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Decoding Imagined Musical Pitch From Human
Scalp Electroencephalograms

Miyoung Chung , Taehyung Kim , Eunju Jeong , Chun Kee Chung , June Sic Kim ,
Oh-Sang Kwon , and Sung-Phil Kim

Abstract— Brain-computer interfaces (BCIs) can restore
impaired cognitive functions in people with neurologi-
cal disorders such as stroke. Musical ability is a cogni-
tive function that is correlated with non-musical cognitive
functions, and restoring it can enhance other cognitive
functions. Pitch sense is the most relevant function to
musical ability according to previous studies of amusia,
and thus decoding pitch information is crucial for BCIs to
be able to restore musical ability. This study evaluated the
feasibility of decoding pitch imagery information directly
from human electroencephalography (EEG). Twenty partic-
ipants performed a random imagery task with seven musi-
cal pitches (C4–B4). We used two approaches to explore
EEG features of pitch imagery: multiband spectral power at
individual channels (IC) and differences between bilaterally
symmetric channels (DC). The selected spectral power fea-
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tures revealed remarkable contrasts between left and right
hemispheres, low- (<13 Hz) and high-frequency (> 13 Hz)
bands, and frontal and parietal areas. We classified two
EEG feature sets, IC and DC, into seven pitch classes
using five types of classifiers. The best classification
performance for seven pitches was obtained using IC and
multiclass Support Vector Machine with an average accu-
racy of 35.68±7.47% (max. 50%) and an information transfer
rate (ITR) of 0.37±0.22 bits/sec. When grouping the pitches
to vary the number of classes (K = 2–6), the ITR was similar
across K and feature sets, suggesting the efficiency of DC.
This study demonstrates for the first time the feasibility of
decoding imagined musical pitch directly from human EEG.

Index Terms— Decoding, music brain–computer inter-
face, musical pitch, EEG, spectral feature.

I. INTRODUCTION

THE advance of brain-computer interfaces (BCIs) has
facilitated direct interactions between the human brain

and the outer world. Among the different types of BCIs,
active BCIs have been proven to restore various functions by
reinforcing congruent brain activity features during imagery
tasks [1]. To develop active BCIs, it is crucial to detect
key features of the brain activity elicited from the imagery
task in the first place [1]. Electroencephalogram (EEG)-based
motor imagery BCIs (MI-BCIs), which harness the features
of brain activity generated by imagining movements, are the
most extensively used active BCIs. MI-BCIs have been shown
to restore impaired motor function in patients suffering from
neurological disorders such as post-stroke syndrome, spinal
cord injury, and disorders leading to locked-in syndrome
by recovering damaged neuronal circuits through neuronal
plasticity [2], [3], [4], [5]. Cognitive functions, including lan-
guage, attention, and memory, are also prominently impaired
in patients with post-stroke syndrome, termed post-stroke syn-
drome cognitive impairment (PSCI) [6]. Currently, BCI-based
training methods for PSCI have been recognized for their
reduction of cognitive anomalies compared to traditional train-
ing methods [2], [7].

A deficit in musical ability is one form of PSCIs, expressed
as acquired amusia (AA) in patients who experience brain
lesions predominantly in the right superior/middle tempo-
ral gyrus (STG/MTG), inferior frontal gyrus (IFG), and
hippocampus; importantly, restoring musical ability appears
to be crucial for the restoration of other cognitive functions
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[8], [9]. Musical ability is well known for its correlation
with myriad non-musical cognitive functions such as lan-
guage, intelligence, memory, and attention [9], [10], [11].
Furthermore, musical ability is regarded as more fundamental
than linguistic ability because patients with severe dementia
lose their linguistic but not musical ability, suggesting the
possibility of new communication channels for patients with
defective linguistic functions [12]. Therefore, rehabilitation of
musical ability could positively contribute to the restoration of
cognitive functions and communicative aids in patients with
neurological disorders [9], [10], [11], [12].

One of the primary musical factors is pitch, defined as the
auditory sensation ordered from ‘low’ to ‘high,’ revealed to
affect all-inclusive musical ability by studies of amusia (i.e.,
tone-deafness). There are two broad types of amusia: acquired
amusia (AA) and congenital amusia (CA). AA manifests as
brain damage caused by neurological disorders such as stroke,
notably in the right hemisphere, affecting ventral and dorsal
connectivity [14]. In particular, brain damage affecting ventral
connectivity between the right temporal and inferior frontal
areas with core lesions in the insula and striatum appears to
be crucial for AA to develop [8], [14]. CA is an inherent
disorder of comprehensive musical ability and the principal
deficit is thought to be pitch processing [15]. A behavioral
study revealed that the inability to detect pitch changes was
dominant in CA patients among various musical ability mea-
sures, showing the authority of pitch processing in comprehen-
sive musical ability [15]. Supporting these behavioral results,
neuroimaging studies have reported that lesions in the right
frontotemporal cortical networks, eminent for pitch processing
in the early developmental stage, have been found in CA [16],
[17]. In both behavioral and relevant brain connectivity, the
reinforcement of pitch processing has been shown to have
a potential role in the recovery of amusia in recent studies;
specifically, the right dorsal connectivity has been shown to
be key to the recovery of AA, and longitudinal training in
discriminating pitch and melody enhances the musical ability
of individuals with CA [14], [18], [19]. Taken together, these
results suggest that the musical ability of amusics is enhanced
by strengthening brain networks related to pitch processing.

