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Abstract— Developmental coordination disorder (DCD)
is a motor learning disability with a prevalence of 5%-6%
in school-aged children, which may seriously affect the
physical and mental health of affected children. Behav-
ior analysis of children helps explore the mechanism of
DCD and develop better diagnosis protocols. In this study,
we investigate the behavioral pattern of children with DCD
in the gross movement using a visual-motor tracking sys-
tem. First, visual components of interest are detected and
extracted using a series of intelligent algorithms. Then, the
kinematic features are defined and calculated to describe
the children behavior, including eye movement, body move-
ment, and interacting object trajectory. Finally, statistical
analysis is conducted both between groups with different
motor coordination abilities and between groups with dif-
ferent task outcomes. The experimental results show that
groups of children with different coordination abilities differ
significantly both in the duration of eye gaze focusing on
the target and in the degree of concentration during aiming,
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which can serve as behavioral markers to distinguish chil-
dren with DCD. This finding also provides precise guidance
for the interventions for children with DCD. In addition
to increasing the amount of time spent on concentrating,
we should focus on improving children’s attention levels.

Index Terms— Developmental coordination disorder
(DCD), behavior analysis, visual-motor tracking, behavioral
marker, gross movement.

I. INTRODUCTION

DEVELOPMENTAL Coordination Disorder (DCD) [1],
also referred to as developmental dyspraxia, is a type

of neuromotor disorder that affects approximately 5%-6% of
school-age children [2], [3]. Children with DCD typically
exhibit ‘clumsy’ movements and have limited flexibility in
their limbs when participating in some daily activities, such
as, playing sports, catching objects, and using scissors [4].
The motor coordination abilities of children with DCD lag
far behind that of their peers at typical developmental stages
[5]. What’s more, some children with DCD have problems
with perceptual, sensory, tactile, and visual perception [6].
Without timely diagnosis and interventions, the symptoms of
most children with DCD will continue into adolescence or
adulthood [7], which seriously affects the social, academic,
and emotional development of patients [8], [9], [10], and
brings some secondary health problems, such as obesity [11],
depression [12], and poor social adaptability [13]. Timely
assessment is of great importance to the physical and mental
health for children with DCD.

At present, the etiology and pathogenesis of DCD are
unclear [14], [15]. How specific cognitive and neurological
deficits affect developmental coordination disorders remains a
mystery [16]. The current clinical diagnosis of DCD is made
by observing the child’s performance in completing specific
assessment tasks specified in a standard diagnostic assessment
tool [17]. This diagnosis based on naked-eye observation has
the following drawbacks: 1) Human visual observation is
highly subjective, and it is easy to ignore some important
details due to occasional fatigue; 2) Longitudinal or horizontal
comparative analysis is difficult to conduct in the one-time
observation and diagnosis; 3) The assessment tools are too
specialized for non-professional users (such as teachers and
parents), and the charge of professional diagnosis is expensive,
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leading to many inconveniences in early screening. With the
rapid development of computer vision and data mining tech-
nologies, intelligent behavior analysis and in-depth exploration
of diagnostic behavioral markers of DCD may provide novel
solutions to the above problems.

Poor motor coordination is one of the main features of
children with DCD [1], [7]. Motor coordination is the abil-
ity to combine the nervous and musculoskeletal systems to
product fast, precise, and well-balanced motor responses [18].
The most visual manifestation of motor coordination is the
body movements, while visual perception plays a key role
in the development of motor coordination [19], [20]. Body
movement and visual perception are coupled: the information
from the perceptual system is associated with changes in
body dynamic, which in turn is used to adaptively regulate
body behavior, ultimately leading to the development of stable
motor coordination pattern. When interacting with the object,
the state or the trajectory of the objects interacting with
human also reflects body movement to some extent. Thus,
a comprehensive behavior analysis of DCD includes analysis
of body movement, visual movement and interacting object
trajectory.

