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Abstract— While deep learning algorithms significantly
improves the decoding performance of brain-computer
interface (BCI) based on electroencephalogram (EEG)
signals, the performance relies on a large number of
high-resolution data for training. However, collecting suf-
ficient usable EEG data is difficult due to the heavy burden
on the subjects and the high experimental cost. To over-
come this data insufficiency, a novel auxiliary synthesis
framework is first introduced in this paper, which composes
of a pre-trained auxiliary decoding model and a generative
model. The framework learns the latent feature distribu-
tions of real data and uses Gaussian noise to synthesize
artificial data. The experimental evaluation reveals that the
proposed method effectively preserves the time-frequency-
spatial features of the real data and enhances the classi-
fication performance of the model using limited training
data and is easy to implement, which outperforms the com-
mon data augmentation methods. The average accuracy
of the decoding model designed in this work is improved
by (4.72±0.98)% on the BCI competition IV 2a dataset.
Furthermore, the framework is applicable to other deep
learning-based decoders. The finding provides a novel way
to generate artificial signals for enhancing classification
performance when there are insufficient data, thus reduc-
ing data acquisition consuming in the BCI field.

Index Terms— Brain computer interface, electroen-
cephalogram, motor imagery, deep learning, data
augmentation.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) identifies brain
activity and converts it into instructions or information,

and establishes pathways between the brain and external
devices [1]. Electroencephalogram (EEG) is one of the com-
monly used brain activity recording methods for BCI. EEG
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measures the scalp electrical signals generated by the brain,
and has the characteristics of high temporal resolution, low
trauma and low cost [2], [3]. BCI system based on EEG is
usually used to realize prosthesis control [4], emotion recog-
nition [5], speech recognition [6], epilepsy prediction [7], sleep
monitoring [8], etc. However, limited by the data acquisition
and low recognition accuracy, the practical application of BCI
technology is still challenging.

Over the past decades, numerous studies have applied deep
learning methods to EEG signal recognition [9], thus the
classification performance has been greatly improved. Deep
learning methods automatically extract features from original
signals and complete classification [10]. But this kind of
methods usually need a large number of training data to
learn the latent features, small datasets and low-resolution
data easily tend to cause overfitting and feature dependence
of models [11]. Eventually, the classification performance of
deep learning methods may even be inferior to that of tradi-
tional methods, such as linear discriminant analysis, support
vector machine, naive Bayes classifier, etc. Some few-shot
learning strategies, such as multi-task learning, transfer learn-
ing and meta-learning [12], try to solve this problem from
the aspects of models and algorithms, and have achieved
some results, but it is complicated to design such algorithms.
By contrast, studying from the perspective of data, it is
expected to fundamentally solve the training problem of deep
learning network caused by insufficient data. Compared with
the computer vision (CV) and natural language processing
(NLP), it is difficult to collect enough high-quality data in
the BCI field [13], [14]. There are generally four reasons:
1) Data collection experiment is cumbersome and takes a long
time. Subjects may feel uncomfortable during the collection
process, and the state of subjects will affect the quality of
the data [15]. 2) Because of the physical dysfunction of
some subjects, information (such as movement and sound)
is difficult to track [16]. 3) The collected data will also be
discarded due to problems such as interference and missing
information [15], [17]. 4) Scarcity of qualified subjects and
experimental environment due to the strict requirements [18].

Data augmentation is one of the effective ways to alle-
viate the problem of insufficient data [19]. This approach
is based on the assumption that more information can be
extracted from the original dataset through augmentation,
and it artificially increases the size of training dataset by

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4715-2864
https://orcid.org/0000-0002-2612-5982
https://orcid.org/0000-0003-2073-7125


LIANG et al.: AUXILIARY SYNTHESIS FRAMEWORK FOR ENHANCING EEG-BASED CLASSIFICATION 2121

deforming or sampling. [20]. Data augmentation technology
has been mature in the field of CV, however, the geometric
transformations that used for image data augmentation may
not be applicable to BCI research due to the characteristics of
EEG signals, such as non-stationarity, time-varying sensitivity,
individual differences, etc. [21], [22], [23]. According to the
investigations of Lashgari and He et al. [20], [24], common
augmentation methods used in this area include cropping
(sliding window), adding noise, and generative adversarial
networks (GAN) [25]. Other methods such as recombination of
segmentation [26], Fourier transform [27], synthetic minority
over-sampling technique (SMOTE) can also be found in some
BCI studies [28].