Given the accomplishments of recent speech BCI stud-
ies, the restoration of defective musical functions by active
BCIs for patients with amusia could be achievable by
decoding pitch-imagery-inducing brain patterns using motor-
related strategies designed for BCI training [1], [2]. Recently,
Anumanchipalli et al. built a speech BCI by decoding spoken
sentences from sensorimotor cortical activity via high-density
electrocorticography (ECoG) signals [20]. Moses et al. enabled
patients with anarthria to type a sentence in real time by decod-
ing covertly spoken words from sensorimotor cortical activity
acquired from subdural ECoG [21]. These achievements of
active speech BCIs, based on a motor-auditory integration
strategy, indicate the possibility of successful active music
BCIs, given the similarities between music and language.
It is known that music and language share neural pathways,
and amusia and aphasia are related to dysfunctions of the
right ventral stream and neural substrates, including the bilat-

eral precentral gyrus and superior temporal plane related to
semantic and melody processing [8], [22]. Furthermore, a
behavioral study reported that pitch processing shows the
most solid correlation between language and music, which
postulates a compelling role of pitch construction in music and
language: pitch builds intonation and semantic differences in
language, and melody in music [23], [24]. Thus, following the
path of speech BCIs, starting with pitch imagery-based BCIs,
could lead to the realization of active music BCIs.

Many studies have attempted to decode musical
information from brain activity but over a wider scope
than single pitches. Schaefer et al. decoded seven segments
of classical and contemporary music based on temporal EEG
patterns [25]. A study of a tonal hierarchical representation of
pitch decoded two classes of tonal relationships–in-key/
out-of-key, tonic/dominant, or minor 2nd/augmented
information–from magnetoencephalography (MEG) [26].
Another study decoded contextual pitch information by
classifying the position where the same pitch (440 Hz)
was presented with a lower pitch (110 Hz) or higher pitch
(1,760 Hz) using brain connectivity features of EEG [27].
However, no study has reported the decoding of individual
musical pitches directly from brain signals. Consequently, the
feasibility of decoding imagery of individual pitches from
brain activity remains elusive.

Understanding neural representations of pitch is crucial
for scrutinizing the brain activity features of pitch imagery.
Although brain activity for pitch imagery remains less
explored [28], capitalizing on perceptual pitch processing in
the brain could be insightful, as the imagery and perception
of sound are known to share neural networks incorporating
the secondary motor area and dorsal premotor cortex [29].
In musical processing, perception and imagery share frontal
and temporal cortical regions in the right hemisphere [30],
[31]. Although the neural processing of single musical pitch
perception in humans requires further investigation, right lat-
eralization is reported to be an essential attribute in pitch
perception. For example, patients with right lateral Heschl’s
Gyrus (HG) resection exhibit a shortfall in the detection of
pitch change direction, which supports the hypothesis that the
right HG plays the role of a ‘pitch centre’ for humans [14],
[32]. In addition, the right temporal and frontal cortices are
involved in melody perception when an active pitch memory
task is performed [33]. In contrast, other studies have revealed
the relevance of the left hemisphere to melody contour in
synchronization with other brain areas, implying the necessity
of broader brain inspection beyond right lateralized neural
responses in musical pitch processing [34], [35].

This study investigated the feasibility of decoding individual
musical pitches (C4, D4, E4, F4, G4, A4, and B4) directly
from human brain activity when attempting to cover each
pitch covertly by discovering pitch-related spectrotemporal
features from EEG recordings. We embrace a comprehensive
method for exploring all possible EEG features from the
bilateral hemispheres as well as a subtractive method appre-
hending spectral power differences between paired channels
of EEG across bilateral hemispheres to capitalize on the
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property of hemispheric asymmetry for musical pitch process-
ing. Focusing on the spectral feature space with five frequency
bands (delta, theta, alpha, beta, and gamma), we devised
a heuristic and automatic method to compare all spectral
power differences across all pitch pairs to capture the fea-
tures that most differentiated the seven musical pitches. Here,
a variety of classifiers–Naïve Bayes’ classifier, multiclass Sup-
port Vector Machine (SVM), Linear Discrimination Analysis
(LDA), XGBoost, and Long Short-Term Memory (LSTM)
models–were implemented to find the optimized model for
our purpose. Assuming that musically trained people would
generate more distinguishable EEG patterns with better musi-
cal imagery capacity than non-trained people [36], we also
compared the decoding performance between two participant
groups, one with musical training and the other without it.
This assumption originated from previous studies on MI-BCIs,
whose performance had a positive correlation with the spatial
imagery capacity of subjects, hypothesizing the cruciality of
individual imagery capacity for achieving better performance
in BCIs [37]. We anticipated that unveiling the feasibility of
decoding imagined musical pitch from brain activity could
help realize a music BCI.

