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and Severity Prediction
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Abstract—Most patients with Parkinson’s disease (PD)
have different degrees of movement disorders, and effec-
tive gait analysis has a huge potential for uncovering hid-
den gait patterns to achieve the diagnosis of patients with
PD. In this paper, the Static-Dynamic temporal networks
are proposed for gait analysis. Our model involves a Static
temporal pathway and a Dynamic temporal pathway. In the
Static temporal pathway, the time series information of
each sensor is processed independently with a parallel
one-dimension convolutional neural network (1D-Convnet)
to extract respective depth features. In the Dynamic tempo-
ral pathway, the stitched surface of the feet is deemed to be
an irregular “image”, and the transfer of the force points at
all levels on the sole is regarded as the “optical flow.” Then,
the motion information of the force points at all levels is
extracted by 16 parallel two-dimension convolutional neu-
ral network (2D-Convnet) independently. The results show
that the Static-Dynamic temporal networks achieved better
performance in gait detection of PD patients than other pre-
vious methods. Among them, the accuracy of PD diagnosis
reached 96.7%, and the accuracy of severity prediction of
PD reached 92.3%.

Index Terms— Parkinson’s disease (PD), optical flow,
static-dynamic temporal networks, vertical ground reaction
force (VGRF).

I. INTRODUCTION
ARKINSON’S disease (PD), a typical neurodegenerative
disease, often occurs in the middle-elderly population but
has also shown a younger trend in recent years [1], [2]. Unfor-
tunately, PD cannot be completely cured yet and will worsen
to varying degrees every year. Accordingly, early diagnosis
is meaningful to reduce negative effects of the disease [3].
Currently, there is no specific standard for the diagnosis of
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PD, and it is usually diagnosed by a process of elimination.
The doctors have to go through multiple consultations and
examinations to diagnose the initial symptoms, which will
result in great waste of time and money [4], [5]. Hence,
it is essential to find a high performance and high efficiency
evaluation approach [6].

Typical symptoms of PD mainly include the five charac-
teristics as follows: static tremor, rigidity, movement retarda-
tion, postural instability, and non-motor symptoms [7]. These
symptoms are mild at the initial stage and gradually increase
as the progression of the disease. The onset of PD is caused by
the degeneration of nerve cells producing the neurotransmitter
dopamine. The decrease of dopamine will directly affect mus-
cle activity, which results in a decrease of patient’s exercise
capacity [8], [9]. Previous researches have demonstrated the
great potential of gait analysis in PD detection [10]. Gait
analysis can extract effective information concerning the func-
tions of primary motor cortex, basal ganglia and cerebellum,
which will be advantageous for the detection and monitoring
of neurodegenerative diseases [11]. Hence, it would be helpful
to build a powerful gait classification model for the initial
diagnosis of PD.

With the rapid development of sensor and computer tech-
nologies, numerous gait analysis systems have been devel-
oped, including video analysis system [12], multiple accelera-
tion sensor system [13], [14], and multiple pressure sensor
system [15], [16], etc. Among them, the method of using
multi-cameras is able to get the information with high recogni-
tion, but it is also susceptible to environmental factors such as
sunlight. Inertial sensors are required to be placed in different
parts of the subject, which increases the experiment’s workload
[17]. Pressure sensors, as a more convenient, low cost, and
less effect to the patients, are often used to collect gait data
of patients [18], [19].

Recently, many studies on the use of machine learning
methods have been developed to diagnose PD [20], [21], [22].
In contrast, there are some limitations such as small range of
application and poor explanation of features. Therefore, it is
of great significance to propose an interpretable and widely
applicable diagnostic model [23], [24], [25]. The optical flow
algorithm has wide applications in computer vision, which
can calculate the motion speed and direction of an object
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through detecting the change of the intensity of an image
pixel over time [26]. However, the idea of motion transfer has
not been used in time series. From the kinematics point of
view, walking is a rhythmic alternate movement of the feet,
and the force transfer pattern on the sole influence the gait
quality. For example, the movement range and muscle strength
of PD patient’s knees, hips and ankles are limited [27], [28].
Impaired muscle and unstable posture can all lead to reduced
forward limb propulsion and then affect the transfer mode of
the force-bearing on the sole. Inspired by these kinematics
researches, the main contributions in this paper are as follows:
(1) A force flow algorithm is proposed to extract the force
transfer information of gait. The algorithm regards the transfer
of the force points at all levels on the sole as a multiple
dynamic time series signal, and uses a parallel 2D-Convnet
to extract its dynamic temporal features, which effectively
extracts the motion law of the gait, providing a new idea for
the evaluation of healthy gait. (2) A Static-Dynamic temporal
networks is proposed, which has two pathways separately
extracting temporal features and force transfer features, the
lateral connections are used to fuse the features of the two
paths. The results show that the Static and Dynamic pathway
are complementary, as the fusion of the two pathways is
significantly better than either pathway.