Many studies [21], [22], [23], [24], [25], [26], [27], [28]
have been conducted on DCD from the perspective of body
motion analysis, and most of the works has been devoted to
excavating the walking and running gait of children with DCD.
Among them, the most representative is the works from the
Perception and Motion Analysis Research Group (PuMA) at
Oxford Brookes University. They used the Vicon Nexus 3D
motion capture system with 12 cameras to study the motor
mechanism and motor coordination of DCD patients [21], [22],
[23]. As shown in Fig. 1, the movement variability of adults
with and without DCD [21], and the gait patterns of children
with DCD [22] are studied by tracking the movement of
spherical markers attached to the skin surface of participants.
They also studied the movement differences when avoiding
obstacles in order to explore the motor control mechanism
of DCD patients [23]. PuMA’s research works show that the
digital motion analysis system has great potential in exploring
the motion mechanism of DCD. Some works [29], [30], [31],
[32], [33] have investigated the disorder mechanism of DCD
from the perspective of visual pattern analysis with the help of
non-intrusive eye-tracker. Wilson et al. [29] used an Applied
Science Laboratories (ASL) Mobile Eye gaze registration
system and applied the quiet eye (QE) as an object measure to
distinguish children with different motor coordination abilities.
Licari et al. [32] studied the visual tracking behaviors of boys
in the task of two-handed catching using the Mobile Eye
(ME) tracking system. These works indicate that the visual
movement analysis is meaningful to explore the pathogenesis
of DCD.

There are a few works [34], [35] that consider body
movement and visual movement jointly to make a compre-
hensive behavioral analysis of DCD. Parr et al. [34] used a
26-camera motion capture system (Vicon MX) and a Pupil labs
eye-tracker to analysis the kinematic variables and gaze vari-
ables and investigate the visuomotor control strategies of chil-
dren with and without DCD. Similarly, in [35], Arthur et al.

Fig. 1. Vicon Nexus 3D motion capture system used by the Perception
and Motion Analysis Research Group [21], [22], [23].

applied the same equipment to examine the hand and eye
movements of children with DCD during object interaction.
However, the motion capture system used in [34] and [35]
requires many reflective markers to be attached on the partici-
pants, which limits the application range of this type of motion
capture system, especially in the motion ability assessment
of children, because the pasted markers may distract children
and bring physical discomfort. Besides, this motion capture
system is expensive, which is not convenient for system
popularization. In addition to above DCD related works, there
are also some other works [36], [37], [38] dedicated to the
study of jointly visual-motor analysis. Eye-tracker is used to
capture eye motion information in these works. In the work
[36], sensors are used to capture the position of the hand
or fingertips, while the other two works [37], [38] use the
movement of the mouse cursor to reflect the movement of the
hand. There are strict limitations on the experimental scenes
and tasks, whether using the positioning sensors or the mouse
cursor to capture hand movement. Attaching the sensors to the
hand is not suitable for the experimental scenes that require
large-scale swings of upper limb, and the sensors may cause a
certain degree of interference to the participants. The limitation
of using the mouse cursor to reflect the hand movement is even
more obvious, because most of the motion tasks in the actual
scene cannot be simulated by moving the mouse, which lacks
authenticity and operability.

In our previous works [39], a marker-less visual-motor
tracking system was developed, which captures both eye
movement and body motion of children as well as scene
information during DCD fine and gross motor assessment.
With the help of the designed system, we conducted several
studies [40], [41] on fine movements of DCD in the early
stage. In [40], the eye-hand coordination ability in the fine
motor task was analyzed based on the visual-motor data, and
the experimental results showed that the eyes of children
without DCD have an obvious leading role, that is, their eyes
focus on the target before their hands move. In [41], automated
fine motor evaluation of DCD was achieved by the designed
task localization algorithm and task evaluation algorithm.
Gross motor analysis is qualitatively different from fine motor
analysis, because the fine motor refers to movements that
focus mainly on the upper limbs, especially the hands, while
gross movements usually require the participation of the whole
body.
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In this paper, we focus on developing a framework for
behavior analysis in gross movements and mining quantified
behavioral markers of children with DCD in the gross tasks.
Taking the task of throwing beanbag specified in the DCD
assessment tool [42] as an example, we investigate the behav-
ior pattern of children with DCD through the analysis of eye
movement, body movement, and interacting object trajectory.
First, a series of artificial intelligence-based algorithms are
adopted to detect and extract interested visual components in
the beanbag throwing task, including single throw clip extrac-
tion, human body tracking, and objects of interest detection.
Subsequently, the kinematic features in single throwing are
defined and extracted to describe the beanbag trajectory, gaze
movement, and body movement. Finally, statistical analysis
is applied between groups with different motor coordination
abilities to explore the quantified behavioral markers of DCD.

The rest of the paper is organized as follows. Section II
presents the data collection system and the experimental
design. In Section III, visual components detection and kinet-
ics feature extraction are introduced in detail. Section IV
presents the statistical analysis and the experimental results.
The mined behavioral markers of DCD are discussed in
Section V. Finally, the paper is concluded in Section VI.

II. DATA COLLECTION

The experimental setup in this study is carefully designed
following the standard assessment tool Movement ABC-2 [42]
and in consultation and collaboration with experts on sports
rehabilitation experienced with DCD.