II. METHODS

A. Subjects
Twenty-one subjects were recruited. Subjects who never

received formal musical training or received less than 3 years
of training were allocated to the non-trained (NT) group, and
those who received more than 3-years of musical training and
met the criteria in the pitch detection ability test (see II.B for
details) were allocated to the musically trained (MT) group.
Ten subjects were allocated to the MT group (5 females,
average age of 24.2±1.33 years) and 10 to the NT (4 females,
average age of 25.5±1.84 years), where 1 subject musically
trained over 3 years failed the test and was excluded.

All subjects in the MT group were able to play the piano.
None of the subjects reported any abnormalities in hearing
or brain function. Written consent was obtained from all
the subjects before the experiment, and the participants were
paid for their participation. This study was approved by
the Institutional Review Board (IRB) of the Ulsan National
Institute of Science and Technology (UNISTIRB-20-22-A).

B. Stimuli
The auditory stimuli were seven pitch sounds of piano in

the 4th-octave musical scale: C4, D4, E4, F4, G4, A4, and
B4, to include the international standard note of A4 [38]. The
frequencies corresponding to each pitch were 261.63, 293.66,
329.63, 349.23, 392.00, 440.00, and 493.88 Hz, respectively.
Each stimulus had a duration of 500 ms. The sound intensity
was adjusted to the individual comfort level of each partici-
pant, as assessed by their verbal responses. All stimuli were
generated using Logic Pro (Apple Inc., Cupertino, CA, USA).
A visual stimulus was designed as a piano keyboard image of
one scale where the seven-note names in Korean were tagged.
During the experiment, a visual stimulus was used to indicate
the target pitch of the imagery task (see Section C for more
details).

C. Experimental Task
The subjects performed two different tasks during the

experiment: a perception task followed by an imagery task.
In the perception task, the subjects were asked to count the
target pitch among 50 random pitch sounds consisting of seven
pitches. First, the subjects were informed of the target pitch,
and then 50 pitches were presented in series with a 500 ms
inter-stimulus interval (ISI). Each of the seven pitches were
randomly presented 50 times, and the subjects counted the
number of target pitches and responded to the counted number
with the keyboard. This round of perceiving 50 pitches and
counting the target pitch was termed a block. The subjects
performed a total of 14 blocks, and all seven pitches were set
as the target pitch twice. We pseudo-randomized the stimulus
presentation and acquired 100 trials for each pitch sound over
14 blocks. During the perception task, an image of the piano
keyboard without any cues was displayed on the computer
screen to help the subjects concentrate on the musical scale.
The performance of the perception task determined a final
MT group allocation (see Section II-A); if subjects with
>3 years of musical training counted the target pitch correctly
in 10 blocks out of 14, they were in the MT group; otherwise,
the subject was excluded from the experiment. This exclusion
criterion was not applied to subjects without musical training.

In the imagery task, subjects subvocalized the humming
of pitch tones on a musical scale (Fig. 1A). There were also
14 blocks in the imagery task, where block construction was
the same as the perception task but without sound and target
pitch per block. At the beginning of each block, the subjects
initially listened to ascending sounds from C4 to B4 for a
mental representation of the musical scale. The subjects then
performed the task with the guidance of a visual cue on the
image of a piano keyboard. The visual cue randomly turned
one of the seven keys red for 500 ms, followed by an ISI
of 500 ms, and subjects imagined the humming of the cued
pitch. The subjects performed 50 trials per block without
any auditory stimulus. After each block, the subjects overtly
hummed the 3 cued pitches selected at random to monitor
how well they were tracking the task. There was an apparent
difference in overt humming performance between the groups;
the NT group had lower precision but a higher response time
than the MT group. We acquired 100 trials for each pitch
over the 14 blocks. The subjects were allowed to rest after
each block for no longer than 2 min.

The experimental paradigm was implemented using
MATLAB Psychtoolbox (Mathworks, Inc., Natick, MA,
USA). Visual stimuli were presented on an LCD monitor of
1920 × 1080 resolution, and auditory stimuli were presented
through earphones plugged into both ears. In this study, only
data from the imagery task were analyzed according to the
study goal.

D. EEG Data Acquisition and Processing
EEG signals were acquired using an EEG amplifier

(Acti-Champ, Brain Product GmbH, Gilching, Germany) with
31 active wet electrodes (FP1, FPz, FP2, F7, F3, Fz, F4,
F8, FC9, FC5, FC1, FC2, FC6, FC10, T7, C3, Cz, C4,
T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz,
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Fig. 1. (A) A pitch imagery task. The pitch imagery task included 50 trials of pitch imagery. In each trial, a visual cue (red keyboard) appeared
randomly on one of the seven notes (C4–B4) for 0.5 s, cueing participants to imagine the corresponding pitch covertly. A 0.5-s inter-stimulus interval
followed with no cued keyboard. After 50 trials, participants hummed overtly following visual cues randomly presented for 3 times. (B) EEG channel
Montage. Thirty-one EEG electrodes were placed at the locations following the 10/20 international standard.

and O2) at a 500-Hz sampling rate (Fig. 1B). Ground and
reference electrodes were placed on the mastoids of the left
and right ears, respectively, following the 10-20 system of
the American Clinical Neurophysiology Society guideline 2
[39]. The impedance of the electrodes was kept below 10k-
Ohm except for a few electrodes (3 at maximum), where any
impedance did not exceed 20k-Ohm.