The rest of the paper is organized as follows. Section II
first shows the related work on gait recognition of PD, then
the background concepts of the optical flow algorithm are
introduced. Section III gives the description of the dataset
and presents the proposed Static-Dynamic temporal networks.
Section IV reports the results of our model. Finally, Section V
gives the conclusion.

[I. RELATED WORK

A. Existing Gait Detection Algorithms

In the study of computer-assisted medical diagnosis of PD
patients, researchers have investigated many machine learning
and feature extraction methods based on gait data. For exam-
ple, Ertugrul et al. [29] developed a shifted one-dimension
local binary pattern (1D-LBP) method. The shifted 1D-LBP
was applied to each of the 18 vertical ground reaction
force (VGRF) signals to construct 18 1D-LBP mode his-
tograms and achieved an accuracy of 88.88% in PD diagnosis.
Ozel et al. [30] first applied the Weighted Common Average
Reference (WCAR) to reduce noise in the output signals.
Then, the statistical features were extracted from multi-sensor
signals using the Local Binary Pattern (LBP) conversion, and
the PD diagnosis accuracy of 92.96% was achieved using the
K Nearest Neighbors (KNN) method. Ren et al. [31] stud-
ied the Wiener-Akaike-Granger-Schweder influences between
VGREF signals in different parts of the sole. Using a statistical
test to determine whether the pressure values of the part of the
sole differed significantly between the healthy controls and
the PD patients. Though the above methods have achieved
promising performance for PD diagnosis, the severity of the
patient was not assessed. For this, Veeraragavan et al. [32]
extracted 34 features such as gait cycle, standing time, swing
time, and stride length of the left and right feet, and used Arti-
ficial Neural Network (ANN) to classify. In their experiments,

PD diagnosis is achieved with 97.4% accuracy and severity
assessment is also performed with 87.1% accuracy. Even
though the above algorithms have extracted some effective
characteristics, they are also easily affected by physiological
parameters such as age, height and weight of the subjects,
as well as environmental factors.

In addition, with the rapid development of neural networks,
numerous deep learning methods have been proposed for PD
diagnosis and severity prediction. For example, Nguyen et al.
[33] proposed a PD diagnosis model based on Transformer
algorithm, which first applied time attention on individual
VGREF signals. Then they applied spatial attention to build
multi-sensor spatio-temporal gait features and achieved excel-
lent performance. Zhao et al. [34] presented a dual-stream
network model to diagnose PD patients. The first network
used a 2D-neural network to extract the spatial features of
forces. The second network used a recurrent neural network to
extract temporal features, and the average of the both networks
determined the final classified result. Nancy Jane et al. [35]
proposed a Q-Back-propagation time-delay neural network
(Q-BTDNN) classifier, which established a temporal classi-
fication model for PD severity assessment, and obtained the
accuracy of 92.19%.

In summary, the field of PD detection and severity pre-
diction based on machine learning has limitations such as
small application scope and insufficient feature extraction. The
neural network is good at learning the mapping between input
and output but cannot effectively discover the gait motion law
[36]. So, it is of the essence to find an effective gait evaluation
method applicable to sensor-based gait data.