Cropping is a simple and effective method used for EEG
data augmentation. This approach uses a sliding window
to slice raw data for getting many more training samples.
Schirrmeister et al. [29] used 2s sliding window to crop
and expand the original motor imagery data, and improved
the decoding performance of deep convolutional network.
Zhao et al. [30] trained a network composed of three branches
of deep convolutional neural network by cropping method,
and alleviated the overfitting phenomenon. Mousavi et al. [31]
proposed an automatic sleep stages recognition method based
on deep learning, and used the cropping method to balance
the data of different sleep stages, finally obtained 93.55%
accuracy, which higher than using GAN augmentation method.
In addition, Luo [32], Tayeb [33], Majidov [34] et al. also
improved the classification performance by cropping method.

Another easily implemented augmentation method is adding
noise to the raw data. It achieves expansion by adding
noise to the original EEG signals or extracted feature maps.
Wang et al. [35] effectively improved emotion recognition
performance of deep learning model by adding Gaussian noise
to DE features. Salama et al. [36] added the Gaussian noise
signals with zero mean and unit variance to the raw data
to improve their 3D-CNN emotion recognition performance,
and the accuracy increased from 79.11% and 79.22% to
88.49% and 87.44% for valence and arousal classification,
respectively. Li et al. [37] proposed a CP-MixedNet and used
the amplitude-perturbation data augmentation method to train
the model, this method added noise to the amplitudes of
spectral images, and the classification performance on the BCI
Competition IV 2a dataset and the High gamma dataset was
significantly improved.

Despite the advances of cropping and adding noise in the
field of EEG data augmentation, these two methods still cannot
completely satisfy the needs of artificial multi-channel EEG
signals generation, due to information loss, redundant noise,
or inability to use underlying features of data [38]. Data aug-
mentation methods based on deep learning can realize feature
extraction to reconstruct artificial data [39]. GAN is one of
the most common methods, which aims at achieving Nash
equilibrium [40] between generative model and discriminative
model, learning distributions from original data and generating
new data [41]. Luo et al. [15] used conditional Wasserstein
GAN (cWGAN) and selective Wasserstein GAN (sWGAN)
to improve the performance of the classifiers in their emo-
tion recognition task. Nik Aznan et al. [42] used Deep

Convolutional GAN (DCGAN), Wasserstein GAN (WGAN)
and Variational Autoencoder (VAE) models respectively to
generate artificial data and improve the decoding performance
of the models across subjects. Xu et al. [23] designed a
BWGAN-GP model to improve the class imbalance, and the
area under the curve tested with EEGNet was 3.7% higher
than the original data. Xu et al. [43] apply a GAN based
on convolutional neural network (CNN) and recurrent neural
network (RNN) to synthesize artificial multichannel EEG
preictal samples for ES prediction, and the accuracy and area
under the curve improve from 73.0% and 0.676 to 78.0% and
0.704.

Although GAN-based methods perform well in EEG
data augmentation, there are still some problems, such as
many variant models, complex training process and instabil-
ity [17], [44], and an additional decoding model is usually
required to complete the final classification task. In this
study, we propose a data synthesis framework based on deep
generative model to improve classification performance. The
framework uses limited real data and Gaussian noise to syn-
thesize artificial data, and is expected to reduce the complexity
of training progress while preserving the feature information
of real data and reducing the redundant noise of synthesized
data. The novelties of this study are summarized as follows:

• An auxiliary approach is introduced to design a synthesis
framework, which utilize a pre-trained decoding model
to assist in synthesizing artificial signals.

• A decoding model and a generative model are designed
to extract the temporal-spatial features of EEG signals for
classification and synthesis.

• Different number of training samples is set to explore the
improvement of the decoding performance under limited
data. The method is transferred and implemented to the
state-of-the-art decoders.

• Visualization methods of multiple perspectives are pro-
vided for interpreting the artificial data and framework.

The rest of this paper is organized as follows. Section II
introduces the dataset, describes the proposed framework
and general methods used for comparison and evaluation.
Section III presents the experimental results. Section IV per-
forms discussions. Section V gives the main conclusions.

II. MATERIALS AND METHODS

A. Dataset and Preprocessing

The BCI Competition IV 2a is used in this study [45].
This dataset contains EEG signals from nine subjects when
they imagine the movements of left hand, right hand, foot
and tongue. Each subject requires to complete 2 sessions,
each of which contains 288 trials motor imagination tasks.
EEG Signals are collected through 25 Ag/AgCl electrodes, the
first 22 are EEG channels, and the last 3 are EOG channels.
The sampling frequency is 250 Hz, and a band-pass filter of
0.5-100 Hz and a notch of 50 Hz are implemented. In this
study, only the EEG channels are focused, and the data of cue
and motor imagery periods are clipped as a single sample,
each sample lasts for 4s. Finally, the shape of the dataset for
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Fig. 1. Flow chart of the auxiliary synthesis framework.

each subject is 576 × 22 × 1000. All datasets are normalized
before inputting to the model.