The preprocessing of EEG signals was as follows: 1) the
high-pass filter with a 1-Hz cutoff was applied to the EEG
signal; 2) the line noise was removed by a notch filter at
60 Hz with a 2-Hz bandwidth; 3) the band-pass filter with a
passband from 1 Hz to 50 Hz was applied to the signal; 4) bad
channels were detected and removed as follows: signals were
low-pass filtered (<1 Hz), then the channels were scrutinized
piece-wisely, and a channel was judged to be a bad channel
if it had a lower cross-correlation than 0.4 across more than
70% of the total channel [40]; 5) The common average
reference (CAR) technique removed a potential common noise
component from the diverse reference selections [41]; and
6) the artifact subspace reconstruction (ASR) method with
a cutoff of 30 eliminated the artifacts, which is reported to
preserve brain activity and remove artifacts [42]. Note that
this artifact removal aimed to refine the EEG signal rather
than dropping out bad trials. Subsequently, a balanced number
of trials, 100 trials for each pitch class was guaranteed. All
preprocessing was implemented using EEGLAB software [43].

The preprocessed EEG signals were epoched from -200 to
1,000 ms, based on the stimulus onset. In each epoch, event-
related spectral perturbation (ERSP) was extracted as follows:
First, the epoched signal at each channel was transformed
to time-varying spectral power data via short-time Fourier
transform (STFT) with a 100-ms sliding window and 90%
overlap by the spectrogram() function in the MATLAB Signal
Processing Toolbox. By setting the number of points for the
discrete Fourier transform computation to 512, the frequency
resolution was 0.98 Hz, therefore, the frequency bin size
was approximately 1 Hz. The number of frequency bins ( f )

was 50 and the number of time samples (t) was 111 for
the transformed STFT, yielded by the passband range at
3) and by the size of the sliding window and overlapping,
respectively. The resulting STFT for one trial was X ST FT ∈

R f ×t×C H
= R50×111×31, where CH was the total number

of channels. Baseline correction was employed for every
frequency bin by dividing each spectral power value of the
bin by the baseline mean value averaged from −200 ms to
0 ms. Then, the baseline-corrected values were transformed
to the log scale. Five frequency bands were generated by
averaging the baseline-corrected spectral power values in the
following frequency ranges: delta, 1–4 Hz; theta, 4–8 Hz;
alpha, 8–13 Hz; beta, 13–30 Hz; and gamma, 30–50 Hz. The
averaged spectral power values in each band were normalized
over time using the z-score method. As we intended to extract
imagined pitch information guided by the cue, 0–800 ms after
stimulus onset, we collected band power values after stimulus
onset with 81 time points out of 111 points. Consequently,
the matrix for each trial was X input ∈ R5×81×31 and was
submitted to the subsequent feature extraction procedure.

We assigned the class label to each trial according to the
pitch information (a total of seven classes). We arranged the
trials for each pitch class in chronological order: the first 80%
of trials in a training set, and the last 20% in a test set for
each class. Note that the decision to drop the cross-validation
scheme here was because we opted to arrange the training and
test sets in a fashion similar to the practical operation of BCIs,
where a training set is collected and used to build decoding
models before testing BCIs. As such, there were 560 trials in
the training set, X train ∈ R5×81×31×560, and 140 trials in the
test set, X test ∈ R5×81×31×140, respectively.

E. Feature Extraction
We explored the features that distinguish the seven pitches

from the spectral power distribution over time for every
frequency band and channel from the training set. This explo-
ration embodied two different schemes: using the spectral
power values of all individual channels (IC) and differences
between bilateral channels (DC).

In the IC scheme, we probed the time courses of spectral
power averaged over trials for each class at every frequency
band and channel (e.g., see Fig. 2A–B). From visual inspec-
tion, we observed that the time courses of each class crossed
at a certain time point after stimulus onset and then diverged.
Such divergence of the time courses appeared to be maximal
immediately after the convergence. This pattern was observed
in most of the bands and channels (Fig. S1). Based on these
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Fig. 2. Feature extraction procedure. The time courses of the mean theta band power from the visual cue onset (0 s) to 0.8 s after the onset for
each of the seven pitches (C4–B4) are depicted for F3 (A) and F4 (B) EEG channels, respectively. Difference between the two channels (F3 - F4)
are also depicted (C). The divergence of the time courses across pitches (d(t)) for each set of the time courses at F3 (D), F4 (E), and their difference
(F) is depicted. The positive (blue circle) and negative (red circle) peaks used for time segment selection, and the resulted time segment (cyan line)
are marked. Note that the power values at 0 s of (A)–(C) is varied from 0 dB as they were normalized independently after the baseline correction.

