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MS-HNN: Multi-Scale Hierarchical Neural
Network With Squeeze and Excitation

Block for Neonatal Sleep Staging
Using a Single-Channel EEG

Hangyu Zhu , Laishuan Wang, Ning Shen, Yonglin Wu , Shu Feng,
Yan Xu, Chen Chen , and Wei Chen , Senior Member, IEEE

Abstract— Most existing neonatal sleep staging appro-
aches applied multiple EEG channels to obtain good perfor-
mance. However, it potentially increased the computational
complexity and led to an increased risk of skin disruption
to neonates during data acquisition. In this paper, a multi-
scale hierarchical neural network (MS-HNN) with a squeeze
and excitation (SE) block for neonatal sleep staging is
presented in this study on the basis of a single EEG
channel. MS-HNN composes of multi-scale convolutional
neural network (MSCNN), temporal information learning
(TIL) module, and squeeze and excitation (SE) block.
MSCNN can extract features from different scales and
frequencies, and TIL module can acquire the transition
information among adjacent stages. In addition, for these
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extracted features, SE block can selectively concentrate
on informative features and weaken redundant features
for achieving better performance. The proposed approach
was validated on a clinical dataset involving 64 neonates
from the Children’s Hospital of Fudan University (CHFU).
The proposed network achieves an accuracy of 75.4% and
76.5% for three-class automatic neonatal sleep staging
with the single-EEG channel and the eight-EEG channels,
respectively. The experimental results show that the pro-
posed method can maintain good performance by making
full use of the information in the single channel while reduc-
ing the channels to control the computational overhead.

Index Terms— Neural network, neonatal sleep staging,
squeeze and excitation block, single channel.

I. INTRODUCTION

SLEEP, as the predominant activity for neonates, con-
tributes to a crucial role in brain maturation, cognitive and

psychical development [1], [2], [3], [4]. Neonates exhibit ultra-
dian rhythms of intermittent repetition in sleeping and waking
within 24 hours, and gradually shift to circadian rhythms
with a 24-h sleep-wake cycle [5], [6]. Early manifestations of
sleep-wake cycling can be observed in electroencephalography
(EEG) around 27 weeks postmenstrual age (PMA), and then
developed into distinct electrophysiological patterns, which
can be observed on the signals recorded by video EEG or
polysomnography (PSG) [7]. After 28 weeks PMA, neonatal
sleep can generally be divided into active sleep (AS), quiet
sleep (QS), and wake stage [8], [9], [10]. Meanwhile, at the
onset of term-age, normally after 36 weeks PMA, AS and QS
can be further divided into AS I, AS II, and QS I, QS II,
respectively. Among these sleep stages, the wake stage in
neonatal sleep can be equivalent to the wake stage in adult
sleep, QS can be equivalent to the non-rapid eye movement
(NREM) sleep stage, and AS can be equivalent to the rapid
eye movement (REM) sleep stage [11]. Differentiating the
neonatal sleep stages can provide a quantitative evaluation of
sleep and assist the assessment of neurological and brain devel-
opment. However, sleep stage scoring is usually performed by
experienced physicians via observing the characteristics of the
EEG signals, which is very tedious and laborious. To relieve
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the burdens of manual sleep scoring and to provide a more
objective assessment of sleep stages, automatic sleep staging
methods are proposed.

The existing automatic sleep staging methods can be
divided into traditional machine learning-based methods
and deep learning-based methods. The traditional machine
learning-based methods mainly consist of hand-crafted fea-
ture extraction and sleep staging classification using tradi-
tional machine learning models such as multi-layer perception
machine (MLP) [12], support vector machine (SVM) [13],
[14], hidden Markov models (HMM), Gaussian mixture model
(GMM) [15], cluster-based adaptive method [16], and etc. Tra-
ditional machine learning-based methods are highly dependent
on the hand-crafted features, however, the extraction of the fea-
tures is subjective, which may limit sleep staging performance.
In contrast, deep learning-based methods can automatically
extract features through networks without medical knowledge,
providing a more convenient and accurate method to stage
the sleep of neonates. In recent years, Ansari et al. proposed
an 18-layer convolutional neural network (CNN) for QS
stage detection using multi-channel neonate EEG signals [17].
Afterwards, Ansari et al. optimized the network structure by
changing the parameters of the convolutional layers and the
depth of the network to better extract the features in the
signal [18]. In 2021, Ansari et al. proposed a CNN network
combined with Sinc block, which can slightly expand the
feature scale to enhance the features to detect QS sleep stage
with limited EEG channels [19]. Ghimatgar et al. applied a
modified graph clustering ant colony optimization (MGCACO)
to extract the feature, and then used a bidirectional-long
short term memory (Bi-LSTM) combined with HMM to
perform sleep staging using multi-channel EEG signals [20].
Fraiwan et al. used the Bi-LSTM to extract the temporal
information in the sleeping signals and stage the sleep of full-
term neonates [21].

