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Frequency Domain Filtering Method for
SSVEP-EEG Preprocessing
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Abstract— Steady-state visual evoked potential (SSVEP)
signal collected from the scalp typically contains other
types of electric signals, and it is important to remove
these noise components from the actual signal by applica-
tion of a pre-processing step for accurate analysis. High-
pass or bandpass filtering of the SSVEP signal in the
time domain is the most common pre-processing method.
Because frequency is the most important feature infor-
mation contained in the SSVEP signal, a technique for
frequency-domain filtering of SSVEP was proposed here.
In this method, the time-domain signal is extended to
multi-dimensional signal by empirical mode decomposition
(EMD), where each dimension represents a intrinsic mode
function (IMF). The multi-dimensional signal is transformed
to a frequency-domain signal by 2-D Fourier transform,
the Gaussian high-pass filter function is constructed to
perform high-pass filtering, and then the filtered signal is
transformed to time domain by 2-D inverse Fourier trans-
form. Finally, the filtered multi-dimensional intrinsic mode
function is superimposed and averaged as the frequency-
domain filtered signal. Compared with the time-domain
filtering method, the experimental results revealed that
frequency-domain filtering method effectively removed the
baseline drift in signal and effectively suppressed the
low-frequency interference component. This method was
tested using data from public datasets and the results
show that the proposed frequency-domain filtering method
can significantly improve the feature recognition perfor-
mance of canonical correlation analysis (CCA), filter bank
canonical correlation analysis (FBCCA), and task-related
component analysis (TRCA) methods. Thus, the results
suggest that the application of frequency-domain filtering
in the pre-processing stage allows improved noise removal.
The proposed method extends SSVEP signal filtering from
time-domain to frequency-domain, and the results suggest
that this analysis tool significantly promotes the practical
application of SSVEP systems.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) technology con-
structs a direct information transmission pathway

between the human brain and the external world by decoding
information about the neural activity of the brain during
human thought processes [1], [2], [3], [4], [5]. The steady-
state visual evoked potential (SSVEP) is one of the main neural
signals used in BCI systems because of its high information
transmission rate and large number of encodable targets. When
the human eye is exposed to a flickering or changing pattern of
visual stimuli at a fixed frequency, the cortical potential activ-
ity is modulated, resulting in a continuous stimulus frequency-
related response with a periodic rhythm that is similar to
that of the visual stimulus, known as SSVEP [6]. SSVEP
signal generation is thought to arise from inherent resonance
frequency of the various neural networks distributed in the
brain, as under normal conditions, these neural networks are
not synchronized with each other and generate spontaneous
electroencephalogram (EEG). With application of an external
visual stimulus of constant frequency, the neural network,
which coincides with the stimulus frequency or harmonic
frequency, resonates, resulting in a significant change in the
brain potential activity at the stimulus and harmonic fre-
quencies and resulting in the SSVEP signal [7]. The SSVEP
signal in power spectra exhibits a significant spectral peak
at the stimulus and harmonic frequencies. Detection of the
frequency at this spectral peak enables the identification of the
stimulus source of the subject’s visual gaze and inference of
the subject’s intention [8], [9], [10]. However, scalp-acquired
SSVEP signals are susceptible to artifacts such as electrical
signals from muscles and resting electrical potential that
exists between the front and the back of the eye. Thus, it is
important to develop an efficient focused target classification
algorithm for the practical implementation of the SSVEP-BCI
system.

Canonical correlation analysis (CCA) [11] is a classical
method used for SSVEP feature recognition. In this method,
the maximum correlation coefficient between the test signal
and the reference signal is determined by solving a spatial fil-
ter. Filter bank canonical correlation analysis (FBCCA) [12] is
an improved method based on CCA, in which the testing signal
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is decomposed into several sub-band signals by using multiple
filter banks. CCA analysis is then performed on each sub-band
signal, and the obtained correlation coefficient ensembles are
used as the final feature discriminant coefficients. There can be
significant individual variations in EEG signals. Incorporating
user training data can specifically characterize users’ SSVEP
responses for significantly improved detection performance.
Extended canonical correlation analysis (eCCA) [13] and
task-related component analysis (TRCA) [14] are the repre-
sentatives of SSVEP training feature recognition algorithm.
Based on the CCA algorithm, eCCA performs spatial filtering
of multi-channel brain signals by solving the spatial filter
between the training signal, testing signal, and the reference
signal, composed of sine and cosine functions. Then, the
correlation between signals after spatial filtering is determined
to identify the user focused target. TRCA is a spatial filtering
approach for time-locked EEG signals, which finds the spatial
filter by maximizing the covariance of the time-locked signals
across different trials. Recently, Riemannian geometry was
also used for SSVEP feature recognition [15], [16], [17]. This
classifier is not designed to estimate a spatial filter, but to map
the data directly to a geometric space with a suitable metric.
The adaptive classifier is another promising method for SSVEP
classification [18], [19], [20]. In this method, the parameters of
the classifier are re-estimated and updated as new EEG data are
obtained, thus allowing the classifier to track the distribution
of features that may change in brain signals.