observations, we devised a metric to assess the divergence of
the time courses according to the pitch at each time instant,
as follows:

d (t) =
1
P

∑P

i
|xi1 (t) − xi2 (t)| (1)

where d(t) is the mean of the pairwise absolute differences
between all pairs of seven pitches in band power at time t , and
xi1(t) and xi2(t) are the averaged band powers at time t of the
i-th pair of pitches for i = 1, . . . , P , where P is the number
of pitch pairs (P = 21). First, we identified the negative and
positive peaks of d(t). Among these peaks, we inspected a
pair of negative and positive peaks, where the negative peak
preceded the positive peak, and selected the pair that showed
the largest difference between peaks that could reflect the
crossing followed by divergence of the time courses. The
selected peaks were used to calculate the time segment, which
corresponded to the full width at half maximum (FWHM) of
the gap between the negative and positive peaks (blue lines in
Fig. 2.D–E). Subsequently, a feature was extracted as an area
under the time courses of spectral power within the calculated
time segment for every trial.

In the DC scheme, we extracted features from hemispheric
differences in band power based on the observation that the
averaged time courses of band power for each pitch exhibited
opposite patterns between the left and right hemispheric chan-
nels (see Fig. 2. A–B). To capitalize on this contrast, we sub-
tracted the band power of the right hemispheric channel from
the left counterpart for each channel pair, and 13 bilaterally
symmetric channel pairs were arranged as follows: Fp1-Fp2,
F7-F8, F3-F4, FC9-FC10, FC5-FC6, FC1-FC2, T7-T8, C3-C4,
CP5-CP6, CP1-CP2, P7-P8, P3-P4, and O1-O2. Consequently,
the crossing and divergence of the time courses of band power
shown in the individual channels became more pronounced,
as demonstrated in Fig. 2C. From the time courses of the

band power, a set of features was extracted in the same way
as in the IC scheme using d(t) (Fig. 2F). The selected positive
peaks of d(t) in the DC scheme were larger than those in the
IC scheme (Fig. S2).

As there were five bands with 31 channels or 13 channel
pairs, the size of the feature set was 155 for the IC and
65 for the DC schemes. The features were further evaluated
using the one-way ANOVA test and selected when there was
a significant difference among the seven classes (p < 0.01).
The number of selected features was 123.9±16.6 with the IC
scheme and 54.9±5.96 with the DC scheme on average across
subjects. Note that all feature inspection and statistical tests
were implemented with MATLAB built-in functions and the
Statistical and Machine Learning Toolbox.

F. Decoding Model
This study compared several classification algorithms to

decode the selected features into seven pitch classes, including
Naïve Bayes’ classifier, multiclass SVM, LDA, XGBoost, and
LSTM (see SX for details in models). The performance of
the classifiers was evaluated based on the test accuracy, infor-
mation transfer rate (ITR), and diagonality of the confusion
matrix.

Test accuracy was defined as the ratio of the number of
corrected trials to the total number of trials in the test set.
ITR was calculated as follows [44]:

B = log2 N + A log2 A + (1 − A) log2
1 − A
N − 1

(2)

where N is the number of classes and A is the test accuracy.
B was divided by 0.8 sec, obtaining the ITR unit as bit/s.

The diagonality of the confusion matrix was calculated to
examine how close the misclassified pitch was to the true
one. As the pitch classes were linear, misclassification into
a closer pitch could be regarded as better than a further



CHUNG et al.: DECODING IMAGINED MUSICAL PITCH FROM HUMAN SCALP ELECTROENCEPHALOGRAMS 2159

Fig. 3. Topographic distributions of EEG spectral features. (A) Individual channel (IC) features, and (B) Difference between bilateral channel (DC)
features. DC features are displayed on the left hemisphere for convenience.

pitch. For example, if the true class was C4, decoding as
D4 would be considered less confusing than decoding as A4,
although both were treated as misclassification in terms of
accuracy. We methodized this examination as the diagonality
of a confusion matrix by correlating a confusion matrix
with a semi-diagonal matrix, where the semi-diagonal matrix
contained two diagonal and one adjacent-to-diagonal entries
(Fig. S3). We calculated the 2-D correlation (r) between these
two matrices as follows:

r =

∑
m

∑
n (Smn − S̄)(Cmn − C̄)√

(
∑

m
∑

n (Smn − S̄)
2
)(

∑
m

∑
n (Cmn − C̄)

2
)

(3)

where S is the semi-diagonal matrix, and C is a confusion
matrix. Smn (Cmn) is an entry of S (C) at the m-th row and
n-th column, and S̄ (C̄) is the mean of all entries in S (C).