B. Auxiliary Synthesis Framework
In order to effectively retain the original information and

reduce redundant noise, the proposed framework is built based
on deep learning methods which have been proven to work for
EEG synthesis and classification. In the following subsections,
the generic layout of the auxiliary synthesis framework will
be described first, follow by the details of auxiliary decoding
model, generative model, loss function and training configu-
ration.

1) Framework Overview: An architecture overview of the
auxiliary synthesis framework is presented in Fig. 1. The
architecture of this framework can be divided into 2 stages:

• Pre-training Process of the Auxiliary Decoding Model.
In this stage, the auxiliary decoding model is pre-trained
by the limited real samples, ensure that the accuracy of
the decoding model is not less than the given thresh-
old, which can be determined by cross-validation on
the real samples. This option prevents the performance
degradation of the decoding model caused by random
factors during the training process, thereby improving the
stability of the generative model and further improving
the quality of the synthesized data. In fact, training
with insufficient data is likely to produce an unstable
result [46].

• Training and Synthesis Process of the Generative Model.
The pre-trained auxiliary decoding model is used to assist
the generative model in training and synthesizing new
data. Specifically, in this stage, the generative model
learns the mappings between labeled Gaussian noise and
real data distribution to synthesize specific artificial data,
and then the synthesized data and their ground-truth
labels will be input into the auxiliary decoding model
to obtain the probability distribution, which is used to
calculate the cross-entropy (CE) loss. The mean squared
error (MSE) loss between synthesized data and real data
is also calculated. Finally, both CE and MSE are used
to optimize the generative model. The parameters of the

auxiliary decoding model are frozen at this stage, only
the generative model is updated. All synthesized samples
from the last epoch of the training stage are retained
and labeled with the ground-truth labels, and eventually
appended into the training dataset to retrain the decoding
model.

2) Auxiliary Decoding Model: The auxiliary decoding model
captures the latent features of EEG data and output the
probability distribution. In the framework, it is used to help the
generative model synthesize artificial data. It is also used for
final classification tasks. As shown in Fig. 2(a), a combination
of ordinary convolution and depthwise separable convolu-
tion is used to extracts the spatial-temporal features of real
data or synthesized data. Depthwise separable convolution
reduces the parameters while maintain the decoding perfor-
mance simultaneously [47], [48]. Considering the efficacy and
generalizability of deep learning on EEG-based decoding of
motor imagery, the Squeeze-and-Excitement (SE) attention
mechanism is added to improve the classification performance
by changing the weights of different channels [27], [49]. These
weighted spatial-temporal features are finally classified by a
fully connected layer.

3) Generative Model: Generative model learns real data
distributions, and synthesizes new data from a batch of fixed
Gaussian noise. The architecture is shown in Fig. 2(b). This
model is built based on transposed convolution, which enable
the neural network to learn how to up-sample in the best way,
and improves the quality of synthesized data [50], [51], [52].

Gaussian noise and category labels are used as inputs for
the generative model. The label is first encoded by embedding
layer, then the encoded label is regarded as a new channel to
concatenate with the Gaussian noise, and finally the concate-
nated data are transformed by transposed convolution layers
from time and spatial directions. In order to maintain the size
of synthesized data consistent with the original data, we set
different stride sizes in the transposed convolution operations
and add padding operations, the specific parameters are shown
in Fig. 2(b).

4) Loss Functions: Inspired by the loss function used
in [53], [52], and [55], both cross-entropy loss and mean
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Fig. 2. Architecture of the neural network used in auxiliary synthesis
framework. (a) Auxiliary decoding Model, (b) Generative model. Conv:
Convolution, Tran.Conv: Transposed convolution, Norm.: Normalization,
Act.: Activate function, BN: Batch normalization, ELU: Exponential linear
unit.

squared error loss are used to optimize the auxiliary synthesis
framework. The cross-entropy loss enables the generative
model to focus on the classification features of the data,
and ensures that the synthesized data maintain a certain
level of classification performance under the current decod-
ing model [55]. At the generative model training stage, the
cross-entropy loss of the synthesized data is calculated using
the probability distribution that is provided by the pre-trained
auxiliary decoding model, and is defined as follow:

LC E =
1
N

N∑
n=1

− log
exp

(
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(
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(
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)) [
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c=0 exp
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))
[c]

) (1)

where N is the batch size, C is the number of classes, zn is
the gaussian noise, yr,n is the label of real data, G(•) is the
generative model, A(•) is the auxiliary decoding model.