A. Task and Participant
Movement ABC-2 is a standardized assessment tool to

identify a child with motor difficulties by comparing his/her
score to their peer normative performance. This tool has been
widely used for clinical diagnosis and scientific research.
Therefore, Movement ABC-2 was used in this study to eval-
uate participants’ motor competence and give a quantified
motor coordination score. Eight tasks (three fine motor tasks
and five gross motor tasks) are designed for each age band
in Movement ABC-2. The performance of the participant
in each task is scored and adjusted to an item standard
score by age. A total test score and an age-adjusted standard
score are calculated and converted to the percentile rank for
clinical diagnosis. 63 children aged 7∼10 years old were
recruited from primary schools in Hong Kong to participate
in the research. Before commencing this study, full parental
and participant’s informed written consents were provided,
and the ethical approval was acquired from Research Ethics
Safety Committee of Chu Hai College of Higher Education,
Hong Kong.

B. System Design
A marker-less visual-motor tracking system for gross move-

ments proposed in our previous work [39] is used to record the
body movement and the eye gaze of the participants, as well
as the scene information, as shown in Fig. 2. The system
consists of a binocular head-mounted eye-tracker (Pupil Labs)

Fig. 2. The proposed gross movement system.

and three Kinects (Microsoft Kinect V2) surrounding the
participant. To ensure the continuity of the assessment process,
three Kinects are designed to meet the recording requirements
of all the gross motor tasks, of which one Kinect is used for the
task of throwing beanbag. The eye-tracker has a front world
camera and two eye cameras. In addition to providing eye
gaze data, the eye-tracker also provides the first-person images
by the world camera. The resolution of the world camera is
1280 × 720 at 60 fps, and the field of view (FOV) of its
lenses is 100 degrees. Kinect captures the third-person videos,
and the resolution is 1920 × 1080 at 30fps. In summary, the
designed visual-motor tracking system provides us with the
eye gaze, the first-person images, and the third-person images
of the participants and the scenes.

C. Experimental Protocol
Each participant is required to conduct a dominant hand

test, namely one-handed catching, to determine the dominant
hand, and then to complete eight tasks specified in Movement
ABC-2 under the instructions of a well-trained assessor to
obtain his/her motor coordination score. The performance of
the participants in five gross motor tasks is recorded by the
proposed gross movement system, and these five gross tasks
are catching with two hands, throwing beanbag onto mat, one-
board balance, walking heel-to-toe forwards, and hopping on
mats. In this study, we conduct behavior analysis in the task
of throwing beanbag onto mat, because the specific throwing
skill is highly related to children’s sport or games, and the
throwing prediction ability is also the basis of other targeting
tasks.

In the task of throwing beanbag onto mat, the participant is
required to stand on the solid-blue mat wearing the eye-tracker,
and then throw the beanbag onto the red circle on the target
mat, as shown in Fig. 3. The participants are encouraged to
perform underarm throwing with one hand, but an overarm or
two-hand throw is not penalized. Participants are allowed to
change hands during formal trials. The task is explained and
demonstrated to the participant firstly, then each participant
is given five practice attempts and ten formal trials. In the
formal test phase, a hit is counted if any part of the beanbag
overlaps with the designated red area on the target mat upon
landing. The throwing performance is recorded by both an
absolute score out of ten and a standard score (accounting for
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Fig. 3. ∗. The task of throwing beanbag onto mat specified in Movement
ABC-2. (∗The parents of the child in the image gave permission to use
this image.)

age differences) taken from tables in the Movement ABC-2
Examiner’s Manual.

III. METHODOLOGY

A. Visual Components Detection and Extraction
Prior to behavior analysis, intelligent detection and extrac-

tion of the visual components of interest are required. The data
captured by the Kinect and eye-tracker are long videos con-
taining multiple beanbag throwing trials, so it is necessary to
extract the video clips that contain only one beanbag throwing
trial to facilitate subsequent analysis with a single throwing as
the unit. During each beanbag throwing process, the posture
of the participant (especially the hand pose primarily involved
in the task), the position of the beanbag and the target mat
need to be detected to analyze the human body movement, and
beanbag trajectory. In this section, how to detect and extract
these visual components of interest is presented.