Not only did we decode seven individual pitches, but we
also decoded a group of pitches to inspect if the decoding per-
formance varied by the number of classes. We grouped pitches
into K classes (1 < K < 7) under the following conditions:
the groups must be chunked with pitches linearly adjacent to
each other, and the number of pitches per group must be as
balanced as possible. For example, with K = 3, pitches can
be grouped as CDE/FG/AB, CD/EFG/AB, or CD/EF/GAB, but
not as CDG/EA/FB (pitches are not adjacent) or C/DEFG/AB
(not the most balanced). We explored all possible cases of the
groupings, and those with the highest classification accuracy
with all classifiers were determined as the final grouping for
each K.

III. RESULTS
In this section, the extracted features for both the IC and DC

schemes are first presented. We then report the best decoding
results for K classes (K = 1, 2, . . . , 7) using either the features
extracted via the IC scheme (IC features) or the DC scheme
(DC features). Finally, we compared the decoding outcomes
of the MT and NT groups.

A. Feature Distribution
We explored the spatial distributions of the IC and DC

features obtained from the training set, as shown in Fig. 3 (for

a representative subject [subject 11]). For the IC features,
we observed systematic changes in the spatial distribution
according to the pitch height (Fig. 3A). In the lower frequency
bands (delta, theta, and alpha bands), the higher feature value
distribution in the frontal region gradually migrated from the
right to left hemispheres as the pitch height increased. In the
higher frequency bands (beta and gamma bands), the opposite
migration of larger feature values in the frontal region was
observed from the left to right hemispheres. Meanwhile, in the
temporoparietal region, such migrations showed a reversed
propensity: migration of larger features from left to right
in the lower bands, and from right to left in the higher
bands.

The characteristics of the spatial distributions of features
according to the pitch height were evinced more vividly in
the DC features (Fig. 3B), which aligns with the results shown
in Fig. S2. Note that Fig. 3B depicts the feature differences
between hemispheres on the left hemisphere in relation to
visualization, and a channel difference was calculated by
subtracting the right hemispheric feature values from the left
counterparts. We observed conspicuous contrasts in the DC
feature distribution pursuant to the pitch height between the
frontal and temporoparietal regions, as well as between low-
and high-frequency bands, with a more apparent interaction
between brain region and frequency. The DC feature val-
ues increased as the pitch height increased in the frontal
region and low-frequency bands (delta, theta, and alpha)
or in the temporoparietal region and high-frequency bands
(beta and gamma). In contrast, they decreased as the pitch
height increased in the frontal region and high-frequency
bands or in the temporoparietal region and low-frequency
bands.

The penchant of the spatial distributions of the IC or
DC features largely remained after selection with one-way
ANOVA across single trials in the training set (Fig. S4),
and were more similar between adjacent pitches. Notably,
the spatial distributions of the features appear to be clustered
into {C, D}, {E, F, G}, and {A, B}. The selected feature
distribution for all subjects is depicted in Fig. S5 with the
trials averaged by pitch classes.
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Fig. 4. Decoding performance. The deciding performance of seven pitches from EEG obtained by the best combination of a feature set (IC features)
and a classifier (SVM) is illustrated in terms of (A) Accuracy, (B) ITR, and (C) Confusion Matrix for individual subjects, by MT and NT groups, and
average of those.

Fig. 5. Decoding performance for a different number of classes of pitch. Decoding performance for all K classes (K = 2, 3, . . . , 7) is illustrated in
terms of (top) Accuracy and (bottom) ITR. The chance level is depicted as a black dashed line, defined by the maximum chance of the model where
they predict most in the random, maximum number of pitches in the grouping divided by K. The best combination of feature and classifier is DC
feature & LSTM for 2, 4, and 5 classes, IC & LSTM for 3 classes, and IC & SVM for 6 and 7 classes.

B. Decoding Individual Pitches
First, seven individual pitches were decoded from the IC

or DC features. We classified the features extracted from
the test set using five classifiers (Table S1 and below for
details). We then compared the classification accuracy and
ITR among the classifiers and between the feature schemes
(IC vs. DC) using the Scheirer-Ray-Hare (SRH) test, a non-
parametric 2-way ANOVA test. There was no main effect of
the classifier or interaction effect (p>0.05), but there was a
significant difference for feature schemes (p<0.01). A post-
hoc analysis using the Kruskal-Wallis (KW) test revealed that
the IC feature yielded better performance in accuracy and
ITR than the DC (p<0.05). The best decoding performance
was achieved by using IC with SVM, resulting in an average
accuracy of 35.68±7.47% (max. 50%) and an average ITR
of 0.28±0.16 bits/sec (Fig. 4). In addition, we compared the
computation time taken to run decoding 7 classes by SVM
for each feature set, 4.6±0.7 ms with IC and 3.5±0.3 ms
with DC, indicating the time-savings associated with the DC
(Table. S2).

We constructed the confusion matrix from the classification
outcomes of the five classifiers for all 2 feature schemes
(Fig. S6–7). The SRH test showed the main effect of the
classifiers (p<0.05), followed by the Dunn test, which showed
that LSTM yielded lower diagonality than the others (p < 0.05;
Fig. S8).