The mean squared error loss is used in the final loss to
ensure that the distribution of the synthesized data is similar
to that of the real data, and to prevent the generative model
from synthesizing unexpected data, and it is defined as follow:

L M SE =
1
N

N∑
n=1

(
xr,n − G

(
zn, yr,n

))
(2)

where N is the batch size, xr,n is the real data, zn is the
gaussian noise, yr,n is the label of real data, G(•) is the
generative model.

The final loss used to update the generative model consists
of the cross-entropy loss and the mean squared error loss,
as shown in Fig. 1, and is defined as follow:

L total = αL M SE + βLC E (3)

where α and β are weights that control the interaction of the
losses, we set α to 1 and β to 0.0001 in this study.

TABLE I
ARCHITECTURE OF THE DISCRIMINATOR USED IN CGAN

Fig. 3. Diagram of cross-validation analysis. N: Number of limited real
samples (i.e., 40, 80, . . . , 520).

5) Detailed Configuration of Training: All models are
designed based on Pytorch and are trained and tested using
an NVIDIA RTX A5000. Adam optimizer is used for both
decoding model and generative model training. We set the
weight decay coefficient to 0.001, and use early stopping
strategy [56] when training the auxiliary decoding model.
Early stopping strategy reduces the excessive influence of
incoherent gradients and improves the generalization ability
of the model. Both models are trained using a learning rate
decay strategy, and the initial learning rate is set to 0.0003.

C. General Methods Used for Comparison
Following methods are chosen for performance comparison.
1) Cropping: Cropping is commonly used for EEG data

augmentation. In our experiment, sliding window with 3.9s
length and step with 0.1s length are used to crop the original
data. Both training dataset and testing dataset are cropped to
keep their length consistent in the time dimension. For training
dataset, all the cropped data are reserved in order to increase
the size of the dataset. For testing dataset, only the last 3.9s
data that containing intact motor imagery signals are reserved.

2) Adding Noise: By adding Gaussian noise to the original
data, new training data are generated while retaining the
features of the original data. The probability density function
of Gaussian noise obeys Gaussian distribution:

pG (z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 (4)
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TABLE II
CLASSIFICATION USING DIFFERENT RATIOS OF EXPANDED SYNTHESIZED DATA ON THE FIRST SUBJECT (MEAN±STD, %)

TABLE III
WITHIN-SUBJECT CLASSIFICATION FOR ALL SUBJECTS BEFORE AND AFTER USING THE PROPOSED METHOD (MEAN±STD, %)

where z is the random variable, µ is the mean, σ is the
standard deviation. We set µ = 0, σ = 0.1 in this study,
and only add noise to the training dataset.

3) GAN: GAN [25] consists of generator and discriminator.
Traditional GAN needs to train multiple generators to generate
multiple types of samples, but its variant cGAN [57] can
impose constraints on generator and discriminator to syn-
thesize specified samples. In this paper, cGAN is used to
directly synthesize four types of samples. The structure of the
generator is consistent with that mentioned in Section II-B.
We redesign the discriminator to form a confrontation between
the two models, which consists of four convolutional layers
and two fully connected layers, and the structure is shown in
Table I.

4) Decoding Models Used for Replacement: EEGNet [47],
ShallowConvNet [29], DeepConvNet [29] are used as auxiliary
decoding model to test the framework. We modify the size of
temporal convolution kernel and pooling kernel in EEGNet to
twice the original size according to author’s suggestion. The
size of spatial convolution kernel is set to 22 for the three
decoders, and the number of hidden units in fully connected

layer is modified according to input size, other parameters are
the same as the original and can be found in [29] and [47].

D. Cross-Validation Analysis
As shown in Fig. 3, all real samples are split into training

set, verification set and test set for ten times. The total
number of samples in training set and verification set is equal
to the number of real samples that set in each experiment
(i.e., 40, 80, . . . , 520). Training samples account for 90% and
verification samples account for 10%. The test set samples are
all real samples except the training and verification samples.

After each dataset splitting, the training and verification set
are input into the synthesis framework to generate synthesized
samples. Then the training samples, synthesized samples and
verification samples are used to train and verify the classifier.
Real test samples are used to test and evaluate the classifier.

E. Evaluation Metrics
In visualization section, data are mainly evaluated by visual

inspection. Accuracy and standard deviation are used to
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Fig. 4. Visualization of real signals, synthesized signals and signals
generated by Gaussian noise. (a) Waveform of signals on C3 channel,
(b) Time-frequency features extracted by CWT on C3 channel, (c) Wave-
form of signals on C4 channel, (d) Time-frequency features extracted by
CWT on C4 channel, (e) Spatial features extracted by CSP. ED, WD are
used for evaluation, FID is not applicable to evaluate single sample.

evaluate the classification performance of the model. Follow-
ing metrics are also used for performance evaluation.