Generally, methods that incorporate training can achieve
higher SSVEP feature recognition accuracy than training-free
methods. However, it can be very time-consuming to collect
sufficient training data. Additionally, a user may experience
visual fatigue caused by the lengthy data calibration process
and this will seriously affect the signal-to-noise ratio of
SSVEP responses and the overall performance of the BCI
system. As an alternative, there is growing interest in the
development of transfer learning techniques for SSVEP feature
recognition. The transfer template-based canonical correlation
analysis (tt-CCA) method assumes that different subjects can
share one universal SSVEP template, and the grand average
of all existing subjects’ SSVEP data is assumed as the new
subject’s SSVEP template [21]. The least-squares transforma-
tion (LST)-based transfer learning method uses least-square
transformation to reduce the difference between the source
domain (existing subjects) and the target domain (a new
subject), and then reliable spatial filters could be learned
from all the SSVEP data [22]. The subject transfer-based
canonical correlation analysis (stCCA) method assumes a
common pattern in a subject’s spatial filters across different
stimulus frequencies, and a subject’s spatially filtered SSVEP
template could be approximated by the weighted summation of
spatially filtered SSVEP templates from existing subjects [23].
The transfer learning canonical correlation analysis (tlCCA)
method transfers a subject’s SSVEP templates and spatial
filters from the source frequency to the target frequency [24].
The cross-subject spatial filter transfer (CSSFT) method trans-
fers the existing user model with good SSVEP response
to the new user test data without collecting any training

data from the new user [25], [26]. In addition to the above
feature recognition methods based on a transfer learning
framework, deep learning techniques have also been applied
for EEG feature classification [27], [28], [29], [30]. The
most studied deep learning networks in BCI are convolutional
neural network (CNN) and deep belief network (DBN), and
a combined CNN-DBN classification network has also been
studied.

Techniques such as matrix classifier (spatial filter), adaptive
classifier, transfer learning, and deep learning have greatly
improved the classification recognition accuracy of SSVEP.
These algorithms usually include steps of pre-processing,
feature extraction, and feature classification. As the initial part
of feature recognition, pre-processing has an important impact
on the final classification accuracy. The stimulus frequency
range of SSVEP is usually set above 7 Hz, therefore, filtering
the low-frequency components of signals is a key step in
SSVEP pre-processing. Most current studies use digital filters
such as Butterworth and Chebyshev for time-domain filtering
of brain signals. However, since the frequency spectrum of
noise significantly overlaps with that of brain signals, these
filters unfortunately suppress the brain signals of interest
during the suppression of the noise. Principal component
analysis (PCA) [31] and independent component analysis
(ICA) [32] are two classical EEG denoising methods. PCA
removes noise and redundancy by reducing the dimension
of multidimensional data. The signals obtained after PCA
processing are not correlated. It is worth noting that the
SSVEP signal is not unrelated to noise, so PCA often fails
to obtain good SSVEP feature recognition performance. ICA
decomposes multi-channel observation signals into several
independent components through an optimization algorithm
that assumes the statistical independence of source signals.
However, the independent components obtained by ICA have
no specific arrangement, and the SSVEP component cannot
be directly determined from the decomposed independent
components. Wavelet threshold method is also applied as a
EEG signal denoising method. In recent years, researchers
have also proposed a hybrid strategy combining signal decom-
position and blind source separation (BSS) to eliminate EEG
noise [33], [34]. This strategy uses wavelet transform or
ensemble empirical mode decomposition (EEMD) to decom-
pose single-channel signals into multi-dimensional signal com-
ponents, then BSS techniques (e.g. ICA) are used to further
decompose those generated multi-dimensional signal compo-
nents into meaningful sources.

In this study, we investigated the feasibility of frequency-
domain filtering of SSVEP since the main characteristic of
SSVEP signal is frequency. A frequency-domain filtering
(FDF) method based on empirical mode decomposition (EMD)
and 2-D Fourier transform (FFT) filtering is proposed. To do
this, the time-domain signal is first expanded into a multi-
dimensional signal through EMD and the multi-dimensional
brain signal is transformed into frequency-domain by 2-D FFT.
Next, the 2-D spectral signal is filtered by high-pass filter in
the frequency-domain and then 2-D inverse FFT is used to
obtain the frequency-domain filtered multi-dimensional brain
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signal. Finally, multi-dimensional brain signals are superim-
posed and averaged as final frequency domain filtered signals.
In this work, we compared the SSVEP feature recognition
performance after time-domain and frequency-domain filtering
of data from public datasets, and verified the effectiveness of
using frequency-domain filtering in the signal pre-processing
stage to improve SSVEP classification accuracy. To the best
of our knowledge, it is the first time, in the literature, that the
feasibility of SSVEP signal filtering in frequency domain is
investigated.

The organization of this paper is as follows. In Section
Methods, the data and methods used in this paper are intro-
duced. Section Results analyzes the influence of parameters
on FDF method and the feature recognition performances of
FDF method on SSVEP signals, followed by discussions and
suggestions for future work in Section Discussion. Finally,
we conclude the work in Section Conclusions.

II. METHODS

A. Dataset
The public dataset [35] used in this study includes SSVEP

recordings of 35 healthy subjects (the data file of subject
5 in the Benchmark Dataset was damaged and could not be
downloaded) focusing on 40 characters flickering at different
frequencies (8-15.8 Hz with an interval of 0.2 Hz). For each
subject, the experiment consisted of six blocks, where each
block contained 40 trials corresponding to all 40 characters
presented in a random order. The length of each trial is 5 s,
and the sampling frequency of the data is 250 Hz. The SSVEP
signal analysis channels selected in this study were O1, O2,
Oz, PO3, PO4, POz, PO5, and PO6.