However, most of existing studies have used multiple
channels of EEG signals as the input of network. Although
multi-channel EEG signals can improve the performance of the
model, additional electrodes may lead to an increased potential
risk of skin disruption and discomfort to neonates during
acquisition. Moreover, multiple channels of the same modality
of signal can result in redundancy of features. The similar
features can increase the computational overhead of the model
and affect the performance of the model. Additionally, the
existing studies focus more on the detection of QS stage and
two-class task. For neonates, wake, AS and QS stages are all
essential for the growth and development of the neonate. The
QS stage should not be separated from the other two stages.
Sleep is a continuous process, with a temporal relationship
between sleep stages. A whole analysis of sleep can also yield
more informative information than only detecting QS stages.

To address the aforementioned issues, a multi-scale hier-
archical neural network architecture combined with squeeze
and excitation (SE) block is proposed. The network consists
of multi-scale CNN (MSCNN), SE block, and temporal infor-
mation learning (TIL) module. MSCNN has two branches
with different size convolution kernels to extract features at
different scales. The TIL module, which is used to learn the

temporal information from the extracted features, composes
of a bidirectional gated recurrent unit (Bi-GRU) [22] with
residual structure [23]. The SE block [24] is used to reduce the
impact of the redundant features by mapping transformation.
It can enhance the informative features and weaken less
redundant features. We conducted the experiment on a clinical
dataset collected in the Children’s Hospital of Fudan Univer-
sity (CHFU). The results indicated that the proposed method
maintains good performance in the case of limited channels.
The main contribution of this paper can be summarized below:

1. A novel automatic neonatal sleep staging model structure
including MSCNN, SE block, and TIL is proposed. A multi-
scale feature architecture is presented to adequately extract
more informative features at different scales and frequencies
from the signal. Meanwhile, temporal information among
adjacent stages has been fully considered through a sequence
processing model in both forward and backward directions.

2. SE blocks that can selectively concentrate on infor-
mative features and weaken less informative features are
fused into the hierarchical neural network architecture. It can
implicitly reduce feature redundancy and further enhance the
performance.

3. To minimize skin disruption and discomfort to neonates
during signal acquisition as well as reduce the computational
overhead during signal processing, an optimal limited EEG
channel is selected by comparing all available EEG channels.
In addition, comparisons of performance with one-channel
EEG, two-channel EEG and eight-channel EEG are fully
investigated to further verify the reliability of the proposed
approach.

The remainder of this paper is organized as follows.
Section II introduces the method for sleep staging. The
specific experiment process and results of the sleep staging
are described in Section III. The results are discussed in
Section IV. Finally, the conclusion of this paper is given
in Section V.

II. METHODS

In this paper, we propose a multi-scale hierarchical neural
network (MS-HNN) combined with SE block for neonatal
sleep staging. It composes of MSCNN, TIL module, and SE
block. The architecture of the network is shown in Fig.1. The
following subsections describe the detailed functions of each
module in the network architecture.

A. Multi-Scale CNN
The feature extraction capability of CNN has been proved

in many studies [25], [26]. Several sleep staging methods for
neonates have attempted to extract features using a single-scale
CNN network [17], [18]. This demonstrates the feasibility of
CNN for neonatal sleep feature extraction. However, a single-
scale CNN is only able to extract limited feature information.
Inspired by some existing studies [27], [28], [29], a CNN
with two different scale branches is used to extract adequate
features from different frequencies, as shown in Fig.2. The
two branches of CNN extract information on different time
and frequency scales in the signal, respectively. Specifically,
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Fig. 1. The overall framework of MS-HNN. The preprocessed EEG signal is first processed by MSCNN at multiple scales for feature extraction.
The extracted features are reinforced by SE blocks and then sent to the TIL module for temporal feature learning. The predicted sleep stage is
finally output by softmax.