C. Decoding Groups of Pitches
Classifications into K pitch classes were evaluated for each

K : 1< K <7. The grouping results for the K pitch classes are
shown in Fig. 5 and Table S3.

We calculated the accuracy and ITR for each K using either
the IC or DC with each of the five classifiers (Table S1), and
compared the feature scheme and classifiers using the SRH
test. For K = 2 and K = 5, the test showed the main effect
of the classifier, and the Dunn test revealed that LSTM yielded
the highest accuracy (p<0.05). For K = 3, a main effect
of the feature scheme was observed, and a higher accuracy
with the IC was revealed (p<0.05). For K = 4, the main
effects for both the classifier and feature schemes were shown,
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and post-hoc analyses revealed higher accuracy using LSTM
with the IC feature (p<0.05). For K = 6, no significant
differences were found between the classifiers and feature
schemes (p>0.05). No interaction effect was observed for any
K classes. We optimized the decoding models for each K as
a combination of feature schemes and classifiers based on the
statistical test results. If there was no main effect of the feature,
we selected the DC because it required a smaller feature
size than the IC to achieve a similar level of performance.
If there was no main effect of the classifier, the best classifier
was selected, which could be most effectively implemented
both in accuracy and computation time. The LSTM was
not selected unless it showed significantly higher accuracy
than others, owing to its much longer computation time.
The decoding accuracies from the best combinations were
84.07±12.34% (max. 96.43%) for 2 classes, 65.21±7.42%
(max. 77.86%) for 3 classes, 58.18±10.75% (max. 80%) for
4 classes, 56.11±2.17% (max. 57.14%) for 5 classes, and
39.5±5.53% (max. 51.43%) for 6 classes (Fig. 5, top). All
of these accuracy values were significantly higher than the
corresponding chance levels, calculated as a maximum number
of pitches in the grouping divided by K (t-test, p<0.05).

The decoding outcomes of selected decoding models for
each K were evaluated via ITR, a consistent measure of
decoding performance by considering the different number
of classes (Fig. 5, bottom). For all feature sets, there was no
interaction between the classification model and the number
of classes (K ) (SRH test, p>0.05), but the number of classes
showed the main effect. The effect of K was tested for each
feature type using the Dunn test; the ITR for 5 classes showed
a relatively higher value. Remarkably, the ITR for 5 classes
was significantly higher than that for 2, 6, and 7 classes with
IC (p<0.05, Fig. S9A) and for 3, 4, 6, and 7 classes with DC
(p<0.05, Fig. S9B).

The feature distributions in the training set, according to
the pitch groups for each K, were visualized using t-SNE
(Fig. S10). The DC features were distributed more linearly
with pitch height, in contrast to the distribution of IC features
that were more spread, suggesting a better decoding result of
the IC feature for the 7-class classification.

D. Comparison of Musically Trained and
Non-Trained Groups

We evaluated whether the decoding performance was differ-
ent between the MT and NT groups using the decoding models
selected for each K, as described above (see Section III-C).
Dunn’s test revealed no significant difference in both accuracy
and ITR between the groups for all K classes (p>0.05).
No significant differences in diagonality were found between
the groups for all K classes (p>0.05).

IV. DISCUSSION
In this study, we decoded the pitch imagery information

from EEG by extracting the most discriminable features from
the temporal patterns of spectral power in every channel
and frequency band. We designed two schemes for feature
extraction: individual channels (IC) and differences between
channels (DC). Differences were observed between bilateral

channels located symmetrically in each hemisphere, according
to our observation of a symmetrically reversed feature distri-
bution across hemispheres (Fig. 3). We used each of the IC
or DC feature sets to decode pitch with five classifiers and
then selected the combinations for each classification of K
classes (2 ≤ K ≤ 7) best in both statistical and computation
time (Table S1). The classification accuracy was significantly
higher than the chance level for every K , although there
was room for substantial improvement prior to its application
to real-time BCIs. Between the feature sets, using IC was
better in terms of the classification accuracy of multiple pitch
groups (i.e., large K ), whereas DC was better in representing
higher or lower pitch (e.g., C4 or B4). However, the ITR of
both features showed no difference for multiple pitch groups,
suggesting that using the DC was effective in representing
pitch height information, and even efficient considering the
feature dimension where the DC is half of the IC.

The feature distribution revealed noticeable countering pat-
terns between 1) left and right hemispheres, 2) anterior
vs. posterior areas, and 3) low- vs. high-frequency bands.
Possible hypotheses for these contrasts are proposed with
some neurological basis. First, the bilateral contrast (1) may
be related to the temporal sensitivity difference between
the hemispheres, leading to different spectral resolutions for
each hemisphere [36]; that is, the relative pitch height likely
formed a bilateral alignment of features across the hemi-
spheres. A potential neural substrate for the observed anterior-
posterior contrast (2) can be conjectured by frontoparietal
networks related to pitch discrimination, although the source
of distribution patterns remains unexplained [35], [45]. The
frequency-dependent distribution (3) can be assumed from
the characteristics of different EEG oscillations tracking the
acoustic properties of auditory stimuli, as delta to alpha
oscillations reflect attentional and acoustic input variations in
speech prosodic structures [46].