B. Canonical Correlation Analysis (CCA)
For EEG data X recorded from multiple channels and the

reference signal Y , CCA analysis aims to find two projection
vectors wx and wy so that the linear combination signals
wT

x X and wT
y Y have the largest correlation. The correlation

coefficient obtained using CCA is:

ρ = max
E(wT

x XY T wy)√
E(wT

x X X T wx )E(wT
y Y Y T wy)

(1)

The reference signal Y were constructed at the stimulation
frequency f :

Y f =


cos2π f t
sin2π f t

. . .

cos2kπ f t
sin2kπ f t

 , t = 1/ fs, . . . , Ns/ fs (2)

where k is the number of harmonics, fs is the sampling rate,
and Ns represents the number of sample points. By calculat-
ing the correlation coefficients between X and the reference
signals at all stimulus frequencies, the corresponding target
with the maximum correlation coefficient is identified as the
focused target.

C. Filter Bank Canonical Correlation Analysis (FBCCA)
FBCCA divides EEG signal X into n sub-band signals

(X1, X2, . . ., Xn) through filter banks and then calculates the
correlation coefficient ρi between each sub-band signal X i and
the reference signal using CCA. The final discrimination coef-
ficient is determined by integration of n correlation coefficients
by:

ρ̃ =

∑n

i=1
w(i) · (ρi )

2 (3)

where w(i) refers to the weight corresponding to the cor-
relation coefficient of the i-th sub-band signal. This can be
calculated by:

w(i) = i−a
+ b, i ∈ [1n] (4)

Herein, a and b are 1.25 and 0.25, respectively. After obtaining
ensemble coefficients at all stimulus frequencies, FBCCA
considers the target corresponding to the maximum coefficient
as the focused target.

D. Task-Related Component Analysis (TRCA)
The subject’s training data is denoted as Z ∈

RNs×Nc×N f ×Nt , where Ns represents the number of sampling
points, Nc represents the number of channels, N f represents
the number of stimulation frequencies, and Nt represents the
number of blocks. TRCA extracts task-related components by
spatially filtering the training data. The spatial filter w f ∈

RNc×1 at stimulation frequency f can be calculated by:

argmax
w f

wT
f AT Aw f

wT
f BT Bw f

(5)

where A ∈ RNs×Nc represents the result of averaging Nt
blocks data at the frequency f in Z :

A =
1
Nt

∑Nt

i=1
Zi, f (6)

B = [Z T
1, f Z T

2, f Z T
3, f . . . Z T

Nt, f ]T
∈ RNt ·Ns×Nc, and Zi, f ∈

RNs×Nc represents the EEG signal with stimulation frequency
f in the i-th block. After calculating the spatial filter w f at the
frequency f , TRCA uses the Pearson correlation coefficient
between the spatial filtered training signal and the spatial
filtered test signal as the final discriminant coefficient:

p′
= corr(Xw f , Aw f ) (7)

After obtaining the discrimination coefficients at all stimulus
frequencies, the target corresponds to the maximum coefficient
as the focused target.

E. Frequency Domain Filtering Method
1) Empirical Mode Decomposition (EMD): EMD can decom-

pose a signal into a superposition of several intrinsic mode
functions (IMFs) based on the signal’s own feature scale. The
IMF needs to meet two conditions: 1) The number of extreme
value points and the number of crossing zero points in the
whole data set must be equal or differ by at most one; 2) The
mean value of the upper and lower envelopes formed by the
local extreme and local minimal points is zero at all times,
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Fig. 1. The algorithm flow of the frequency filtering method.

i.e., the upper and lower envelopes are symmetric about the
time axis. Assuming that the signal to-be-decomposed is x(t),
the detailed steps of the EMD procedure are as follows:

a) Determine all the local extreme points (including extreme
and minimal points) of the original signals x(t), and fit all
the extreme points with the cubic spline algorithm to obtain
the extreme value envelope emax (t) (upper envelope) and the
minimal value envelope emin(t) (lower envelope), so that all
the data points of signal x(t) are between these two envelopes.
The mean value of the upper and lower envelopes is used as
the mean envelope of the original signals m(t):

m(t) =
emax (t) + emin(t)

2
(8)

b) Subtract the mean values of the upper and lower
envelopes from the signal-to-be decomposed x(t):

h1(t) = x(t) − m(t) (9)

Determine whether h1(t) satisfies the two qualifying condi-
tions of the natural mode function, if not, then h1(t) is signal
to-be-decomposed. Where, h1(t) is used instead of x(t), and
then the above steps are repeated until h1(t) satisfies the
qualifying conditions of the natural mode function. This is
written as:

c1(t) = h1(t) (10)

c) c1(t) is the first intrinsic mode function (or first-order
IMF) obtained from the EMD, and the residual sequence (or
residual component) r1(t) is obtained by subtracting c1(t)
from the original signals x(t):

r1(t) = x(t) − c1(t) (11)

d) Repeat steps a) - c) for r1(t) as the new signal to-
be-decomposed, thus obtaining the second, third and up to
n-th IMF, denoted as c1(t), c2(t), . . . , cn(t). This process is
called “screening”, and the screening process is repeated until
satisfying a predefined stopping criterion. Here, we used the
energy ratio as the criterion for stopping EMD decomposition:

Energy Ratio = 10log10(
∥x(t)∥2

∥ri (t)∥2
) (12)

EMD decomposition is terminated when the energy ratio
calculated in the i-th decomposition is greater than 20 or
the number of decomposed natural mode functions is greater

than 10. After decomposition steps a) - d), the original signals
x(t) are decomposed into the sum of several IMF components
and one residual component:

x(t) =

∑n

i=1
ci (t) + rn(t) (13)