Fig. 2. The structure of MSCNN. MSCNN consists of two scales of
CNN. The two scales extract features from different time and frequency
spans to make full use of the information in the EEG signals.

the coarse-scale CNN branch has a convolutional kernel size
of 640 and intercepts the signal with a window length of
5 seconds, extracting low frequency features down to 0.2 Hz.
The fine-scale CNN branch has a convolutional kernel size
of 64 and intercepts the signal with a window length of
0.5 seconds, extracting features at high frequencies down
to 2 Hz. The features of the two branches are then reshaped
and concatenated to finally obtain more condensed features.
MSCNN expands the limited EEG channels using convolution
to obtain multiple subspace feature channels, while effectively
utilizing the feature information in the limited EEG channels.
Different feature channels contain different scales of sleep
information, which provides the basis for feature selection
and accurate sleep staging. MSCNN, as the feature extraction
module of MS-HNN, sets the tone of MS-HNN performance.
Adequate and effective features allow the MS-HNN to perform
automatic neonatal sleep staging more accurately. In addition,
the other modules of MS-HNN are based on the features
extracted by MSCNN for feature optimization and feature

Fig. 3. The structure of SE block.The SE block mainly consists of an
average pooling layer and two fully connected layers. It reassigns feature
weights through these linear mappings.

learning. In general, MSCNN is the foundation of MS-HNN
for accurate sleep staging.

B. Squeeze and Excitation Block
The SE block aims to reassign channel feature weights

and prevent the vanishing of gradients as the network lay-
ers deepen [24]. It calculates the interrelationships between
channels and corrects the distribution of weights between
channels. SE block is used to optimize the extracted feature
weights in this paper. The structure of the SE block is shown
in Fig.3. We assume the input of the SE block is X ∈

RH×W×C , which is the output of one branch of the MSCNN.
Then the global pooling is used to reduce the dimension
of features, changing the input X to X ′

∈ R1×1×C . Two
fully connected (FC) layers and one ReLU layer are applied
to parameterize the pass selection mechanism, enhancing
the informative features and weakening the less informative
features. The feature weights are then activated and selected
by the sigmoid layer. Finally, the optimized feature weights
are multiplied by the initial features to obtain the optimized
features. The process of SE block can be described as the
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following equation:

X ′
= Avg Pooling(X) ∈ R1×1×C (1)

where the Avg Pooling(·) is the average global pooling. Then
the compressed features will be reassigned weights.

S = σ(F2(ReLU (F1(X ′)))) ∈ R1×1×C (2)

where the F1(·) means the first FC layer, the F2(·) means
the second FC layer, the ReLU (·) means the ReLU acti-
vation function and the σ(·) means the sigmoid activation
function. Finally, the feature weights are reassigned by matrix
multiplication:

X̂ = S1,1,k · X i, j,k (3)

where i = 1, 2 . . . , H , j = 1, 2 . . . , W and k = 1, 2 . . . , C .
The SE block obtains the weight information of each layer
feature by pooling and nonlinear mapping, and re-optimizes
the feature weights based on the weight information. This can
be regarded as an attention selection mechanism on the feature
dimension. Thus, the SE block can enhance informational
characteristics.

C. Temporal Information Learning (TIL) Module
Sleep is a continuous life activity [30], [31]. This means that

behaviors during sleep are related rather than independent of
each other. Therefore, the temporal information during sleep
is useful for sleep scoring, which has been proved in many
studies [32], [33]. In this paper, TIL module is proposed for
temporal information extraction. Its structure is shown in the
Fig.1. The TIL module consists of Bi-GRU with residual struc-
ture. Bi-GRU is a type of recurrent neural network (RNN),
which has a great ability for temporal information learning.
Considering that RNN runs serially, the residual structure is
added to accelerate the learning process of the model [23] as
well as prevent gradient loss. Assuming that the input of TIL
module is F , the output of GRU network and TIL module can
be described as follow.

H = G RU (F) (4)
Y = H + F (5)

where G RU (·) is GRU network, H is the output of the GRU
network, and Y is the final probability of the sleep stage.
The specific parameters and output sizes for each layer of
the network are shown in Table I.

D. Evaluation Metrics
The Leave One Subject Out (LOSO) approach is performed

to verify the performance of the proposed method. Accuracy
(ACC), F1 score, and Kappa coefficient are adopted to evaluate
the experimental results. These metrics are commonly used to
evaluate multi-classification problems [25], [34]. Given true
positive (T Pi ), true negative (T Ni ), false positive (F Pi ) and
false negative (F Ni ) for i-th class, along with a total sample
size of N , then these parameters can be calculated according
to the following equation.