B. Background of Optical Flow Method

Optical flow is a significant means of kinematics analy-
sis in computer vision, widely used in dynamic detection
tasks, including tracking [37], gesture recognition [38], etc.
By finding the correlation between two frames of continuous
signals, the algorithm can find the corresponding relationship
of each pixel to estimate the movement of objects [20], [39].
At present, the optical flow is generally considered to represent
the motion or temporal information of a video. In the task
of action recognition, the results of many experiments have
proved that although many actions can be identified by using
a single video frame, there are still some actions that depend
on motion information, and better recognition results can be
obtained by combining motion information [40].

[1l. STATIC-DYNAMIC TEMPORAL NETWORKS
The aim of this paper is to propose an automated system
for PD detection and severity prediction using the VGRF
data. The overall framework of the proposed model includes
data preprocessing and Static-Dynamic temporal networks
construction.

A. Dataset Description

The dataset was collected from three independent research
groups (Ga [41], Ju [42], Si [43]), and contained 93 PD
patients (mean age: 66.3) and 73 healthy volunteers (mean
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Fig. 1. The coordinate position of the pressure sensor on the sole.

TABLE |
DEMOGRAPHICS OF THE SUBJECTS IN THREE DATASETS

Dataset Group Total subjects Male Female Age(MeantSD) Height(m) Weight(kg)
Ju42] Healthy 26 12 14 39.3 1.83 66.8
b PD patient 29 16 13 66.8 1.87 75.1
Ga [41] Healtl.ly 18 10 8 57.9 1.68 74.2
PD patient 29 20 9 61.6 1.67 73.1
Si[43] Healthy 29 18 11 64.5 1.69 71.5
! PD patient 35 22 13 67.2 1.66 70.3

TABLE Il

age: 63.7), Table I gives the statistical details of the subjects.
Every subject was asked to walk for two minutes on flatland
without any assistance. Eight pressure sensors were mounted
on each foot to measure forces as functions of time. When the
feet of subjects were parallel, the relative coordinates of the
pressure sensors on the sole are shown in Fig.1. All pressure
sensors outputs were sampled with a sampling frequency of
100. The records also include two signals that reflect the
summation of the eight sensor outputs for left and right foot.
The severity level of PD was graded by the Hoehn& Yahr
(H&Y) stage. The H&Y scale is a gross evaluation of PD,
and ranges from O to 5 [44]. The larger H&Y scale indi-
cates higher PD progression. The severity of PD patients is
also quantified using the Unified Parkinson’s Disease Rating
Scale (UPDRS). The Unified Parkinson’s Disease Rating Scale
includes 17 evaluation items, and each item is evaluated on
five levels with 0, 1, 2, 3, and 4 [45]. Table Il presents
the division of subjects based on the UPDRS for each sub-
dataset. In addition, the dataset added force transfer signal is
available for download at https://github.com/WoDeTianK/gait-
in-parkinsons-disease.

B. Signal Preprocessing

Each walk was divided into several small segments with
100 sampling points and an overlap rate of 50% in that deep

NUMBER OF SUBJECTS BASED ON THE UPDRS SCALE

Dataset Class1 Class2 Class3 Class4 Class 5
Ju[42] 26 2 15 8 4
Ga[41] 18 0 8 11 10
Si[43] 29 0 5 11 17

learning requires mass data. A total of 64,468 segments are
segmented, and each segment has its own category. In addition,
the segments of a given subject will not appear in the training
sets and the test sets at the same time.

C. Static-Dynamic Temporal Networks

Our generic architecture has a Static temporal pathway and
a Dynamic temporal pathway. The Static temporal pathway is
used to extract the temporal features of the gait signal, and
the Dynamic temporal pathway is used to extract the force
transfer features of the gait signal. The two pathways are fused
by lateral connections. In addition, an attention mechanism
is introduced to adaptively control the weight of each sensor
signal for enhancing the utilization of effective information.
The overall architecture is shown in Fig. 2.
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Fig. 2. The structure of proposed static-dynamic temporal networks.
1) Static Temporal Pathway: In the field of time-series signal TABLE Il
recognition, one-dimensional convolutional neural network THE GAIT SEGMENT PARAMETERS DECLARATION
(1D-C0nvne.t) can effecFi\{ely extfact temporal information. For Gait segment parameters Value
the VGREF signal containing 18 inputs, a parallel 1D-Convnet Length 99
is proposed in this paper, which can effectively extract tem- .
. . . . Size 6X5
poral features of multiple time-series signals. The pathway
consists of 18 parallel 1D-Convnet. Each convolutional net- Size of left foot 3X35
Work has fourl.one-ldlmensgonal convolutli)ne.ll laylers, and ;Eere Size of right foot 3%5
1S a max-pooling layer after two convolutions layers. ese
p £ ay Y Sample rate 100HZ