1) Fréchet Inception Distance (FID): FID is commonly used
to evaluate the quality of generative model and synthesized
samples [58]. Compared with Inception Score (IS), this metric
is more robust to noise and more sensitive to the quality of
the generative model. FID uses a pre-trained classifier to com-
pare the feature distribution of real samples and synthesized
samples in the embedded layer.

2) Wasserstein Distance (WD): WD describes the cost of
converting one distribution to another under a given cost

function [59], and is often used to measure the similarity
between any two distributions.

3) Euclidean Distance (ED): ED is used to evaluate the
similarity between samples. The minimum Euclidean Dis-
tance (EDmin) calculate the minimum distance between real
samples or the minimum distance between real samples and
synthesized samples. The EDmin between real samples and
synthesized samples should be equivalent to the minimum
distance distribution between real samples [60].

III. RESULTS

A. Visualization of Synthesized Data
The synthesized data are visualized from the time, fre-

quency, and spatial domains. Gaussian noise with the zero
mean and unit variance is used for comparison with the synthe-
sized data. Gaussian noise is one of the inputs ofthe generative
model, and the statistical distribution of it is the same as the
normalized EEG signal, which also with zero mean and unit
variance.

The waveform of the data is directly evaluated by visual
inspection in time domain analysis. In frequency analy-
sis, we use continuous wavelet transform (CWT) [61] to
transform the data. Since motor imagery leads to energy
changes in alpha-band (8-13Hz) and beta-band (13-30Hz) [62],
the time-frequency features within the range of 8-30Hz are
selected to analyzed. For spatial analysis, common spatial
pattern (CSP) [63] is used to extract two-dimensional spatial
features of the data.

Fig. 4 shows the waveform, time-frequency features and
spatial features of the real data, synthesized data and Gaussian
noise in C3 and C4 channel. These two channels are typically
related to MI features [17]. According to visual inspection and
evaluation metrics of WD and ED, the distributions of these
three features of the synthesized data are similar to that of real
data while there is a significant difference between Gaussian
noise and real data. The similarity means that the synthesized
data effectively preserves the time-frequency-spatial features
of the real data.

B. Expansion Ratio Explore and Overall Performance
The performance of the deep learning model depends on

the number of training data, thus adding different ratio of
synthesized data to the training set will have different effects
on the classification performance. To find an appropriate
expansion ratio, we select different numbers of real samples
for cross-validation on the first subject, and the expansion
ratios of training dataset are set to 0.5, 1, 1.5, 2, 3 and 4.
As shown in Table II. The classification accuracy of the
model after expansion is better than that without expansion
(p-value<0.05 for 0.5 expansion ratio and p-value<0.001 for
other ratios. Wilcoxon signed-rank test is used for assessment
and Holm-Bonferroni approach for correction), and the stan-
dard deviation decreases after data augmentation, which means
that the model is more stable. When the number of expanded
samples is twice the number of original training samples,
the average accuracy is the highest, which is 6.2% higher
than the average accuracy without expansion. In addition,
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TABLE IV
CLASSIFICATION AFTER USING DIFFERENT AUGMENTATION METHODS

ON THE FIRST SUBJECT (MEAN±STD, %)

TABLE V
EVALUATION SCORES OF 520 SAMPLES SYNTHESIZED BY DIFFERENT

AUGMENTATION METHODS FOR THE FIRST SUBJECT. REAL AND NOISE

ARE USED AS REFERENCE (MEAN±STD, %)

at least 480 samples are required for 68.3% accuracy without
expansion, while only 320 samples are required to achieve this
accuracy when the ratio of expanded synthesized data is 4,
a decrease of 33.3%.

The original decoding performance and the decoding per-
formance after applying proposed method are tested using the
expansion ratio of 2 for all subjects, the result is shown in
Table III. After applying the proposed method, the average
accuracy of all subjects under different number of real samples
is improved by (4.72±0.98)%, and the maximum improvement
of 6.2% is obtained when the number of real samples is 400.