ACC =

∑M
i T P i

N
(6)

TABLE I
THE LAYERS OF THE PROPOSED NETWORK

F1 =
1
M

M∑
i

2 × Precisioni × Recall i

Precisioni + Recall i
(7)

K appa =
ACC − Pe

1 − Pe
(8)

Precisioni =
T Pi

T Pi + F Pi
(9)

Recalli =
T Pi

T Pi + F Ni
(10)

Pe =

M∑
i

(T P i + T F i ) × (T P i + F P i )

N 2 (11)

where M is the number of the class of sleep stages. Mean-
while, we calculate the precision for each sleep stage to
evaluate the results. We trained the model under the Tensor-
Flow 3.6 environment. The optimizer was Adam. The loss
function was a weighted cross-entropy function, which can
alleviate imbalance on sleep data and achieve a favorable
performance [34].
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TABLE II
THE DETAILS OF THE CHFU DATASET. INFORMATION ON THE GENDER,

GESTATION AGE, SLEEP-WAKE TIME, AND REASON

FOR INCLUSION IN THIS STUDY

III. EXPERIMENT AND RESULTS

In this paper, the CHFU dataset is used to evaluate the
performance of the proposed model. Firstly, the impact of SE
block placement on neonatal sleep staging results is inves-
tigated. Secondly, we perform sleep staging using different
numbers of channels. The results of sleep staging with limited
channels are compared with the results with multiple channels.
In addition, we compare the effect of different acquisition
positions of channels on sleep staging results in the single-
channel case. Finally, we compare the proposed method with
some baselines and state-of-art methods. In the following
subsections, the experiment details and specific results are
depicted.

A. Dataset
The CHFU dataset consists of sleep recordings of

64 neonates from the Children’s Hospital of Fudan Univer-
sity during 2017-2018. The research ethics committee of the
Children’s Hospital of Fudan University approved this study
(approval No. (2017) 89). These neonates range in PMA
from 36 to 43 weeks. And they suffer from different types
of diseases such as bloating, hyperbilirubinemia, jaundice,
pneumonia, and etc. The recordings include channels F3,
F4, C3, C4, P3, P4, T3, T4, and the reference channel Cz.
In addition, electrooculography (EOG) signals, electromyogra-
phy (EMG) signals, and electrocardiograph (ECG) signals are
also recorded. These signals are recorded by a Nicolet device
at a sampling rate of 500 Hz. Based on these physiological
signals, professional doctors classify the sleep of neonates into
three sleep stages: wakefulness, QS, and AS. All details about
the dataset are shown in Table II.

B. Data Preparation
In this paper, a 50Hz notch filter and a 0.3-35Hz band-pass

filter are applied to remove the interference signal. Then the
signals are downsampled to 128Hz, normalized to zero mean
and standardized to standard deviation of one to minimize
individual variability. Afterwards, we divide the signal into
30-s epochs [9], [11], [35]. To verify the performance of the
proposed method in the limited channel case, one-channel
signal (P4), two-channel signal (P3, P4), and eight-channel

Fig. 4. SE blocks are placed at different positions to explore the optimal
feature optimization position. (a) SE blocks are placed after each CNN
branch. (b) The SE block is placed after CNN features of two scales are
concatenated.

signal (F3, F4, C3, C4, P3, P4, T3, T4) are used as input
signals for model training and validation, respectively. The
selection of channels is based on previous research as well as
experience [9], [19]. Moreover, we also explore the effect of
electrode position of the one-channel signal on sleep staging
results.

C. The Effect of SE Block Placement
To explore a more optimal location for feature optimization,

the SE block is placed after each CNN branch and after
the feature concatenation, respectively. The specific location
is shown in Fig.4. These two placement methods present
the optimization at each scale and the optimization after
the concatenation. Table III shows the sleep staging results
without SE block (SE_non), with SE block after each CNN
branch (SE_each), and with SE block after feature concate-
nation (SE_con) for the one-channel, two-channel and eight-
channel cases.