1) Single Throw Clip Extraction: The performance of each
participant is recorded as two long videos, one is the
first-person view video from eye-tracker’s world camera and
the other is the third-person view video from Kinect. These
two videos were processed using the action progression net-
work (APN) proposed in our previous work [43] for single
throw clip extraction. The APN network estimates the start
and the end of a throwing trial based on the learning of action
temporal structure, thus extracting the video clips of each
beanbag throwing trial. Then the automated results obtained
by APN are manually adjusted by a research specialist in
motor coordination disorder. The eye gaze sequence belonging
to each throwing trial is located and extracted according to
the synchronization relationship between the first-person view
video and the eye gaze data. In this way, the clips extracted by
single throw extraction are triplets {(Fk, Tk, Ek)}

K
k=1, where

k ∈ {1, 2, · · · K is the index of the single throw clips, and
K is the total number of the single throw clips.Each triple
(Fk, Tk, Ek) consists of three elements, i.e., the first-person
view video clip Fk , the third-person view video clip Tk , and
the eye gaze sequence Ek in one single beanbag throwing.

2) Human Pose Estimation: To analyze the body movement,
the exact position of the key skeletal points of human body,
especially the hand throwing the beanbag, at each moment
are required to be known. This claim can be achieved by

Fig. 4. Human pose estimation and beanbag & mat detection results.
(a) First-person view image; (b) Third-person view image.

image-based human pose estimation. Plenty of researchers
are currently working on human pose estimation, and there
are many mature pose estimation methods [44], [45], [46].
The OpenPose [44] human pose estimation framework is an
open-source library developed based on convolutional neural
networks and partial affinity fields, which enables real-time
single and multi-person pose estimation with good robustness.
Therefore, OpenPose is adopted here to estimate the 2D
coordinates of human skeleton points from the third-person
view RGB images. The positions of hands are obtained by
the estimated position of the corresponding key points (“left
hand” joint and “right hand” joint), as shown in Fig. 4 (b).
The colored lines in the figure are the pose estimation results
obtained by the OpenPose.

Once the positions of two hands are known, the hand which
is used to throw the beanbag is determined by jointly consid-
ering the position of the beanbag. Finally, the 2D coordinates
of the hand throwing the beanbag is obtained, and denoted as
p(i)

h at the i-th frame.
3) Beanbag and Mat Detection: Beanbag and target mat are

two notable objects in the throwing process. The trajectory
of beanbag and the position of the target mat together with
the eye movement data reflect the targeting ability and the
concentration level of the participant. Therefore, the beanbag
and the mat in both the first- and third-person view videos
should be accurately detected. The classic object detection
algorithm Faster R-CNN [47] is adopted to detect the beanbag
and the target mat. The positions of beanbag and mat are
partially annotated, and the Faster R-CNN pre-trained on the
COCO dataset [48] is fine-tuned on the annotated data. The
detected results are shown in Fig. 4. The center coordinates
of the detected box are taken as the 2D coordinates of the
detected beanbag and target mat, which is denoted as p(i)

b and
p(i)

m at the i-th frame.

B. Kinematic Features in Single Throwing
After extracting and detecting the visual components, the

kinematic features in a single throwing are analyzed in this
section. The beanbag is the object of interaction with the
participants. The beanbag trajectory reflects the direction and
strength when throwing the beanbag, and is decisive for the
throwing result. The human eye gaze movement and hand
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Fig. 5. The definition of the beanbag release time.

movement are indispensable components of motor coordina-
tion studies, which are analyzed to explore the behavioral
markers between children with and without DCD.

1) Beanbag Trajectory: A complete beanbag throw refers
to the process from aiming, raising the hand to the end of
beanbag landing. It contains two distinct phases: 1) Phase 1
(beanbag throwing) is defined as the time from preparation to
the beanbag releasing. Aiming the target and waving the arm
take place during this phase, which determine the outcome of
the throwing (hitting on or not). 2) Phase 2 (beanbag flight) is
defined as the time from beanbag releasing to beanbag landing
on the mat or ground. Any actions of the participants at this
stage do not have an impact on the result of beanbag throwing.

Phase 1 and Phase 2 are separated by a critical moment,
namely beanbag release time, which is defined as the moment
at which the beanbag begins to leave the hand, as shown in
Fig.5. The red curve represents the trajectory of the hand, and
the green curve represents beanbag’s trajectory. The beanbag
release time is the frame where the red and green curves no
longer overlap. The determination of beanbag release time is
important for temporally fine-grained behavior analysis.