18 parallel 1D-Convnet process 18 VGRF signals respectively
to extract the respective features of each VGRF signal. Since
each sensor collects pressure signals from different parts of the
sole, each pressure signal has its own depth features. Where,
1D-Convnet convolves time series data using one dimension
convolution kernel to extract temporal features. The process
of 1D convolution is shown in Eq. (1).

Pi—1
. N p (x+p)
v;; = selu(bj + Z Z @i (i~ 1ym)
m  p=0

(D

where, P; refers to the size of 1D convolution kernel along the
time dimension, p refers to the position in the current time
dimension, a)fjm refers to the pg, value of the convolution
kernel connected to the my, feature map in the previous layer,
and the value of unit at xy, position on the jy feature map

in the iy, layer, denoted as vfl.. b;; refers to the bias for this
feature map, and selu(-) refers to the activation function.

2) Dynamic Temporal Pathway: In recent years, many gait
classification models have been applied in PD detection,
but there are some limitations, such as unable to extract
multi-sensor fusion features and motion features. To solve the
above problem, the transfer features of the force points on the
sole were extracted to further mine the gait information of PD
patients.

The plane composed of the two insteps is regarded as an
irregular “image”, and a gait segment is regarded as “video”.
The position of pixels is determined by where the sensors are
placed. Table III shows the concrete parameters of the gait
segment.
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Fig. 3. Movement diagrammatic drawings of the maximum force point.

In the domain of machine vision, the variation of pixel
intensity is used to gain the movement information of objects
between adjacent frames. In this paper, a force flow method
is proposed to extract the force transfer information of gait.

First, the force state of different positions can be obtained
by sorting the pressure value of different positions on the
sole from small to large. The calculation formula is shown
in Eq. (2).

k, = sort(sy,) 2

where, sort(-) refers to the descending sort operator, s, refers
to the VGRF of the ny, pressure sensor in some moment,
n ranges from 1 to 16. k, is the sort of pressure values of
16 pressure sensors in some moment.

Suppose there is a pixel with coordinate (x, y) at time f,
and its sort of pressure values is k(x, y). After time At, there
is

k(x + Ax,y + Ay)=k(x,y) 3)

It means that the force state flows from (x,y) to (x +
Ax, y+Ay), getting the motion vector (Ax, Ay, At), which is
projected in the xy plane, getting the two-dimensional motion
vector (Ax, Ay). Combining the motion vectors at different
positions, the motion field is formed.

AM) = A(x,y) = P(x, ), Q(x,y) (4)

where, A(M) refers to the motion field, P(x, y) and Q(x, y)
represent the movement functions of force points relative to
the x direction and y direction. The force transfer of each
position on the sole between the two frames will be repre-
sented in the form of a motion vector. The motion vector is
decomposed into two vectors relative to the X-axis and Y -axis
directions, respectively. As the sixteen levels force points
flow in the multiple-frame data, the sixteen dynamic temporal
signals relative to the x-direction and the sixteen dynamic
temporal signals relative to the y-direction are respectively
formed. Then, we spliced them into a two-dimensional signal.
In this paper, the parallel 2DCNNs are used to extract the

Mid stance

Initial contact Loading response Toe leaving

Fig. 4. Schematic diagram of force transfer (The red dots indicate the
maximum (first) force point).

motion information, which is composed of 16 parallel 2D
convolutional neural networks to extract the motion features
of 16 pressure sensors.

Fig. 4 shows the pressure on each position of the right
limb in a gait cycle. We can see that the position of the
maximum force point flows over time. The flow patterns of
force points contain the deep features of gait, which have an
important value in gait recognition. For visualization purposes,
the PD patient with intermediate UPDRS score is taken as
representative, and the health subject with intermediate age
as representative. The motion schematic diagrams of their
maximum force point over twenty gait cycles are constructed
to capture its evolution process over time, see Fig. 3. In this
figure, the size of each vertex is proportional to the time when
the maximum stress point is at that point, and the darker the
line color indicates the more times of transmission.