The addition of SE blocks has definite improvement on
the overall sleep staging results in both placement methods,
compared with the results without SE block. Additionally,
the SE block placed after each branch have the best sleep
staging performance. Specifically, in the one-channel case,
adding the SE block after each branch improves the sleep
staging accuracy from 73.6% to 75.4%, F1 score from 0.737 to
0.758, and Kappa from 0.705 to 0.728. In the two-channel
case, adding the SE block after each branch improves the sleep
staging accuracy from 74.4% to 75.9%, F1 score from 0.745 to
0.760 and Kappa from 0.715 to 0.731. In the eight-channel
case, adding the SE block after each branch improves the
sleep staging accuracy from 75.7% to 76.5%, F1 score from
0.757 to 0.763 and Kappa from 0.728 to 0.735. Moreover,
adding the SE block after each branch results in significant
improvement in the classification accuracy for each sleep
stage. However, when the SE block is added after the feature
concatenation, the accuracy improvement for each sleep stage
is unstable. This phenomenon may be related to the way in
which the features are concatenated. The concatenation of
features is directly downscaled through the fully concatenated
layer. After two different scales of features are concatenated,
the interdependence information of features becomes more
complex. This increases the difficulty of feature analysis by
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TABLE III
SLEEP STAGING RESULTS WITHOUT SE BLOCK (SE_NON), WITH SE BLOCK AFTER EACH CNN BRANCH (SE_EACH), AND WITH SE BLOCK

AFTER FEATURE CONCATENATION (SE_CON) FOR THE ONE-CHANNEL, TWO-CHANNEL AND EIGHT-CHANNEL CASES

Fig. 5. Results of automatic sleep staging using different channels in
the one-channel case (F3, F4, C3, C4, P3, P4, T3, T4), where the left
side indicates the electrode located on the left side of the head (F3, C3,
P3, T3) and the right side indicates the electrode located on the right
side of the head (F4, C4, P4, T4).

the SE block, leading to a decrease in the effectiveness of
feature optimization. Therefore, the SE block can well opti-
mize the weight distribution of features. Additionally, a better
placement for the SE block is after each branch, where the SE
block can better capture the interdependence between features.

D. The Effect of Channel Location in Limited Channel
Cases

In this experiment, the effect of different EEG channel
locations on the results is also explored in the case of
one-channel EEG signal. EEG signals from all eight channels
(F3, F4, C3, C4, P3, P4, T3, T4) are fed separately into
the network which has SE blocks after each CNN branch
(SE_each) for automatic sleep staging. Fig.5 shows the results
of different EEG channels on automatic sleep staging. The
effect of different channels on the results is not significant,
which also proves the robustness of our proposed method.
Consistent with previous studies [9], sleep staging using EEG
channels closer to the center (such as P, C, and F) obtained
more accurate results compared to the farther channel like T.

TABLE IV
METRICS WITH DIFFERENT NUMBER OF CHANNELS

Among the three channels P, F, C near the central location
of the brain, the P channel achieved the highest sleep staging
performance. As proved in many studies, the maturity of the
temporo-parietal junction can be used as one of the criteria to
assess the degree of development of the neonatal brain [36].
The temporo-parietal junction has an important growth signifi-
cance in the brain and contains more information. The location
of the P-channel acquisition is close to the temporo-parietal
junction, and presumably, the P-channel may contain more
information for neonatal sleep staging. Meanwhile, using the
right EEG channel (F4, C4, P4, T4) acquired better results
than the left EEG channel (F3, C3, P3, T3) when the distance
to the center is similar. Although the biological mechanisms
underlying early neonatal brain development are currently
unclear, the complex microstructural changes, such as myeli-
nation, increases in dendritic arborization, axonal elongation
and thickening, synaptogenesis, etc., are key processes in brain
development [37], [38]. One study using tomographic scans
of blood flow in the neonatal brain found a right-hemisphere
trend from 1 to 3 years of age, with the trend shifting to the left
hemisphere after 3 years of age [39]. This also confirms that
electrodes in the right hemisphere have a better sleep staging
effect.

E. The Effect of Channel Numbers
The number of channels affects the running speed of the

model, the number of features and the sleep staging results,
etc. Table IV shows the comparison of metrics with a different
number of channels, where the SE block is placed after each
CNN branch. The direct effect of the reduced number of
channels is the running time of the model. Fewer channels lead
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to faster running speed and less model complexity. Moreover,
we output the features extracted by MSCNN and SE block for
different channel cases. Taking into account that the extracted
features in the eight-channel case are the most comprehensive,
the features extracted in the single-channel and two-channel
cases are calculated separately with the feature extracted
in eight-channel case for mutual information to explore the
reduction of information. The results demonstrate that the
proposed feature extraction method is able to extract sufficient
features to maintain good sleep staging performance despite
the reduction of channels.