The beanbag release time is calculated according to the rela-
tive position of the hand and the beanbag. During the beanbag
throwing process, the movement trajectories of the hand and
the beanbag are completely recorded in the third-person view
video clip. The hand and the beanbag are detected frame by
frame. The beanbag is considered to be thrown out when the
distance between the hand and the beanbag exceeds a preset
threshold. Therefore, the beanbag release time is calculated as
tr =

nr
fK

, where fK is the sampling rate of the Kinect RGB
camera, nr is the frame index which satisfies formula (1).∥∥∥p(nr −1

b ) − p(nr −1
h )

∥∥∥
1

≤ ε&
∥∥∥p(nr )

b − p(nr )
h

∥∥∥
1

> ε (1)

where, p(nr )
b and p(nr )

h are the coordinates of the beanbag and
hand in the nr -th frame. ε is a preset threshold, which is set
to ε = 20 (pixel-level distance) in our experiment.

In addition to the beanbag release time, the tangent angle at
the beanbag release time, the highest height that the beanbag
reaches, and the time from the beanbag releasing to that the
beanbag reaches the highest height are calculated to analyse
the beanbag trajectory.

2) Gaze Movement: The eye-tracker outputs a series of gaze
data, i.e., the position of the subject’s gaze point within the

Fig. 6. An area of interest (AOI) in the visual scene is defined as the
red circle in the blue mat.

coordinate system of the world camera. Eye gaze points pro-
vide profound and precise information about the mechanism in
cognitive processes, and eye gaze is the most commonly used
features by researchers to reveal attention model in cognitive
processes of interest. In this part, only the gaze movement
during Phase 1 is analyzed, since aiming occurs during this
phase.

To focus on the specific area of stimulus, an area of
interest (AOI) in the visual scene (first-person view image)
is defined as the red circle in the blue mat as shown in Fig. 6,
which is consistent with the fact that the red circle is the
focusing target in the task of throwing beanbag. With the
definition of AOI, the eye gaze points are divided into two
groups. One group is inside the AOI, and the other is outside
of the AOI.

a) Effective Aiming Time (EAT): Aiming is important in
the throwing games. Effective aiming refers to focusing eyes
within the defined AOI, and the effective aiming time is
calculated to measures the proportion of cumulative time
duration that the eye gaze point falls within the defined AOI
over a period of time. The effective aiming time is calculated
according to the first-person view video clip, in which the
eye gaze point is obtained as p(i)

g and the center of mat is
detected as p(i)

m in the i-th frame. The effective aiming time
during Phase 1 is calculated as follows.

E AT =
1

fE × tr

∑
i=nn

e

δ(

∥∥∥p(i)
g − p(i)

m

∥∥∥
1
− ϵ) (2)

where, fE is the frame rate of the world camera of the
eye-tracker. tr is the beanbag release time. ns and ne
are the start frame index and the ending frame index of
Phase 1, respectively. ϵ is a preset threshold. The function
δ(

∥∥∥p(i)
g − p(i)

m

∥∥∥
1

− ϵ) is used to determine whether the eye

gaze point falls within the defined AOI frame by frame. The
value of this function is equal to 1 if the distance between
the eye gaze point and the center of the mat is less than or
equal to the preset threshold, if not, the value of this function
is equal to 0.

b) Relative Gaze Stability (RGS): The stability of the eye
gaze points reflects person’s concentration of attention [49],
[50]. Generally, the variance of the eye gaze over a period of
time is calculated to reflect the eye gaze stability assuming
that the camera’s field of view (FOV) remains unchanged.
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Fig. 7. The first-person view images captured under the constantly
changing FOV. (a) Captured n1-th frame image; (b) Captured n2-th
frame image; (c) Unaligned gaze points; (d) Aligned gaze points.

However, this assumption is invalid here, because the FOV of
the world camera is constantly changing during the process
of throwing beanbag. There is an example as shown in
Fig.7 (a) and Fig.7(b). p(n1)

g is the position of eye gaze at
the n1-th frame, and p(n2)

g is the position of eye gaze at the
n2-th frame. The FOV of the world camera changed slightly
from n1 to n2 due to the movement of the subject’s head.
Obviously, p(n1)

g and p(n2)
g are not in the same coordinate

system, and there is no physical meaning to calculate the
variance of p(n1)

g , p(n2)
g , · · · p(nk )

g .
Considering that the focus of attention in the process of

throwing beanbags is the target mat, and the position of the
target mat is calculated and denoted as p(i)

m at the i-th frame.
Therefore, we take the center of the mat as the reference point
and use the vector from the center of the mat to the gaze point
in place of the original gaze point to calculate the relative
gaze stability. As shown in Fig. 7 (c), v(n1) and v(n2) are the
vectors from the center of the mat to the gaze point at the n1-th
frame and the n2-th frame, and these two vectors have different
start points p(n1)

m and p(n2)
m . Then the start points of these two

vectors are moved to a fixed point, denoted as m′, thus the
ends of these two vectors are the aligned gaze points p′(n1)

g

and p′(n2)
g , as shown in Fig. 7(d). The aligned gaze points

denote the direction and distance of the original gaze point to
the focusing target mat. Therefore, the relative gaze stability
during Phase 1 can be calculated using the aligned gaze points
as shown in formula (3).