2) Frequency-Domain Filtering Method Based on EMD and
2-D FFT: Fig. 1 illustrates the proposed frequency-domain
filtering method algorithm procedure. First, the IMFs obtained
by the EMD of the time-domain signal x(t) are constructed
as a 2-D function f (x, y) = [c1(t)c2(t). . . cn(t)]:

f (x, y), 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1 (14)

where M and N represent the dimensions of f (x , y). The 2-D
FFT is then applied to f (x , y):

F(u, v) =
1

M N

∑M−1

x=0

∑N−1

y=0
f (x, y)e− j2π( xu

M +
yv
N ) (15)

The goal of the pre-processing of SSVEP signal is to remove
the low-frequency components in the signal. In this step, the
Gaussian high-pass filter is used to filter F(u, v), and the
corresponding Gaussian filter function can be expressed as:

H(u, v) = 1 − e−D2(u,v)/(2·D2
0) (16)

where D(u, v) denotes the distance from point (u, v) to the
center of the spectrum center (M /2, N /2):

D(u, v) =

√
(u − M/2)2 + (v − N/2)2 (17)

where D0 represents the passband radius, i.e., signal compo-
nents larger than D0 range are retained. The spectrum function
F(u, v) is multiplied by the filter function H(u, v) for high-
pass filtering:

G(u, v) = H(u, v) ∗ F(u, v) (18)

Next, a 2-D FFT inverse transform is performed on G(u, v):

g(x, y) =

∑M−1

u=0

∑N−1

v=0
G(u, v)e j2π( xu

M +
yu
N ) (19)

The real part of g(x, y) ∈ RM×N is as the frequency-
domain high-pass filtered multi-dimensional brain signal, and
is denoted as Y (t) = real (g(x,y)) = [c′

1(t) c′

2(t). . . c′
n(t)],

where c′

i (t) represents the frequency-domain filtered intrinsic
mode function. The filtered intrinsic mode functions can then
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Fig. 2. Fig 2-A. The multi-dimensional signal decomposed by EMD.
Fig 2-B. The multi-dimensional signal filtered by 2-D FFT.

be superimposed and averaged to obtain the final frequency-
domain filtered signal:

y(t) =
1
n

∑n

i=1
c′

i (t) (20)

III. RESULTS

A. Analysis of Filtering Performance of
Frequency-Domain Filter on SSVEP Signal

The proposed frequency-domain filtering method first
expands the time-domain signal into a multi-dimensional sig-
nal using EMD, and then performs frequency-domain trans-
form filtering on the multi-dimensional signal, as shown in
Fig. 1. Fig. 2-A shows the multi-dimensional signal obtained
from the PO4 channel signal of subject 4 by EMD, where
each dimension corresponds to a intrinsic mode function.
Fig. 2-B shows the multi-dimensional signal filtered by 2-D
FFT, using a passband radius of Gaussian high-pass filter set
to 10. According to the multi-dimensional signal before and
after frequency-domain filtering, the waveform of low-order
intrinsic mode function becomes smoother after filtering (e.g.,
IMF4 and IMF5). The frequency-domain filter suppresses the
signal components below the passband range for each intrinsic
mode function. The low-order intrinsic mode function mainly
contains low-frequency components in the signal, so the high-
pass filtering of the frequency-domain filter is mainly required
for the low-order intrinsic mode function. In the method
developed here, the superposition average of all intrinsic mode
functions in frequency-domain filtered multi-dimensional sig-
nal is calculated as the frequency-domain filtered time-domain
signal.

Fig. 3 A-C shows the original signals, time-domain filtered
signals and frequency-domain filtered signals of the eight
channels of subject 4. As shown in Fig. 3-B, each channel was
subjected to Chebyshev type I filtering with a bandpass range
of 6 - 90 Hz, and Fig. 3-C shows the proposed frequency-
domain filtering for each electrode channel. According to
Fig. 3-A, the waveform of the original signals exhibits a large
fluctuation that deviates from the baseline. This fluctuation is
caused by baseline drift caused by interference such as muscle
movement and the presence of baseline drift will seriously
affect the accuracy of the signal. Therefore, it is necessary to
carry out high-pass or bandpass filtering on the SSVEP signal
in the preprocessing stage. Fig. 3-B shows that after time-
domain filtering of the SSVEP signal, the waveform of the
signal is uniformly distributed along the baseline, effectively

eliminating trend term seen in the original signals. As shown
in Fig. 3-B and 3-C, the frequency-domain filtered signal
waveform exhibits smaller fluctuations than the time-domain
filtered signal waveform, such as the channels PO4, PO6, and
Oz. The variance was calculated for the original, time-domain
filtered and frequency-domain filtered signal waveforms for
each of the eight channels, and the results are shown in Fig. 4.
As observed, the frequency-domain filtered signal exhibited
the smallest variance, indicating that the frequency-domain
filtered signal waveform has a more uniform distribution along
the baseline, indicating that the applied frequency-domain
filtering method effectively eliminated the baseline drift of
SSVEP signals. EMD can decompose the time domain signal
into the sum of several intrinsic mode functions and one
residual component, which can be considered the trend term
of the signal (e.g., IMF5 in Fig. 2-A). As shown in Fig. 2-B,
the frequency-domain filtering method can smooth the trend
terms in the signal. Because the proposed frequency-domain
filtering method first determines the trend term of the signal
through EMD, the frequency-domain filter directly eliminates
the signal trend term for an improved baseline drift removal
effect relative to that achieved by the time-domain filter.