Furthermore, the sleep staging results for the one-channel,
two-channel and eight-channel signal cases are compared to
evaluate whether the proposed method is able to perform
sleep staging well with limited channels. Table III shows the
specific results. As the number of signal channels fed into
the network increases, the accuracy of sleep staging results
improves. Notably, when the number of input signal channels
is one, the sleep staging results after using the SE block
are only slightly worse than the results for the eight-channel
signal without the SE block. When the number of input signal
channels is two, the sleep staging results after using the SE
block are even better than the results of the eight-channel
signal without the SE block. In addition, as the number of
signal channels increases, the enhancement effect of the SE
block becomes less significant. The SE block after feature
concatenation and SE block after each CNN branch have
nearly identical enhancements to the results. These are because
when the number of signal channels is increased, the extracted
features will also increase. However, the parameters and output
shape of the network are not changed with the number of
signal channels. When the shape of the output features is fixed,
the more features are extracted, the more valid features and
the less redundant features will be in the final output. There-
fore, as the number of the input signal channels increases,
fewer and fewer redundant features can be optimized, and
the enhancement effect of SE blocks becomes weaker and
weaker. The results indicate that the SE block can optimize the
features and improve the sleep staging performance. Moreover,
the enhancement is more significant in the case of limited
channels.

F. Baseline and State-of-Art Methods Comparison
In this experiment, we compare our proposed method with

several state-of-the-art and baseline methods. The details of
these methods are presented as follows.

• Conv-2d [17]: Conv-2d [17] is an 18-layer CNN that
performs downscaling and feature extraction of the signal by
deep convolution and pooling.

• Conv-2d [18]: Conv-2d [18] is optimized on the basis of
Conv-2d [17]. It optimizes part that assigns weights to the
extracted features.

• DeepSleepNet [26]: DeepSleepNet [26] is a network
architecture for adult sleep staging that has achieved good
results in several public sleep datasets.

• AttnSleep [34]: AttenSleep [34] is proposed for adult
sleep staging, which consists of CNN and multi-head attention

TABLE V
RESULTS COMPARISON OF STATE-OF-ART METHODS,

BASELINES, AND THE PROPOSED METHODS

(MHA). Instead of applying RNN, MHA is presented to
learn the temporal information between sleep stages, which
greatly improves the efficiency of the model. In this paper,
DeepSleepNet and AttnSleep are used to explore the results
of direct transfer of adult sleep models to neonatal sleep data.

• THNN [28]: THNN is composed of CNN and RNN.
Firstly, the feature extraction part of the network is trained.
Secondly, the temporal learning of the features is attached and
the parameters of the feature extraction part are also fine-tuned
to achieve optimal performance.

• MSCNN (baseline): MSCNN is the multi-scale CNN,
which is a module applied in this paper. The MSCNN is
trained separately to explore the effect of TIL module on
the enhancement of the sleep staging results. The fully con-
nected layer replaces the TIL module to output the sleep
stages.

For all methods, we uniformly use one channel EEG signal
(P4) as input, and the output results are three sleep stages.
Considering that different methods might have early stop signs,
we set the iteration to 150, which is consistent with our
proposed method. In addition, each method is equally cross-
validated with 10 folds. Table V shows the detailed results of
all methods. The proposed method outperforms the state-of-
the-art methods. Compared with [17] and [18], the neonatal
dataset used in this experiment are several times larger than
those used in these studies. When the above two networks
are validated using the data in this experiment, there are
problems such as underfitting and inability to fully capture
the features. For the adult sleep model DeepSleepNet [26]
and AttnSleep [34], due to the different sleep characteristics
and individual differences between neonates and adults, the
adult sleeping model suffers from convergence and underfitting
during training. Therefore, the performance of transferring the
adult sleep model directly to the neonate sleep data could be
greatly reduced, and needs to be adjusted according to the
characteristics of the neonate sleep. Additionally, the classi-
fication accuracy improvement is obvious with the addition
of the TIL module comparing the MSCNN and MS-HNN.
This indicates that the temporal information in neonatal sleep
data is important. Information on transitions between sleep
stages can effectively improve the results of sleep staging.
Generally, a good neonatal sleep model requires a deeper
network architecture compared with adult sleeping model, and
need to take into account different scale features and temporal
information.
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Fig. 6. The feature distribution after the features are concatenated with
different SE block placement positions, the brighter the color means the
higher the weight. (a) The SE block is placed after each CNN branch.
(b) SE block is placed after feature concatenation.