C. Comparison of Different Augmentation Methods
We compare the performance of three different data aug-

mentation methods under different numbers of real samples,
including proposed method, cropping and adding noise. The
expansion ratio is set to 2. As shown in Table IV, the pro-
posed method significantly improves the model performance
under different conditions (p-value<0.001). Compared with
the result using only real data, the average accuracy is
improved by 6.2%, which is higher than 2.7%, 1.5% and 3%
for cropping, adding noise and GAN. Further research reveals
an interesting phenomenon that cropping is more suitable
for the case of insufficient data, adding noise and GAN are

TABLE VI
CLASSIFICATION AFTER REPLACING THE AUXILIARY DECODING

MODEL WITH OTHER STATE-OF-THE-ART DECODING MODELS ON THE

FIRST SUBJECT (MEAN±STD, %)

Fig. 5. Comparison of accuracy and number of training samples before
and after applying the proposed method. (a) The highest accuracy of
each decoder, (b) The number of samples required for each decoder
to achieve the highest accuracy with only real data, and the minimum
number of samples required to achieve the same or higher accuracy
after applying the proposed method. Proposed: Our decoder, Shallow:
ShallowConvNet, Deep: DeepConvNet.

more suitable for the case of relatively sufficient data, while
our method can simultaneously take into account different
conditions.

The quality of synthesized samples of different augmenta-
tion methods is evaluated by FID, EDmin and WD. We analyze
the synthesized samples obtained when the number of real
samples is 520.The distance between the real samples, and
the distance between the real samples and the noise samples
are calculated as the reference. Table V shows that the FID
and EDmin of samples synthesized by the proposed method
is the closest to the real samples, which is superior to other
methods. The proposed method is inferior to Cropping in WD.

D. Generality of Auxiliary Synthesis Framework
To prove that the proposed framework is also applicable

to other decoding models, we replace the auxiliary decoding
model with EEGNet, ShallowConvNet and DeepConvNet,
respectively, and then test the model performance, the result
can be found in Table VI. The data augmentation method
proposed in this paper improves the average accuracy of these
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Fig. 6. Statistical difference changes of recognition results when the
number of training samples is increased at different step sizes.

three models by 3.4%, 2.1% and 7%, respectively, and the
stability of the model is also increased. DeepConvNet obtains
the greatest improvement, the result reveals that our method
may be more compatible with complex models.

Table II-VI also reveal that after applying the proposed
method, the highest accuracy of all models is higher than
that of training only with the real data. Fig. 5(a) shows the
intuitively histogram of this result. Besides, we count the
number of samples required to achieve the highest accuracy
when training the model only with real data, and the minimum
number of samples required to achieve the same or higher
accuracy after augmentation, as shown in Fig. 5(b). The
number of samples required to train the decoding model to
achieve the same or higher accuracy decreases after applying
our method.

IV. DISCUSSION

A. Setting of Step Size and Expansion Ratio
The selection of step size requires to consider the sample

balance, the significance of the results and the test error. The
most important thing is to ensure the sample balance, which
has been proved to affect the model training effect, so each
kind of sample needs to be balanced in the process of increas-
ing. And then, in order to avoid the time consumption caused
by unnecessary tests, the step size that will lead to significant
changes in the results is selected in the study. We test the
performance of the model with different step sizes based on
real samples. The accuracy of different number of real samples
is used as reference. On the basis of these samples, each
type of sample is increased with different step sizes, and the
statistical difference between the obtained accuracy and the
reference is tested by Wilcoxon signed-rank test, and corrected
by Holm-Bonferroni function. As shown in Fig. 6, with the
increase of step size, the p-value decreases, and the step size of
10 is close to the significant level. Although the larger the step
size, the more significant the change, choosing a larger step
size will cause greater calculation error of sample reduction.
When the same accuracy is achieved, too large a step size
may lead to a much larger number of samples than the real
demand when using data augmentation method to achieve this
accuracy, which will result in a smaller sample reduction.

The number of synthesized samples in the training set
affects the improvement of model performance. Table VII
shows the data expansion ratio commonly used in EEG

TABLE VII
EXPANSION RATIO USED IN RECENT STUDIES

TABLE VIII
TRAINING TIME OF DIFFERENT METHODS

recognition literature in the BCI field, in which the optimal
ratio refers to the expansion ratio that makes the model
performance reach the optimal after expansion. According to
the relevant references, the conventional expansion ratios of 1,
2, 3 and 4 are set in this study, while the ratios of 0.5 and
1.5 are set to test the performance change of the model at a
smaller expansion ratio. A larger ratio is not used because the
improvement of model performance by synthesized samples
tends to be saturated when the ratio larger than 2.

