarly, never-fallers demonstrate consistently
low Instability scores, even on days with “near fall” events.

Unlike frequent-fallers and never-fallers, single-fallers (true
falls = 1) exhibit a bimodal distribution (Fig. 6). At daily
resolution (Fig. 6B), days with near falls in this subset have a
peak density more aligned with that of frequent-fallers, while
days without reported fall events are better aligned with never-
fallers. It may be that PwMS who demonstrate borderline
or transient instability are more likely to fluctuate daily than
late-stage or asymptomatic patients. In this subset of PwMS,
continuous monitoring with a wearable device may be feasibly
applied to detect dangerous ranges of instability and suggest
just-in-time temporary interventions.

D. Transition Feature Phenotypes Exhibit Daily Trends
Phenotypes would ideally exhibit predictive capacity at sub-

daily resolution. To explore this, standing transitions were
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Fig. 6. (A) Joint distributions displayed as kernelized density estimates
(KDE), colors indicate subject subsets grouped by the total number of
falls reported by each subject during the study. (B) Joint distributions
grouped by the worst reported event each day for population subsets;
scatter points for days with a reported true fall, KDE for days with near
falls or no fall events. Top→Bottom: subjects with 0 reported true fall
events (n=15), 1 reported true fall (n=4, note 2 subjects reported a fall
on an unmonitored day), 2+ reported true falls (n=5, note only 5 of
17 true falls occurred on monitored dates).

Fig. 7. (A) X̂ joint distributions displayed as kernelized density esti-
mates, color indicates subject grouping by total number of reported falls.
(B) Distributions of X̂ across subjects stratified by time of day, color
indicates symptom severity. Statistically distinct distributions indicated
as determined by Mann-Whitney U-test (α = 0.05).

re-binned and summarized using 7-hour windows (Morning:
05:00-12:00, Afternoon: 12:00-19:00, Evening: 19:00-02:00).

Identical feature selections (m= 49, n= 1830 recorded
windows) and CCA loadings as determined at daily reso-
lution were used to recalculate Instability and Fatigue for
each bin. Sub-daily aggregation reduced predictive power;
peak densities are less discrete than those observed at daily
resolution (Fig. 6A vs. Fig. 7A). This may be a ramifica-
tion of feature selection, which favored summary statistics
describing the extremities of feature values (e.g., min, max,
P05, P95), which are less appreciable when aggregated over
shorter periods. More intriguing are the apparent trends in
both biomarkers over the course of a day (Fig. 7B). Instability
appears to drift upwards from morning to evening (X̂1 =

−0.14[1.17]/ − 0.07[1.11]/0.15[1.29], Morning / Afternoon

/ Evening, mean[SD]), supporting a decline in balance con-
fidence throughout the day in PwMS. In contrast, Fatigue
drifts downwards (X̂2 = 0.20[1.00]/0.12[0.92]/ − 0.17[1.14],
M/A/E, mean[SD]), which implies fatigue is worst in the
morning and improves as the day progresses, perhaps in
association with activity.

IV. DISCUSSION

Here we demonstrate the potential efficacy of wearable
devices to augment symptom monitoring in PwMS. We pro-
pose phenotypes of Instability and Fatigue formulated using
only features of patients’ daily standing transitions, an easily
distinguished and frequently repeated task [22], [23].

We observe that these metrics demonstrate correlation with
traditional clinical measures (Figs. 4 and 5). Unlike PRMs or
clinical surveys, these biomarkers require minimal conscious
input from the patient, thereby reducing the likelihood of
response bias and patient non-adherence. Importantly, the
instability index was able to stratify patients by fall status
(Figs. 5 and 6) and highlights single-fallers as having a
broad range of daily stability (Fig. 6B). This population, with
transient motor symptoms and a borderline fall risk, may
benefit greatly from continuous monitoring with subsequent
forewarning and queued intervention of particularly unstable
periods.

Furthermore, both biomarkers demonstrate promise to
provide sub-daily resolution of patient symptoms. Though
sub-daily aggregation proved worse than daily aggregation
at discretion of fall status (Fig. 6 vs. Fig. 7), it’s worth
noting that the CCA regression model treats each aggregation
period as a discrete and independent data point. More robust
regression, such as a model with sequential memory, may
enhance the temporal resolution and predictive power, but
would likely require more training data. Future work may
also probe these biomarkers for predictive extrapolation, rather
than the reported stability over the window captured by
accelerometry. With sub-daily resolution we hypothesize that
digital biomarkers could be used to predict stability within
the near future, particularly valuable for just-in-time warning
systems in PwMS.

Without further data collection and retraining, these phe-
notypes may still provide previously inaccessible insight into
symptoms in PwMS. Much evidence exists to suggest that
symptoms in PwMS and particularly in those with Relaps-
ing Remitting MS, are often transient and may arise over
the course of hours to days [52], [53], [54]. However,
there is a paucity of information describing fluctuations of
symptoms over the course of a day. Previous studies, often
limited by sample size, study duration, and active assess-
ments, have shown little in the way of observable within-day
changes in gait, joint angle variability, or walking capac-
ity [55], [56], [57].

In contrast, we observed a distinct declining trend in patient
stability over the course of the day (Fig. 7B). Interestingly,
meta-analysis has shown that falls mostly occur in the morn-
ing/afternoon (36/39%) rather than in the evening (21%) which
our findings would suggest is the time of day at greatest
risk [8]. This may further support the importance of context
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in considering fall risk. Patients settling down in their home
environment fall less often, despite nightly worsening of their
pathologic instability.

Daily trends in fatigue have also been previously studied.
Our findings predict improvement in fatigue over the course
of the day (Fig. 7) in agreement with some studies [57],
but contrasts with findings of others that posit fatigue tends
to instead worsen as the day wears on [55], [58]. These
discrepancies in findings, particularly for a symptom with such
high incidence and impact on QoL, suggest underlying effect
modifiers. One such factor may be patient activity levels, daily
exercise has been shown to improve both fatigue and postural
stability in PwMS [59]. Further longitudinal monitoring of
these symptoms with wearable devices may help elucidate true
patterns in symptoms and may indicate potential therapeutic
targets.

These data represent promising support for the applica-
tion of wearable monitoring for PwMS. We find that digital
biomarkers of instability and fatigue are able to match PRMs
in repeatable, meaningful assessment of symptom fluctua-
tions in PwMS at daily resolution. Further, with evidence of
attainable sub-daily resolution there is potential to extend this
technology, perhaps using these biomarkers as a touchstone
for calibration and interpretation of less standardized data
such as continuous gait analysis. We see these results to be
encouraging for the application of wearable technologies in
clinical medicine to enable QoL-modifying interventions for
PwMS.
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