Fig. 5 A-C shows the results of power spectrum analysis of
original signals, time-domain filtered signals, and frequency-
domain filtered signals, with red circles indicating the stimulus
frequencies and their harmonics. As shown, there is more low-
frequency interference in the original signals, and the ampli-
tude of the low-frequency components is much higher than
the amplitude at the stimulation frequency and its harmonics,
which will seriously impede accurate analysis of the SSVEP
signal. As shown in Fig. 5-B, after time-domain filtering, the
low-frequency components in the time domain filtered signal
spectrum are suppressed, allowing the accurate detection of
the main frequency components of the SSVEP signal. Fig. 5-C
shows the frequency-domain filtered signal power spectra, with
the effective removal of the low-frequency components of the
signal. The spectral data after time-domain and frequency-
domain filtering show that the frequency-domain filtering
method exhibits a more significant suppression effect on the
signal components at non-stimulated frequencies (e.g., 5 - 10
Hz), making the stimulated frequency components of SSVEP
more prominent.

Overall, frequency-domain filtering can more effectively
remove baseline drift from the signal than time-domain fil-
tering, with a more significant suppression effect on non-
stimulated frequency components.

B. Effect of Frequency-Domain Filter Passband Radius
on SSVEP Feature Recognition Performance

After transformation to the frequency domain, the signal
must be filtered using a Gaussian high-pass filter, and the
passband radius of the filter affects filtering performances.
The time-domain filter can set a clear filtering range, but the
proposed frequency-domain filtering method requires setting
the passband radius to determine the filtering range, i.e., the
passband radius does not directly correspond to the filtering
frequency. This section analyzes the filtering performance of
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Fig. 3. Fig 3-A. The original signals of the eight channels. Fig 3-B. The time-domain filtered signals of the eight channels. Fig 3-C. The frequency-
domain filtered signals of the eight channels.

Fig. 4. The variance for the original, time-domain filtered and frequency-
domain filtered signals for each of the eight channels.

Fig. 5. Fig 5-A. The power spectrum of original signals. Fig 5-B. The
power spectrum of time-domain filtered signals. Fig 5-C. The power
spectrum of frequency-domain filtered signals.

the frequency-domain filter with different passband radius
values for improved selection of the appropriate passband
radius parameter.

Fig. 6 shows the power spectra obtained from the PO5
channel of subject 4 for passband radius of 5 - 50, in incre-
ments of 5, and the stimulus frequency and its harmonic fre-
quency are indicated by red circles. With increasing passband
radius, the low-frequency component of the signal is gradually
eliminated, but the stimulus frequency of the signal is also

suppressed. As the passband radius increases, the amplitude
of the fundamental frequency also decreases. The stimulus
frequency range of the focused target in the dataset used in
this study was 8 - 15.8 Hz, so the passband radius should
be appropriately set to avoid filtering out signal components
with frequency above 8 Hz. As shown in Fig. 6, the use
of a passband radius of 5 did not remove low-frequency
interference below 2 Hz. However, the use of a passband
radius of 20 suppressed signal components with frequency
above 8 Hz, indicating that the appropriate passband range is
in the range of 5 - 20. However, it is difficult to establish the
relationship between passband radius and filtering frequency
by spectrum analysis, as it is impossible to determine the
corresponding filtering frequency for a passband radius of
10 or other values. For this reason, the SSVEP signal feature
recognition accuracy was calculated for different passband
radius values. Fig. 7 shows the recognition accuracy calculated
for each subject using CCA, for 1 s of data analysis. The
vertical coordinate of Fig. 7 represents the subject number,
the horizontal coordinate represents the passband radius, and
the color value represents the accuracy. As observed, with
increasing passband radius, the accuracy tends to increase and
then decrease. This is because the low-frequency interference
in signal cannot be removed if the passband radius is too small,
but the effective component of the signal can be removed if the
passband radius is too large. Optimized recognition accuracy
for the data of most subjects occurs using a passband radius
of 10, so the optimized passband radius was set to 10.

C. Improvement Effect of Frequency Domain Filtering
Method on SSVEP Recognition Accuracy

The SSVEP recognition accuracies obtained using time-
domain filtering (TDF), wavelet threshold method and
frequency-domain filtering (FDF) in the pre-processing stage
were compared using data from the public datasets. The
average recognition accuracy was calculated for each subject
by superimposing and averaging the accuracy of six blocks
of data, and then the average recognition accuracies of the
34 subjects were superimposed and averaged as the final
analysis results. Paired-t test was used to determine signifi-
cant differences (define as p<0.05) in accuracy for different
methods.
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Fig. 6. The power spectra obtained from the PO5 channel of subject 4 for passband radius of 5 - 50.

Fig. 7. The accuracy calculated for each subject with different passband
radius.

Fig. 8 shows the accuracies of time-domain filtered sig-
nals, wavelet filtered signals and frequency-domain filtered
signals obtained by the CCA method, with data analysis
lengths of 0.8 s, 1 s, and 1.2 s. The number of harmonic
of the reference signal in the CCA method was set to 5.
For the time-domain filtering method, the SSVEP signals
were subjected to Chebyshev type I filtering with a band-
pass range of 6 - 90 Hz. For wavelet threshold method, the

signal denoising is implemented by Matlab library functions
ddencmp and wdencmp. For the frequency-domain filtering
method, the Gaussian high-pass filter passband radius was
set to 10. Fig. 8 shows that compared with the time-domain
filtering method, the recognition accuracy of the frequency-
domain filtering method was improved by 9.76%, 11.7%,
and 11.35% for stimulus durations of 0.8 s, 1 s, and 1.2 s,
respectively, and the recognition accuracy of the frequency-
domain filtering method was improved by 8.52%, 11.25%, and
9.97%, compared with the wavelet threshold method, respec-
tively. Paired t-tests showed significant differences between
the accuracies obtained using frequency-domain filtered sig-
nals, wavelet filtered signals and time-domain filtered signals
(∗ p <0.05, ∗∗ p <0.01, ∗∗∗ p <0.001), suggesting that the
use of frequency filtering in the preprocessing stage improves
SSVEP feature recognition effect relative to use of time-
domain filtering and wavelet filtering.