B. Complexity of Designing and Training Progress
In this study, we propose a data synthesis framework based

on deep generative model. The framework only needs to design
a decoding model and a generative model, and because there
is no adversarial relationship between the two models, we do
not need to make complicated parameter tuning. In contrast,
GAN-based data augmentation method realizes data synthesis
through adversarial training, which is extremely sensitive to
the hyperparameters. In this paper, we try to use the decoding
model mentioned in Section II-B as discriminator and find
that the discriminator is always unable to distinguish real and
fake, so that the GAN cannot converge. After redesign, this
phenomenon is alleviated. The difference in the early network
structure design indicates that the proposed framework is much
easier to implement.

The training process of this framework is stable, and the
quality of the generative model can be judged by the loss.
Furthermore, the result in Table IV shows that the minimum
data required for the training of this framework is less than
that of GAN, because when the number of the real samples
is less than 120, effective synthesized data cannot be obtained
by GAN. Training time of this framework is also less than
that of GAN, as presented in Table VIII.

C. Ablation Experiment
In order to verify the effectiveness of the proposed method

and verify that the synthesized sample is not a copy of
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TABLE IX
CLASSIFICATION UNDER DIFFERENT ABLATION CONDITIONS ON THE

FIRST SUBJECT (MEAN±STD, %)

Fig. 7. Interaction between α and β in the auxiliary synthesis frame-
work. The hyperparameter varies by five times. Color bar represents the
corresponding accuracy. (a) 200 real samples, (b) 400 real samples.

the real sample but added information which is helpful to
improve the model performance, we tested the influence of
each component in the synthesis framework on the synthesis
result and decoding performance from different perspectives
through ablation experiments. The ablation experiments are set
as follows:

MSE-CE-Based (This Work): The loss functions involved in
optimization include MSE loss and CE loss, set α to 1, β to
0.0001.

MSE-Based: The loss function involved in optimization only
includes MSE loss, and the auxiliary decoding model in the
synthesis framework is removed.

CE-Based: The loss function involved in optimization only
includes CE loss.

We test the decoding model using the samples synthesized
under these three conditions. The average accuracy of MSE-
CE-based condition is 2.3% and 7.2% higher than that of
MSE-based and CE-based condition, and the model is more
stable, as shown in Table IX. When the number of real samples
is less than 400, the samples synthesized with the participation
of the auxiliary decoding model can stably improve the
decoding accuracy, but when the number of real samples is
more than 400, the impact of the auxiliary decoding model on
the decoding accuracy may be unstable, and it is necessary to
reduce the constraints of the auxiliary decoding model on the
generative model.

Fig. 8. Time and frequency evaluation of real signal and signals syn-
thesized under MSE-CE-based, MSE-based and CE-based conditions.
(a) The 0-0.4s signals of C3 channel of one trial are selected for a
detailed inspection, (b) Brain topographic maps when subject imagines
‘left hand’ movement. Alpha, beta, gamma bands are chosen for com-
parison.

Fig. 9. Losses of generative model under different conditions. For MSE-
based condition, the CE loss is only calculated for comparison, and it
does not participate in optimization. For CE -based condition, the MSE
loss is only calculated for comparison, and it does not participate in
optimization.

Grid search ranging from 1 to 1e-5 is used to find an
appropriate coefficient combination, we also test the situation
that the coefficient is zero. Fig. 7 shows the two coefficients
and the corresponding accuracy after Gaussian interpolation
when there are 200 and 400 samples. The accuracy is generally
higher than other combinations when α is larger than 1e-1
and β is smaller than 5e-4. The β required for the highest
accuracy decreases from 5e-4 to 1e-5 when the number of
samples increases from 200 to 400.

To further investigate the reasons for the disparity of abla-
tion experiment, we visualized the effect of different condi-
tions on the generative model, and the effect of synthesized
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Fig. 10. t-SNE visualization of the decoding model outputs when training it with only real data or MSE-CE-based, MSE-based and CE-based
synthesized data. (a) The t-SNE visualization for the outputs of the last convolution layer, (b) Euclidean distance between different clusters in (a).

samples under different conditions on the training and testing
of the decoding model.

1) Influence on the Results of Generative Model: To specif-
ically explain the impact of different components in the
synthesis framework on the synthesized data, we observe the
outputs and the loss curves of the generative model.

Fig. 8 shows the time and frequency evaluation of the real
data and synthesized data under different conditions. The alpha
and beta bands associated with motor imagery and the gamma
band associated with complex tasks and cognition are selected
for brain topographical map comparison. The results show that
except for CE-based condition, the synthesized data under
the other two conditions have similar distributions in alpha
and beta bands to the real data while the distribution of the
gamma band is significantly different. As mentioned in [60],
the generated signal is expected to have additional high-
frequency features, which have a positive effect on improving
the generalization of the model.