3) Lateral Connections: In this paper, the lateral connections
are used to fuse the information of the two paths. Lateral con-
nections are a common technique used in target detection tasks
to merge different levels of spatial resolution and semantics.
Similar to [46], [47], we add a lateral connection between
the two pathways for every stage, these connections are
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TABLE IV
LAYER DESCRIPTIONS FOR PD DETECTION
Stage Number of units Kernel size  Dropout
conv 8 3 0
conv 16 3 0
Max-pooling - 2 0
1D-Convnet X 18 conv 16 3 0
(Static pathway) conv 16 3 0
Max-pooling - 2 0
Flatten - - -
FC 50 - 0.5
conv 8 (1, 3) 0
conv 16 (1,3) 0
Max-pooling - (1,2) 0
2D-Convnet X 16 conv 16 (1, 3) 0
(Dynamic pathway) conv 16 1,3) 0
Max-pooling - (1,2) 0
Flatten - - -
FC 50 - 0.5
Concatenate - - 0.5
FC 100 - 0.5
FC FC 20 - 0.5
Output 1 - -

right after SELUI1, Pooll, and SELU2, respectively. The two
pathways have different information dimensions but have the
same number of channels at the same position, so the lateral
connection matches the size of features of the corresponding
channels to fuse the data of two pathways. Denoting the
feature shape of the Static pathway as (H, C), the feature
shape of the Dynamic pathway is {«W, 2, C}. We reshape
and transpose {¢W, 2, C} into {2aW, C}, then the output of
the lateral connections is fused into the Dynamic pathway by
concatenation.

4) Sensor Attention: In this paper, the attention mechanism
is introduced to assign larger weights to the sensor signal with
high contribution for classification [48]. The global spatial
information is squeezed into a channel descriptor symbol, and
the channel-wise statistics are generated by global average
pooling. Each sensor channel produces a statistic z € R° by
shrinking U such as the c-th element of z is computed by:

1 50
Ze = Figue) = 55 > (@) )
i=1

where Fy, () refers to the Squeeze operation and u. refers to
the ¢y, feature.

To generate weights for each sensor channel, the nonlinear
relationship between the channels is captured. Considering
the complexity and generalization of the model, two fully
connected (FC) layers and two sigmoid functions are set to
quantify the importance of each channel, expressed as:

S=Fex(Z, W) =0@(Z,W)) =0(W28(W1Z)) (6)

where F,,(-) refers to excitation operation, o (x) is the Sig-
moid activation function, §(x) is the ReLU activation function.

W refers to the parameters of reduced-dimension layer, W
refers to the parameters of dimensionality-increasing layer.
The input channel is multiplied by the corresponding weight

to obtain the final output.
Xe = Fscate (e, S¢) =S¢ - Ue @)

-, Xc] and Ficale (utc, s¢) are channel-wise
the scalar s. and the feature

where X = [%1. %2, -
multiplication between
map u. € R,

5) Full Connection Layer: The full connection layer is used
to learn the spatial features of different channels. In this
paper, the outputs of 34 parallel networks are flattened and
concatenated into a one-dimensional vector, which connects
the output layers through two fully connected layers. For the
task of PD detection, the output layer consists of 1 neuron to
predict the classification probability. For the task of severity
prediction, the output layer consists of 5 neurons to predict
the category. The final hyper-parameters of the network are
given in Table IV.