To analyze the reasons for the excellent performance of
frequency domain filtering in more detail, the first block
data of subject 3 was selected and the classification results
obtained by time domain filtering and frequency domain
filtering methods are shown in Fig. 9 A-B. Each subplot in
Fig. 9 A-B represents the classification result of a single
trial, where the vertical coordinate represents the canonical
correlation coefficient (obtained by CCA using Eq. 1) and
the horizontal coordinate represents the stimulus target num-
ber. The canonical correlation coefficient corresponding to
the subject true focused target is indicated with a red dot.
As shown in Fig. 9-A, the correlation coefficients obtained
using time-domain filtered signals did not differ much between
focused and non-focused targets. For example, the canonical
correlation coefficients corresponding to the focused target
(marked with red dot in the figure) and the non-focused targets
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Fig. 8. The accuracy of time-domain filtered signals and frequency-domain filtered signals obtained by the CCA.

Fig. 9. Fig 9-A. The classification results of time-domain filtered signal using CCA. Fig 9-B. The classification results of frequency-domain filtered
signal using CCA.

in subplots 2, 4, 5, 11, 13, 15, 16, 25 did not have a significant
discrimination, indicating that time domain filtering method
can easily misclassify a non-focused target as a focused
target. In Fig. 9-B, for the same subplots, the frequency-
domain filtering method allows improved distinction of canon-
ical correlation coefficients between focused and non-focused
targets, which will facilitate the accurate identification of the
user focused target. These results show that frequency-domain

filtering gives improved performance of SSVEP classification
compared to the time-domain filtering method.

To test the proposed method further, the frequency-domain
filtering method was also applied to FBCCA and TRCA
methods. To combine frequency-domain filtering with FBCCA
and TRCA methods, a feature ensemble scheme (denoted
as the FBCCA_FDF and TRCA_FDF methods) was used
in which the feature coefficients obtained from time-domain
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Fig. 10. The accuracies of the FBCCA, FBCCA_FDF, TRCA, and TRCA_FDF methods.

filtering and those obtained from frequency-domain filtering
were integrated to obtain the final feature discriminant coef-
ficients. For the FBCCA method, the number of filter banks
was set to 3, and the harmonic number in the reference signal
was set to 5. Let the feature coefficient obtained by CCA after
the signal is processed by frequency-domain filter be p1, and
let the feature coefficients obtained by CCA after processing
of the signal by three filter banks be p2, p3, and p4, then the
ensemble coefficient is:

p =

∑4

i=1
wi · pi (21)

For TRCA methods, let the feature coefficient of signal
obtained by frequency-domain filtering using TRCA be p′

1,
and let the feature coefficient of signal obtained by time-
domain filtering using TRCA be p′

2, then the ensemble coef-
ficient is:

p′
=

∑2

i=1
wi · p′

i (22)

where the value of w(i) is the same as Eq. (4).
Fig. 10 shows the recognition accuracies of time-domain

filtered signals, wavelet filtered signals and frequency-domain
filtered signals obtained by the FBCCA and TRCA methods
for data analysis lengths of 0.6, 0.8 and 1s. As observed,
the recognition accuracy of frequency-domain filtering based
FBCCA method (FBCCA_FDF) was improved by 3.56%,
3.82%, and 2.9%, compared with the time-domain filtering
based FBCCA method (FBCCA_TDF) for stimulus lengths

of 0.6 s, 0.8 s, and 1 s, respectively, and the recogni-
tion accuracy of the frequency-domain filtering based TRCA
method (TRCA_FDF) was improved by 3.97%, 3.04%, and
2.1%, compared with the time-domain filtering based TRCA
method (TRCA_TDF), respectively. The recognition accuracy
of FBCCA_FDF method was improved by 3.62%, 4.96%, and
3.57%, compared with the wavelet filtering based FBCCA
method (FBCCA_Wavelet) for stimulus lengths of 0.6 s, 0.8 s,
and 1 s, respectively, and the recognition accuracy of the
TRCA_FDF method was improved by 5.66%, 5.11%, and
3.29%, compared with the wavelet filtering based TRCA
method (TRCA_Wavelet), respectively. In summary, the fea-
ture recognition performance of FBCCA and TRCA methods
can be improved by using the frequency-domain filter.