We record the changes of these two losses in the training
process of generative model. Fig. 9 reveals that the MSE
loss of the synthesized signal is similar under the condi-
tion of MSE-CE-based and MSE-based, while is extremely
large under CE-based, indicating that the synthesized data
distribution is deviated from the real distribution when the
MSE loss does not participate in optimization. The CE loss
under MSE-CE-based condition is smaller than that of MSE-
based condition, which means that the CE loss provided
by pre-trained decoding mode helps the generative model
synthesize distinguishing features in the synthesis process.
Fig. 9 also reveals that there is a big difference between the
values of MSE and CE loss in the training stage, which proves
that a larger α and a smaller β are more conducive to balancing
the constraints of the two losses.

2) Influence on the Training of Decoding Model: We further
study the influence of the samples synthesized under different
conditions on the decoding model. The convolution outputs of
the decoding model are analyzed by t-SNE [66] from the per-
spective of training. In this experiment, only the synthesized
samples are used to train the decoding model.

Fig. 10(a) shows that the potential vectors of the sam-
ples synthesized under the CE-based condition are obviously
distinctive between different motor imagery, which proves
that CE loss assists the generator in synthesizing distinctive
features. But as shown in Fig. 8 and Fig. 9, only using
the CE loss will cause the data distribution of the synthe-
sized samples to deviate from the real EEG signals. These
samples can be easily classified by the decoding model,
but the model trained with these samples cannot accurately
recognize the real samples during the testing. Fig. 11 shows
that the model trained with the samples synthesized under
the CE-based condition has differences in the classification
information focus area of the real samples during the testing
compared with other conditions, which leads to the results of
the CE-based condition in Table IX being inferior to other
ablation conditions.

An appropriate using of the auxiliary decoding model will
make the feature distributions of different motor imagery are
more distinct than real only and MSE-based condition while
retaining the real signal distributions. The Euclidean distance
between different clusters is shown in Fig. 10(b). After adding
the auxiliary decoding model, the average distance between
clusters increases, especially the distance between left and
right hand and the distance between foot and tongue are
significantly increased, which means that the model is more
capable of identifying these movements at this time.

3) Influence on the Testing of Decoding Model: The outputs
of the decoding model are further analyzed from the perspec-
tive of testing. In this experiment, we use both real samples
and synthesized samples obtained under different conditions
to train the decoding model, and then select the same samples
for testing. Class activation mapping (CAM) [67] is used to
visualize the performance of the decoding model on the testing
dataset, as shown in Fig. 11. The energy distribution of the
CAM is different when the same sample is correctly classified
by the decoding models trained under the different conditions.
According to the statistical analysis of random samples, MSE-
CE-based condition has larger energy and narrower focused
area, which means that the decoding model captures the
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Fig. 11. Grad-CAM visualizations under MSE-CE-based, MSE-based
and CE-based conditions. Color bar represents the impact on classifi-
cation results. The figure shows the class activation mapping when the
decoding models trained under the different conditions correctly classify
the same sample.

information needed for classification more precisely, this may
improve the classification performance.

D. Limitation and Future Work
The proposed method improves the decoding performance

with limited real samples. However, the generative model
learns the real data distribution to generate artificial sam-
ples and cannot generate information that is not included in
the original dataset. The performance of the augmentation
methods is affected by the data quality and diversity of the
real dataset. Therefore, the improvement of decoding model
performance by synthesized samples is limited. In the actual
acquisition experiment of EEG signals, some random changes,
such as physiological individual differences and interference
caused by the environment, cannot be simulated by deep
learning method at present. Besides, the overfitting still exists,
so the early stop strategy is used to prevent the performance of
the model from decreasing. We expect to achieve acceptable
decoding accuracy with few training samples, or even without
retraining. In the follow-up research, we will continue to
study how to train a model with very few samples to achieve
acceptable accuracy, such as combining our method with
transfer learning

V. CONCLUSION

In this paper, an auxiliary synthesis framework is proposed
to effectively improve the classification performance of the
model under limited samples. We tested the method on BCI
Competition IV 2a, and the results show that the data syn-
thesized by this method well preserves the time, frequency
and spatial features of the original data. After applying the
proposed method, the average decoding accuracy of all sub-
jects is improved by (4.72±0.98)%. A detailed investigations

on the first subject shows the improvement of classification
performance brought by our method is higher than that of the
cropping, adding noise and GAN, and also higher than that
without the auxiliary decoding model in the framework. The
number of training samples for reaching the original highest
accuracy is reduced by about 33.3%. The proposed method is
also applicable to other decoding models. Finally, since our
framework is purely data-driven, it can be migrated into other
BCI domains such as emotion recognition, speech recognition,
epilepsy prediction etc.
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