IV. EXPERIMENT ANALYSIS
A. Performance Analysis for PD Diagnosis
To test the proposed deep neural network (DNN) model,
we used ten-fold cross validation on 300 walks, and the dataset
is divided into ten parts. Each of these parts is reserved for
testing, the remaining nine are used to train the diagnostic
model, and the average of the ten rounds is used as the final
result.
Fig. 5b shows that the average error loss decreases and
inclines to zero with the increase of the number of iterations.
The loss basically stabilizes after 20 iterations, and the loss
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TABLE V
COMPARISON OF CURRENT APPROACH WITH STATE-OF-THE-ART APPROACHES FOR DIAGNOSIS OF PATIENTS

Algorithm TP FN TN FP Acc+SD (%) Sen+SD (%) Spe+ SD (%)
Static-Dynamic 206 4 84 6 96.7+£2.3 98.1+£5.5 93.3+£5.0
Static-only 204 6 80 10 94.7+5.2 97.1+4.0 88.9+11.3
Dynamic-only 205 5 75 15 93.344.8 97.6+5.4 83.3£8.8
Transformer (Nguyen et al., 2022)[33] X X x x 95.242.3 86.8+8.2 98.1+£3.2
WCAR+LBP+Knn (Ozel et al.2021)[30] X X X x 92.9 X x
Statistical (Khoury et al. 2019) [49] x x X X 91.0 88.3 85.3
DNN (Zhao et al., 2018(Reproduction))[34] 202 8 69 21 90.3+2.9 96.2 +£3.8 76.7+£8.2
ANN (Ertugrul et al., 2016)[29] x x X 88.9 88.9 82.2
Naive Bayesian (NB) (Ertugrul et al., 2016) [29] % x X 76.1 X x
Random forest (RF) (Ertugrul et al., 2016) [29] X X X 86.9 X x
1o  wan model reported by Zhao et al. [34] and Khoury et al. [49],
0.9 /ﬂJ/ 1.25 val our algorithm processes the input 1D signals independently,
0.8 / _‘§1-°° which makes it easier to generalize to other experiments.
E 50.75| Therefore, our approach is easier to adapt to other clinical
£07 / ég,g,g X, gait studies. Compared to the classification algorithm reported
0.6 —— train 0.25 \‘& by Ertugrul et al. [29] in 2016, our model is more suitable
0.5. vl for the gait classification problem because it uses multiple
0 10 20 30 0 10 20 30 . o . .
Epoch Epoch nonlinear activation functions. Thus, our model achieves a
(a) (b) better performance in the validation set than hand-crafted
: methods. In addition, we conduct experiments on Static-
s ) /\,”f’f—- 4 . \t,:m Dynamic networks, Static-only network, and Dynamic-only
> ' 7 %5 network, respectively. The experiment results indicate that the
€6 = Static and Dynamic pathway are complementary in that their
g ‘232' fusion obviously increases on both.
04 —— train 1
val s caatuningiy B. Performance Analysis for the Severity Assessment
6 10 20 30 40 %o 1 0 3 4 of PD
Epoch Epoch
© d The Static-Dynamic temporal model has shown good per-
formance in the evaluation of PD, but to provide targeted
Fig. 5. Accuracy and loss function plots for classification treatment for different PD patients and monitor the recovery,

(a and b: binary classification, ¢ and d: multi-class classification).

is basically stable after the number of iterations reaches 30,
indicating that the model converges fairly quickly. Fig. S5a
shows that when the number of iterations was 22, the clas-
sification accuracy at the segment level was 91.6%, indicating
that the parameters of the network reached the optimal state.
The subject diagnostic results were got by a majority vote over
the classification of gait segments, and our proposed model
achieved an accuracy of 96.7% at the subject level, which
shows that the model can effectively detect patients with PD.
Moreover, the sensitivity and the specificity all performed well.

Finally, Table V presents the comparison of the proposed
model with the other studies that used the same dataset.
As shown in this table, the present model achieved better
accuracy and sensitivity than other models. For instance, com-
pared to the detection algorithm proposed by Nguyen et al.
[33] and Ozel et al. [33], the classification accuracy and
sensitivity of this algorithm are respectively improved, and
the leading reason can be attributed to the extraction of
the force transfer features, which offers a new idea for the
detection of abnormal gait. In comparison to the diagnostic

the severity of the PD patients also be assessed based on
UPDRS score in this paper. In that the UPDRS score is directly
proportional to the severity of the PD, we subdivided the
severity of PD into the following five categories:

e Scale 1: UPDRS < 5

e Scale 2: 5 <UPDRS < 15

o Scale 3: 15<UPDRS < 25

e Scale 4: 25<UPDRS < 35

o Scale 5: 35<UPDRS

The severity assessment model retained the network struc-
ture of the diagnostic model and only modified the last layer
of the network, which is composed of a fully connected layer
with five neurons and a softmax activation layer. To show
the performance of the severity assessment model, we present
the plots of accuracy and loss during model training in
Fig. 5. Confusion matrices are usually employed to analyze the
performance of multiple classification model. The confusion
matrix’s rows indicate the model’s outcomes and the columns
indicate the actual labels. Provided that the rows and columns
of the confusion matrix have the same class, it means the
class predicted by the model is correct. Provided that the rows
and columns of the confusion matrix do not have the same
class, it means the class predicted by the model is wrong.
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TABLE VI
COMPARISON OF PROPOSED APPROACH WITH CURRENT STATE-OF-THE-ART APPROACHES FOR PD SEVERITY
PREDICTION (N REPRESENTS THE NUMBER OF SUBJECTS)

1D-CNN(Maachi et al., 2020)[50] Proposed DNN

Class Precision (%) Recall (%) F1 (%) Precision (%) Recall (%)  F1 (%) N

1 77.6 100 87.4 89.0 90.0 89.5 90

2 100 75 85.7 100 100 100 10

3 100 76.3 86.6 90.9 100 95.2 30

4 91.8 80.0 85.5 95.9 100 97.9 70

5 78.0 82.1 80.0 92.5 86.0 89.1 100

Weighted average 87.3 85.5 85.3 92.8 92.2 923 300
81 0 0 2 7 S reached 92.3%. Second, the subjects with Class 2 obtained

100% in precision, recall, and F1, which indicates that these

27.09 09 09 0. 7% 2.3% | 10.09 . . .. .
% % % ’ ’ subjects with Class 2 were more distinguishable compared

0 10 0 0 0 100% to those with all other classes. Conversely, the subjects with
0% 33% | 0% 0% 0% 0% Class 5 achieved a precision of 92.5% and a recall of 86.0%,
% suggesting that they were not as easily distinguishable.
S} 0 0 30 0 0 100% For all we know, this is the second study to assess the
= 0% 0% | 10.0% | 0% 0% 0% severity by gait analysis based on the UPDRS scores. Table VI
%’* 0 0 0 70 0 L00% presents the comparison between the proposed model and the
o ‘ method reported by Maachi et al. [S0] in 2020. In addition,

e e 0% [ % 0% Fig. 7 illustrates the boxplot of precision, recall, and F1

Class5 Class4 Class3 Class2 Classl

10 0 3 1 86 86.0% Score distributions for two methods. The results show that

3.39% 0% 1.0% | 03% | 287% | 14.0% our proposed method has better performance. The leading

justification is that our method not only extracted the time

89.0% | 100% | 90.9% | 95.9% | 92.5% | 92.3% series information of the signal, but also extracted the force

11.0% | 0% | 91% | 41% | 7.5% | 7.7% transfer information of the signal. The combination of “static”

Classl Class? Class3 Class4 Class5 and “dynamic” time series features made the model more
Target Class competitive.

Fig. 6. Confusion matrix. V. CONCLUSION

This paper presents a Static-Dynamic temporal networks

based on VGRF time series signals for PD detection and
0.951 severity prediction. Firstly, since each sensor collects pres-
ﬁ i i sure signals from different parts of the sole, and each pres-
0.90 1 sure signal has its own depth features, we use the parallel
9 ! T one-dimensional convolutional network to convolve with time
= 0.85- series data to extract temporal features. Secondly, we regard
§ the transfer of the force points at all levels on the sole as a
a ﬁ multiple dynamic time series signal, which is processed with
2 0.801 the two-dimensional convolutional networks parallelization to
% T H:‘ extract the motion features. Finally, we introduce the attention
0.75 mechanism to add weight for individual sensor signals. After
1 1D-CNN(Maachi et al. 2020) validation, it obtains state-of-the-art accuracy for PD detection

I Proposed DNN . .. . . T
0.70 : and severity prediction. We hope that this Static-Dynamic time

Precision Recall F1 series concept will foster further research in gait recognition.

Fig. 7. Box plot for precision, recall, and F1.
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