RGS = 9(p′(ns )
g , p′(ns+1)

g , · · · , p′(ne)
g ) (3)

where, 9(·) is the function to calculate the standard deviation.

3) Body Movement: In the task of throwing beanbag, the
body movement mainly focuses on the hands, i.e., the arm
swings to throw out the beanbag. The amplitude of the
arm swing determines the initial parameters of the released
beanbag. Therefore, the amplitude of arm swing is calculated
to analyze the effect of the hand movement on the beanbag
throwing result.

IV. RESULTS

During the data collection process, a small amount of data
was lost due to equipment problems. There are a total of
572 single throw clips from 62 participants in the dataset. The
one-handed catching test shows that 5 participants are left-
handed and 57 participants are right-handed. In the 572 single
throw clips, 498 (87.06%) throws are completed with the
right hand, 11 (1.92%) with the left hand, and 63 (11.01%)
with both hands. Only right-handed or two-handed throws
(561 clips from 61 participants) are used for the statistical
analysis, while left-handed throws are excluded in this study to
avoid statistical results being influenced by the factor of using
different hands. Statistical analysis with the parametric test of
ANOVA and non-parametric test of Kruskal-Wallis test (KW
test) are adopted here to identify whether there are significant
differences among children with various motor coordination
on the proposed kinematic features.

A. Grouping Principle
According to the Movement ABC-2 test results, the

motor coordination abilities vary greatly among the 61 chil-
dren involved in the study (Movement ABC-2 standard
score=9.07±2.57, percentile rank=39.80±26.23). Four partic-
ipants have significant movement difficulty, whose Movement
ABC-2 percentile rank are at or below 5th percentile. They are
highly likely to suffer from the clinical movement disorder,
i.e., DCD. Five children are found to be at risk of having
DCD, as their Movement ABC-2 percentile rank are between
5th and 15th percentile. The remaining 52 participants have
no detectable signs of DCD, among which 6 children’ scores
equal to or higher than 84th percentile, demonstrating superior
motor coordination abilities.

The samples of 61 children are naturally divided into
three groups based on the Movement ABC-2 percentile
rank, i.e., Low Motor Coordination group (LMC, per-
centile rank<25), Middle Motor Coordination group (MMC,
25=<percentile rank<63), and High Motor Coordination
group (HMC, percentile rank>=63). The basic information
of these three groups is shown in TABLE I. The Movement
ABC-2 percentile ranks of the LMC, MMC, and HMC groups
are 10.33±5.33, 32.82±8.37, and 75.22±10.90, respectively.
The Pearson correlation analysis indicates that Movement
ABC-2 percentile rank is significantly correlated with age
(r= -0.40, p= 0.0015), height (r=-0.32, p= 0.0119), and
weight (r=-0.34, p= 0.0081), but these correlations are weak
(-0.5<r<-0.25).

B. Single Clip Extraction
The APN network is adopted for single throw clip extrac-

tion. The parameters of the APN network are set as:
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TABLE I
THE BASIC INFORMATION OF THE LMC, MMC, AND HMC GROUPS

TABLE II
RESULTS OF SINGLE THROW CLIP EXTRACTION

Tlen = 15, Tstart = 40, Tend = 60. The metric of average
precision (AP) is used to evaluate the performance of the
APN for the task of single clip extraction, and the higher
AP indicates better performance. The results are reported in
TABLE II.

The AP of single throw clip extraction reaches 0.901 when
the feature extraction backbone of APN is ResNet3d. The
performance is further improved when the backbone is set as
X3D, achieving the AP of 0.929. The experimental statistical
results illustrate that APN well achieves accurate single throw
extraction, which means the research specialist only needs to
adjust slightly the APN results.

C. Group Comparison
The kinematic features for each participant in all beanbag

throwing trials are calculated and the average values are taken
as the final result. The results are reported and analyzed as
follows.

1) Throwing Performance (TP): This refers to participant’s
standard score in the beanbag throwing task. The boxplot of
the throwing performance of these three groups is shown in
Fig. 8. The HMC group has the largest median, followed by
the MMC group, and the LMC group has the smallest median.
ANOVA test reveals a significant group difference in the
throwing performance (p=0.0399), which provides evidence
for the plausibility of setting the beanbag throwing task in
Movement ABC-2. Further comparation tests between each
pair groups reveal that the significant differences among these
three groups mainly stem from the difference between the
LMC and HMC groups (p= 0.0227).