IV. DISCUSSION

SSVEP signal is widely used in the field of BCI, but
also has good prospects for applications of medical testing
and cognitive neuroscience research. Thus, SSVEP signal
are important signals for neural information analysis. SSVEP
signal collected from the scalp can contains various artifacts
such as electrical activities related to the eye and muscles,
so pre-processing of SSVEP signal is required before analysis.
Band-pass or high-pass filtering in the time-domain is com-
monly used for SSVEP signal pre-processing. Because the fre-
quency is the most important feature of SSVEP signal, in this
work we developed a frequency-domain filter method for
SSVEP.
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In this method, the time-domain signal is expanded into
multi-dimensional signal by EMD, which allows the subse-
quent frequency domain filtering of signal by image filtering.
EMD decomposes the signal into several modal functions and
one residual component, which facilitates the removal of arti-
facts in the signal at different scales. Comparison of the wave-
forms of multi-dimensional signal before and after 2-D FFT
filtering shows that the frequency-domain filter can remove the
low-frequency interference component from each order modal
function. Since the low-order intrinsic mode function mainly
includes signal low frequency components, the waveform of
the low-order intrinsic mode function becomes smoother after
frequency-domain filtering. Comparison of the waveforms of
the original, time-domain, and frequency-domain filtered sig-
nals allows the calculation of the variance of the three signals.
As observed, there are large fluctuations in the original signals
that deviate from the baseline and have a large signal variance.
This unstable distribution of signals is called trend term or
baseline drift, and the presence of this trend term will seriously
limit the accuracy of signal analysis. Time-domain filtering
effectively removes the trend term, but the removal effect is
weaker than that achieved by the frequency-domain filtering
method. The experimental results show that the frequency
filtered signal exhibits the smallest variance, so that after
processing, the waveform is more uniformly distributed along
the baseline. EMD can obtain the low-frequency component
representing the signal trend term and frequency-domain filter
can directly filter this trend term, thus the proposed frequency
domain filtering method exhibits improved trend term removal
effect. Comparison of the spectral results of the original
signals, time-domain filtered signals, and frequency-domain
filtered signals revealed a higher low-frequency interference
component amplitude in the original signals than the amplitude
at the stimulus frequency, and application of the frequency-
domain filtering method provides an improved low-frequency
interference component suppression effect.

Unlike the digital filter used in time-domain filtering, this
proposed frequency domain filtering method requires the pass-
band radius of the filter to determine the filtering range, as the
passband radius does not correspond to the filtering frequency.
Therefore, it is necessary to analyze the filtering performances
for different passband radius values to select the appropriate
passband radius. To do this, the power spectra of signals under
different passband radius must be analyzed. The passband
radius is set to remove low-frequency interference from the
signal and to avoid filtering out the effective component of
the signal. Here, the appropriate passband radius range was
determined to be 10 - 20. Next, the SSVEP feature recognition
accuracy was calculated for different passband radius, and
the results showed that most subjects obtained optimized
recognition performance at a passband radius of 10. We also
analyzed the effect of frequency-domain filtering method on
the performance of SSVEP feature recognition with different
stimulus durations. The experimental results showed that the
frequency-domain filtering method significantly improved the
recognition accuracy of CCA, FBCCA and TRCA methods.
Together, the experimental results indicate that the use of
the frequency-domain filtering method in the pre-processing

stage can facilitate the practical application of the SSVEP-
BCI system. It is worth pointing out that the method proposed
in this study has limitations, the frequency domain filter we
designed cannot directly set the filter frequency, and the filter
frequency needs to be determined by setting the passband
radius.

V. CONCLUSION

Considering that the main feature of SSVEP signal
is frequency, we proposed a frequency-domain filtering
method using EMD and 2-D Fourier transform filtering. The
performance of time-domain filtering and frequency filter-
ing methods were compared, and the results showed that
frequency-domain filtering can effectively remove the trend
term in the signal and suppress low-frequency interference
components. By analyzing the recognition accuracy of the
frequency-domain filter for different passband radius values,
the optimal passband radius for frequency-domain filter can be
determined. Tests using data from public datasets show that the
frequency-domain filtering method can significantly improve
the recognition accuracy of CCA, FBCCA, and TRCA meth-
ods, demonstrating that frequency-domain filtering may be an
appropriate pre-processing method for SSVEP signals.

REFERENCES

[1] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech synthesis
from neural decoding of spoken sentences,” Nature, vol. 568, no. 7753,
pp. 493–498, Apr. 2019.

[2] C. Heelan et al., “Decoding speech from spike-based neural popula-
tion recordings in secondary auditory cortex of non-human primates,”
Commun. Biol., vol. 2, no. 1, p. 466, Dec. 2019.

[3] J. Kubanek, J. Brown, P. Ye, K. B. Pauly, T. Moore, and W. Newsome,
“Remote, brain region–specific control of choice behavior with ultra-
sonic waves,” Sci. Adv., vol. 6, no. 21, May 2020, Art. no. eaaz4193.

[4] H. A. Lamti, M. M. Ben Khelifa, and V. Hugel, “Mental fatigue level
detection based on event related and visual evoked potentials features
fusion in virtual indoor environment,” Cogn. Neurodyn., vol. 13, no. 3,
pp. 271–285, Jun. 2019.

[5] A. Spiegel, J. Mentch, A. J. Haskins, and C. E. Robertson, “Slower
binocular rivalry in the autistic brain,” Current Biol., vol. 29, no. 17,
pp. 2948–2953, Sep. 2019.

[6] W. Yan, G. Xu, J. Xie, M. Li, and Z. Dan, “Four novel motion paradigms
based on steady-state motion visual evoked potential,” IEEE Trans.
Biomed. Eng., vol. 65, no. 8, pp. 1696–1704, Aug. 2018.

[7] M. J. Wieser, V. Miskovic, and A. Keil, “Steady-state visual evoked
potentials as a research tool in social affective neuroscience,” Psy-
chophysiology, vol. 53, no. 12, pp. 1763–1775, Dec. 2016.

[8] W. Yan et al., “Enhancing detection of steady-state visual evoked
potentials using channel ensemble method,” J. Neural Eng., vol. 18,
no. 4, Aug. 2021, Art. no. 046008.

[9] W. Yan, C. Du, Y. Wu, X. Zheng, and G. Xu, “SSVEP-EEG denoising
via image filtering methods,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 29, pp. 1634–1643, 2021.

[10] W. Yan, G. Xu, Y. Du, and X. Chen, “SSVEP-EEG feature enhancement
method using an image sharpening filter,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 30, pp. 115–123, 2022.