IV. DISCUSSION

In this work, a multi-scale hierarchical neural network for
automatic neonatal sleep staging is proposed. This network
fully extracts the sleep features in a single-EEG channel
from multiple scales and adopts SE block to reduce redun-
dant features and enhance the network training efficiency.
In addition, the network takes into account the temporal
information and transition information among adjacent stages,
which is overlooked in most existing studies [13], [14], [17],
[18]. Experimental results exhibit that the proposed method
outperforms the baseline and state-of-art methods and can
achieve favorable results even with limited EEG channels.

A. The Placement of SE Block
The impact of SE blocks placement positions on the final

sleep staging results is investigated in this paper. The sleep
staging results of placing the SE block after each CNN
branch outperform the results of placing the SE block after
the features concatenation. For the SE block placed after the
CNN branch, the optimized features are not downscaled. This
means that the SE block has sufficient channels to explore
the interrelationships between features and to perform weight
reassignment. The optimization effect of the SE block will
be more obvious. For the SE blocks placed after feature
concatenation, the optimized features have been concatenated
and downscaled. The redundant features and effective features
are mapped and then mixed together, which leads to the
ineffective feature optimization of the SE block. Fig.6 shows
the distribution of features after the feature concatenation
with different SE block placement positions. After using SE
block for each CNN branch to optimize the features, the
concatenated feature distribution is a bit more concentrated
compared to using SE blocks after the features concatenated.
Similarly, when the number of signal channels increases, the
enhancement of the SE block for sleep staging results becomes
less significant. This is because the number of channels and the
extracted features increases leading to the redundant features
decreasing. Therefore, when the network architecture is fixed,
the sleep staging results with a limited number of signal
channels combined with SE block can be comparable to the
sleep staging results with a multi-signal channel. Alternatively,
changing the layer size of network is possible to make a

TABLE VI
MUTUAL INFORMATION, CHI-SQUARE TEST RESULT AND SLEEP

STAGING CLASSIFICATION ACCURACY BETWEEN

DIFFERENT CHANNEL FEATURE AND LABELS

significant improvement in the sleep staging results with SE
block in the case of multiple signal channels. However, the
training time may also increase, which needs to be taken into
account.

B. Selection of Channels
In this paper, a total of eight monopolar EEG channels

located at F3, F4, C3, C4, T3, T4, P3, and P4 sites accord-
ing to the International 10-20 System were attached. The
experimental protocol of the electrode placement incorpo-
rates the American Academy of Sleep Medicine (AASM)
manual for infant scoring criteria [10] and clinical demands.
On the basis of these eight channels, the impact of channel
reduction is investigated. Table VI gives the average mutual
information between different channels, the contribution of
different channel features to the classification results, chi-
square test results between different channel features and
classification labels, as well as the automatic sleep staging
accuracy. The average mutual information is the average of
the features of one channel and the features of other channels
calculated by mutual correlation. The contribution of features
to the classification results is obtained by calculating the
correlation coefficient between the features and the results. The
chi-square test of different channel features and classification
labels is a correlation analysis of the features of different
channels with the classification labels. As shown in Table VI,
for a single channel, the P4 channel achieves the highest
average mutual information, chi-square, contribution value,
and accuracy among all the single channels. Thus, P4 can
be considered the optimal channel. Based on the selected
P4 channel, the forward search is applied to search for the
optimal combination of two channels. As shown in Table VI,
the optimal combination of two channels is P4+F4. For the
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case of three or more channels, the optimal channels can
be searched by adding channels in turn to the two-channel
result. To illustrate, by using the forward search method, the
optimal combination of four channels is P4+P3+F3+F4. With
the increase in the number of channels, slight improvements
can be observed in contribution, chi-square test, and sleep
staging accuracy. In addition, other methods can be used for
feature selection and channel selection, such as random forests,
Max-Relevance and Min-Redundancy [40], and so on.