2) Effective Aiming Time (EAT): The advanced observation
and planning of eyes are crucial in the throwing task. EAT
reflects the percentage of time that the participants’ eyes
effectively focusing on the target mat before the beanbag
releasing from the hand. The EAT in the Phase 1 for each
participant is calculated and the statistical results of different
groups are shown in TABLE III. ANOVA test reveals there is
a significant group difference on the EAT in Phase 1 (p<0.05,
effect size= 0.40, power=0.7833). It is obvious that the group
of children with higher motor coordination score spends more
time effectively aiming at the target.

Fig. 8. Throwing performance boxplot of the LMC, MMC, and HMC
groups. The mean and standard deviation of each group are presented
as mean ± SD. ANOVA test reveals a significant group difference on the
throwing performance.

TABLE III
STATISTICAL ANALYSIS RESULTS OF GAZE MOVEMENT

3) Relative Gaze Stability (RGS): RGS reflects the stabil-
ity of the eye gaze points and the degree of concentration
during aiming. ANOVA test reveals a significant group dif-
ference on the RGS in Phase 1(p<0.005, effect size=0.48,
power=0.9153), as reported in TABLE III. The RGS value
of the LMC group and the MMC group is about three times
and twice that of the HMC group respectively, which indicates
the fact that the participants in the HMC group have highly
concentrated attention. This kind of high-attention observation
in Phase 1 is very like to plan and prepare for the action of
throwing the beanbag, which may benefit to an accurate hit.

In addition to the quantitative analysis, we also make some
visual analysis below in order to show the group difference
intuitively. Heatmaps are often used as representative results of
eye tracking, which provide a visualization means to show the
distribution of gaze points. Considering the constantly changed
FOV of the world camera, we take the aligned gaze point
in place of the original gaze point to generate the relative
gaze heatmap. The generated relative gaze heatmap reveals
the distribution of subject’s gaze points during the process
of throwing beanbag, as shown in Fig. 9. The first to third
rows are the heatmaps of three samples randomly selected
in the LMC, MMC, and HMC groups respectively. In each
heatmap, the Movement ABC-2 percentile rank of the sample
is given. The red star represents the position of target mat.
The information around the target mat is so aboundent that
the area near the target mat in the yellow boxes are enlarged
and displayed in the red boxes for better observation.

It is easy to observe that the heatmaps of the samples in
the LMC group are the most scattered, and their spread is
widest, almost covering the entire red magnified box. The
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Fig. 9. Relative gaze heatmaps of nine samples from the LMC, MMC,
and HMC groups.

TABLE IV
GAZE MOVEMENT ANALYSIS OF THE LMC, MMC, AND HMC GROUPS

ONLY WITH THE HITTING-ON TRIALS

heatmaps of the samples in the MMC group is slightly more
concentrated than that of the LMC group, and their spread
area only occupies a certain part of the red magnified box.
The heatmaps of the samples in the HMC group are the
most compact, and they are all concentrated around the target
mat. The heatmap comparison intuitively illustrates that the
eye gaze points of the HMC group are the most stable, and
they are all concentrated around the target. This means that
the attention of the participants in the HMC group is most
concentrated and focus on the target. The samples in the MMC
group are the second, and the attention of the samples in the
LMC group are the most distracted during beanbag throwing.

4) Body Movement & Beanbag Trajectory: There is no sig-
nificant group difference on the body movement and beanbag
trajectory in terms of the proposed variables, and the detailed
results are reported in the supplementary material.

D. Hitting-on Trials Only
To avoid the impact on the data analysis caused by func-

tional variation between the hitting-on and missing attempts,
we also perform statistics analysis of gaze movement only
with the hitting-on trials of these three groups, and the results
are reported in TABLE IV.

ANOVA test reveals that there are significant group differ-
ences on the EAT (p<0.005, effect size=0.46, power=0.8842)
and RGS (p<0.05, effect size=0.4, power=0.7757), which
is consistent with the group comparison containing both the
hitting-on trials and the missing trials in Part C. These are
some minor changes in the significant effect of these two
variables, this is, the significant effect of the EAT is increased,
and the significant effect of the RGS is decreased. It can
be concluded that the results indicate that the significant
differences among these three groups on EAT and RGS do not

TABLE V
QUANTITATIVE COMPARISON BETWEEN HITTING-ON

AND MISSING GROUPS

change depending on whether the missing trials are considered
or not.