[11] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based
on canonical correlation analysis for SSVEP-based BCIS,” IEEE Trans.
Biomed. Eng., vol. 54, no. 6, pp. 1172–1176, Jun. 2007.

[12] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter bank canon-
ical correlation analysis for implementing a high-speed SSVEP-based
brain–computer interface,” J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046008.

[13] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, and S. Gao, “High-
speed spelling with a noninvasive brain–computer interface,” Proc. Nat.
Acad. Sci. USA, vol. 112, no. 44, pp. E6058–E6067, Nov. 2015.



YAN et al.: FREQUENCY DOMAIN FILTERING METHOD FOR SSVEP-EEG PREPROCESSING 2089

[14] M. Nakanishi, Y. Wang, X. Chen, Y. Wang, X. Gao, and T.-P. Jung,
“Enhancing detection of SSVEPs for a high-speed brain speller using
task-related component analysis,” IEEE Trans. Biomed. Eng., vol. 65,
no. 1, pp. 104–112, Jan. 2018.

[15] E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli,
and Y. Hamam, “Online SSVEP-based BCI using Riemannian geome-
try,” Neurocomputing, vol. 191, pp. 55–68, May 2016.

[16] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multi-class
brain–computer interface classification by Riemannian geometry,” IEEE
Trans. Biomed. Eng., vol. 59, no. 4, pp. 920–928, Apr. 2012.

[17] L. Mayaud et al., “Brain-computer interface for the communication
of acute patients: A feasibility study and a randomized controlled
trial comparing performance with healthy participants and a traditional
assistive device,” Brain-Comput. Interfaces, vol. 3, no. 4, pp. 197–215,
Dec. 2016.

[18] B. A. S. Hasan and J. Q. Gan, “Hangman BCI: An unsupervised adaptive
self-paced brain–computer interface for playing games,” Comput. Biol.
Med., vol. 42, no. 5, pp. 598–606, May 2012.

[19] T. Zeyl, E. Yin, M. Keightley, and T. Chau, “Partially supervised P300
speller adaptation for eventual stimulus timing optimization: Target
confidence is superior to error-related potential score as an uncertain
label,” J. Neural Eng., vol. 13, no. 2, Apr. 2016, Art. no. 026008.

[20] C. Vidaurre, A. Schlögl, R. Cabeza, R. Scherer, and G. Pfurtscheller,
“Study of on-line adaptive discriminant analysis for EEG-based brain
computer interfaces,” IEEE Trans. Biomed. Eng., vol. 54, no. 3,
pp. 550–556, Mar. 2007.

[21] P. Yuan, X. Chen, Y. Wang, X. Gao, and S. Gao, “Enhancing per-
formances of SSVEP-based brain–computer interfaces via exploiting
inter-subject information,” J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046006.

[22] K.-J. Chiang, C.-S. Wei, M. Nakanishi, and T.-P. Jung, “Boosting
template-based SSVEP decoding by cross-domain transfer learning,”
J. Neural Eng., vol. 18, no. 1, Feb. 2021, Art. no. 016002.

[23] C. M. Wong et al., “Inter- and intra-subject transfer reduces calibration
effort for high-speed SSVEP-based BCIs,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 28, no. 10, pp. 2123–2135, Oct. 2020.

[24] C. M. Wong et al., “Transferring subject-specific knowledge across
stimulus frequencies in SSVEP-based BCIs,” IEEE Trans. Autom. Sci.
Eng., vol. 18, no. 2, pp. 552–563, Apr. 2021.

[25] W. Yan, Y. Wu, C. Du, and G. Xu, “Cross-subject spatial filter transfer
method for SSVEP-EEG feature recognition,” J. Neural Eng., vol. 19,
no. 3, Jun. 2022, Art. no. 036008.

[26] W. Yan, Y. Wu, C. Du, and G. Xu, “An improved cross-subject spatial
filter transfer method for SSVEP-based BCI,” J. Neural Eng., vol. 19,
no. 4, Aug. 2022, Art. no. 046028.

[27] N.-S. Kwak, K.-R. Müller, and S.-W. Lee, “A convolutional neural
network for steady state visual evoked potential classification under
ambulatory environment,” PLoS ONE, vol. 12, no. 2, Feb. 2017,
Art. no. e0172578.

[28] Y. R. Tabar and U. Halici, “A novel deep learning approach for
classification of EEG motor imagery signals,” J. Neural Eng., vol. 14,
no. 1, Feb. 2017, Art. no. 016003.

[29] H. Cecotti and A. Graser, “Convolutional neural networks for
P300 detection with application to brain-computer interfaces,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 433–445,
Mar. 2011.

[30] N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for
motor imagery classification based on restricted Boltzmann machines,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 566–576,
Jun. 2017.

[31] S. Pouryazdian and A. Erfanian, “Detection of steady-state visual evoked
potentials for brain-computer interfaces using PCA and high-order
statistics,” in Proc. World Congr. Med. Phys. Biomed. Eng., Sep. 2009,
pp. 480–483.

[32] Y. Wang, Z. Zhang, X. Gao, and S. Gao, “Lead selection for SSVEP-
based brain-computer interface,” in Proc. 26th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., vol. 26, Sep. 2004, pp. 4507–4510.

[33] N. Mammone, F. La Foresta, and F. C. Morabito, “Automatic artifact
rejection from multichannel scalp EEG by wavelet ICA,” IEEE Sen-
sors J., vol. 12, no. 3, pp. 533–542, Mar. 2012.
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