The commonality of the selected features among subjects
was further investigated by counting the number of subjects
whose features were selected in each channel and frequency
band (Fig. S11). Note that only IC was employed to scrutinize
the whole brain distribution of the selected feature. The distri-
bution of commonly selected features was observed over the
bilateral frontotemporal and parietal areas, particularly in the
lower-frequency bands. These areas correspond to frontotem-
poral and frontoparietal networks admissible for the recovery
of pitch sensation in patients with AA and CA [8], [14]. The
features in the low-frequency bands were frequently selected
from lateral areas rather than medial areas, implying pitch
information processing pathways over lateral areas, as reported
in previous studies [47]. The features in the high-frequency
bands showed a more complicated distribution, suggesting that
the inspection strategy to capture hemispheric differences is
more meticulous than the current method of subtracting the
counterpart electrodes from left to right.

We examined five classification models, including rela-
tively more advanced models such as LSTM and XGBoost,
expecting superior performance. Unfortunately, these models
did not outperform the simpler models in this study. This
may be related to the insufficient number of training samples
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for the advanced models [48]. Thus, enlarging the training
data size would enhance the performance of advanced mod-
els, thereby increasing the possibility of a more practical
pitch-imagery BCI.

The analysis of the MT and NT groups was based on
the hypothesis that individual music imagery capacity would
improve BCI performance [37]. However, no differences in
decoding performance and elicitation of pitch-related EEG
features were observed between the MT and NT groups. One
possible reason might be the insufficient musical context in
the stimulus presentation. Another reason might be the limited
number of participants for each group, due to difficulties in
recruiting not only ordinary participants but also musicians
during the coronavirus disease 2019 pandemic. However, this
invariant result by the groups may advocate the utilization of
imagined pitch decoding regardless of musical training.

Potential interference of horizontal visual stimuli in decod-
ing could be a concern. We examined this by repeating the
classification process without the delta band feature containing
activity in the 2-Hz band corresponding to the ISI (0.5 s) and
found no difference in decoding performance for all K classes
(Kruskal-Wallis test, p > 0.05). Moreover, a previous study
reported that decoding eye movements with a visual angle
of 5◦ from EEG gained accuracy above a chance level only
when electrooculography (EOG) signals were used along with
EEG [49]. Since we removed artifacts related to eye move-
ments from EEG, it is unlikely that eye movements with even
a smaller visual angle of 2.7◦ between the piano keyboards
might influence the decoding results of this study. In addition
to eye movements, spatial representation from the posterior
parietal cortex (PPC) was considered [50], but the activity
from the parietal lobe must be conserved with the cruciality
of its network with the frontal lobe for pitch processing [8],
[14]. Nevertheless, the extracted feature is related to pitch
processing as selected areas were mostly frontotemporal areas
regardless of the frequency bands, and decoding performance
was preserved even after the eye movements were ruled out.
Nonetheless, the horizontal design of visual stimuli should be
carefully re-examined in future studies to ensure that decoding
is entirely based on pitch imagery brain activity.

Verifying the feasibility of decoding seven pitches on a
musical scale from human EEG, the realization of pitch
imagery-based BCI appears plausible, nonetheless, further
endeavors to guarantee practical BCI realization are needed.
To achieve this, reinforcement of EEG features by neurofeed-
back training would be effective, improving the corresponding
EEG features in MI-BCI [51]. Pitch imagery training with
proper design of pitch-relevant visual and/or auditory online
feedback can be helpful, as shown in recent reports on the
advantages of realistic android-based feedback [52], online
visual feedback of EEG features [53], and multisensory feed-
back [54] in MI-BCIs. In addition, decoding performance can
enhance by employing advanced deep learning algorithms,
as demonstrated by other EEG-BCI studies [55].

Methods of decoding an imagined single pitch from brain
signals proposed here and the associated neurofeedback train-
ing approach will also contribute to musical imagery and musi-
cal learning research as well as building pitch imagery-based

BCIs. Musical imagery is well known for its relevance to musi-
cal learning based on auditory-motor interaction [47]. As such,
if one can decode imagined musical activity from brain and
immediately feed decoding output back to learners by auditory
signals, it can enhance musical learning by reinforcing the
auditory-motor circuit. As the musical pitch is one of the
most fundamental musical elements chiefly related to musical
ability, a system that decodes single musical pitches would
be advantageous in providing neurofeedback for musical
learning.

V. CONCLUSION

This study revealed the feasibility of decoding imagined
pitch on a musical scale using human EEG. We found spec-
trotemporal features that differentiated the multiclass pitches,
represented the linearity of pitch height, and ruminated hemi-
spheric differences. We achieved the performance of decoding
pitch imagery information from noninvasive brain signals,
which could initiate the development of future pitch-imagery-
based BCIs for anyone who can represent pitch covertly
heedless of the keen pitch sense.
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