For the number of channels, the experiment results in
Table IV and Table VI show that with the increase of EEG
channel, the sleep staging performance grows slightly. Signals
of the same modality may contain similar information, and
features extracted from the same modality signal would have
redundancy. Thus, comparing the mutual information between
channels can contribute to the selection of the number of
channels with same modality. If the mutual information values
between channels are high, the optimal channel can be used as
input. If the mutual information values between the channels
are low, all these channels can be used as input. Furthermore,
posterior methods such as k-nearest neighbors [41] and ran-
dom forest can be used for channel selection. Generally, the
number of channels requires the calculation of mutual informa-
tion between channels. The comparison of mutual information
can help reduce the redundancy between channel features and
enhance the comprehensiveness of channel features.

Abundant channels can provide more spatial information
and may gain significant performance improvement. For brain-
computer-interfaces applications, normally 256 channels [42]
or up to 512 channels can be recorded. However, for the
long-time sleep monitoring, with the guideline of AASM
manual and without disturbing the natural sleep process,
thereby few channels (normally less than 8 monopolar EEG
channels) were arranged. Especially for neonatal sleep moni-
toring, an excessive number of channels would easily lead to
skin disruption and discomfort to neonates.

C. The Influence of TIL Module
The TIL module can improve the sleep staging accuracy

of the model significantly compared with baseline method.
This suggests that information on the temporal between sleep
stages is essential in the sleep staging of neonates. This is
consistent with the findings in the sleep model for adolescents
and adults [28], [43], [44], [45], [46]. In addition, information
on the transition between sleep stages has been of interest
all the time. Between the AS and QS sleep stages, there is
the indeterminate sleep (IS) stage [9]. The IS stage can be
used to assist in determining the conversion of some difficult
to classify AS and QS sleep stages. Therefore, significant
improvement in the results of automatic neonatal sleep staging
with the addition of the TIL module is reasonable. However,
the TIL module is mainly composed of RNN, which runs
serially and needs long training time. Moreover, as the amount
of data increases, the training time required for TIL increases
dramatically. This is clearly reflected in Table III. When the
number of signal channels is eight, the required training time
is nearly twice as long as when the number of channel signals

is one. The accuracy rate is only 0.9% higher than that of the
one-channel case. This difference in accuracy could be even
smaller if only the QS stage is detected. This can demonstrate
that SE blocks can greatly improve the accuracy of sleep
staging results at the cost of a small amount of complexity and
running time. Additionally, the ratio of time spent on training
MSCNN alone and training MSCNN and TIL is about 1:15.
If the ability to learn temporal information can be added to the
MSCNN by optimizing the segment of the dataset, it may be
possible to discard the TIL module while retaining the ability
of the network architecture to learn temporal information.

D. Limitations and Future Work
Based on the experiments, we need to point out the short-

comings and future directions. Firstly, TIL module may result
in a long training time due to the serial operation mechanism
of RNN network, which may lead to the inefficiency of the
whole model. In the future, the model can be optimized
by discarding the TIL module while preserving the learning
of temporal information to improve the effectiveness of the
model. Alternatively, an efficient temporal learning method
like Transformer [47] can be used instead of RNN. Secondly,
in this paper, we have only explored the three-class problem.
The AS and QS stages can be further divided into ASI, ASII,
QSI and QSII. In the future, a five-class task for neonatal sleep
staging could be involved. Third, some of the modules used in
the paper have been proposed in other fields. In future work,
we will aim to explore more innovative modules and methods
for neonatal sleep. Fourth, in this paper, we mainly focus
on exploring the feasibility and reliability of the proposed
method via only using the EEG signals as the input signal
for automatic sleep staging. Signals such as EOG, EMG,
and ECG were not involved in this paper. However, these
signals can be used in future work for the exploration of
the impact of multiple modality input signals for automatic
neonatal sleep staging. Finally, the deep learning approach is
still a black box and does not show well which features in the
EEG signal respond better to the sleep stage. Interpretability
of deep learning methods remains an important task in future
work.

V. CONCLUSION

In this paper, a novel network structure named MS-HNN is
proposed for automatic sleep staging of neonates with limited
channels. It applies MSCNN to extract signal features from a
single EEG channel, optimizes the features using SE blocks,
and adopts the TIL module to learn the temporal information
among adjacent stages. By incorporating MSCNN, SE blocks,
and TIL, the proposed approach can extract more informative
features involve the temporal information to enhance the
performance. The experimental results show that our proposed
method outperforms the baseline and the existing state-of-
the-art methods. In addition, the proposed method achieves
favorable and comparable results via a single-EEG channel in
comparison with that using eight-EEG channels. With these
encouraging outcomes, the proposed method is expected to
offer a reliable and robust solution for efficient sleep monitor-
ing with limited channels.
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