E. Hitting-on Vs Missing
In this section, we investigate the relationship between

the beanbag throwing results (hitting-on or missing) and
behavioral kinematic features (especially EAT and RGS) in
order to provide recommendations for improving children’s
motor coordination ability and beanbag throwing accuracy.
A natural split is performed on the 561 beanbag throwing
trials, creating a Hitting-on group (336 throws) and a Missing
group (225 throws). A significant comparison experiment is
performed on these two groups, and the results are reported
in TABLE V.

KW test reveals a significant group difference on the EAT in
Phase 1(p<0.005). The average percentage of time focusing
on the target of the hitting-on group is significantly higher
than that of the missing group. Although the mean value of
RGS of the hitting-on group is smaller than that of the missing
group, there are no significant group differences on the RGS
according to the KW test. In conclusion, whether the beanbag
hitting on is related to the effective aiming time that focusing
on the target, and the longer the time spent on focusing on the
target, the more likely it is to accurately hit the target.

V. DISCUSSION

In this study, we focus on exploring behavioral markers
of DCD by examining differences among groups with high,
middle and low motor coordination scores. Specifically, the
main work is to detect visual components, extract kinetic
features, and conduct group significance tests in a typical
aiming and throwing task (throwing beanbag onto mat) based
on the simultaneous recordings of participants’ eye gaze, body
movement, and interacting object. Moreover, we explore the
critical factors for the success of this task (the beanbag is
hitting on) by analyzing the difference between the hitting-
on trials and the missing trials, which provides theoretical
support for how to improve children’s scores in the aiming
and throwing task.

The process of beanbag throwing is divided into two phases
according to the moment of beanbag releasing. Advanced
observation and planning of eyes in the Phase 1 are essential
for effectively performing the target action tasks, such as
beanbag throwing and ball catching. Therefore, two metrics
(EAT and RGS) are proposed to measure eye movement in
Phase 1. EAT reflects the duration of time that a participant
focuses on the target, and RGS indicates the degree of the
concentration during aiming. The experimental results demon-
strate significant discrepancies on both EAT and RGS among
children with different coordination abilities. These differences
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suggest that the short effective aiming time and the poor gaze
stability may serve as behavioral markers of children with low
coordination abilities.

This finding is consistent with the previous studies [29],
[30]. In [29] and [30], researchers have found that quiet eyes
can distinguish between children with high and low motor
coordination and quiet eye training can improve children’s
throwing and catching performance. Quiet eye is defined as
the final fixation or tracking gaze to a target before the motor
response [29], and quiet eye training [30] emphasizes focusing
the eyes on the target for a few seconds before throwing.
Our study provides more precise and specific guidance for the
intervention of children with DCD: focusing on improving the
quality of children’s concentration in addition to increasing
the total amount of time children spending on concentrat-
ing. Furthermore, the statistical analysis between hitting-on
and missing also suggests increasing EAT may be helpful
to improve children’s performance on the task of beanbag
throwing on the mat.

As for body movement and beanbag trajectory, no signif-
icant differences among the LMC, MMC, and HMC groups
have been found in our data for the time being. We speculate
that the body movements contained in this task are too simple
to show differences between children with different motor
coordination abilities. This study provides a practical standard
framework and methodology to explore behavioral markers of
DCD in specific tasks. Our future work will extend to other
more complex gross motor tasks in the Movement ABC-2
to do more in-depth analysis of body movement and further
explore behavioral markers of children with DCD.

VI. CONCLUSION

In this paper, a unified portable framework was proposed
to conduct behavioral analysis in gross movements and inves-
tigate the behavioral markers of DCD. The performance of
children with different coordination abilities were analyzed in
the task of throwing beanbag. We proposed kinematic features
such as EAT and RGS, and conducted comprehensive analysis
on children’s gaze data, body movement, and the beanbag
trajectory to investigate the difference between children with
different motor coordination abilities. The experiment results
reveal significant group differences in the EAT and RGS of
participants with different motor coordination scores, and there
is no significant group difference on the measurement of body
movement and beanbag trajectory. This finding suggests that
the duration of eye gaze focus on the target and the degree of
concentration during gazing are distinguishable characteristics
of children with different coordination ability scores, which
can be served as behavioral markers to distinguish children
with DCD. In the future, we will use the setup of three Kinects
to help optimize the detection of body key points and extend
this research to other gross tasks in Movement ABC-2 for
further explorations in behavioral markers of children with
DCD.
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