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Multi-Terrains Assistive Force Parameter
Optimization Method for Soft Exoskeleton
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Abstract— Due to the complexity of terrain in natu-
ral environments, the soft exoskeleton cannot adaptively
adjust parameters to achieve the optimal performance.
To this end, a design for a soft exoskeleton assistive
force parameter optimization method on multi-terrains is
presented in this paper. Firstly, the core control parameters
are determined by analyzing the system’s motion dynamics.
Then, the collected data from inertial measurement unit
(IMU) is transferred to the convolutional neural network
(CNN) to recognize the certain terrain. In the meanwhile, the
control parameters corresponding to the different terrains
are optimized by the Bayesian algorithm. Finally, the opti-
mal assistive force parameters are transferred to the sys-
tem for improving the performance of the soft exoskeleton.
The experiment is conducted on three participants, wherein
the net metabolic rates of the subjects are compared with
and without the assistive force. The final results show that
the metabolic rates of the subjects reduce the average
value of 19.6% on flat ground, 11.6% on walking uphill,
and 12.7% on walking upstairs. The experimental results
confirm the effectiveness of the proposed method.

Index Terms— Bayesian optimization, soft exoskeleton,
multiple terrains recognition, assistive force.

I. INTRODUCTION

THE robotic exoskeleton is a newly developing auxiliary
tool for assistance with human movement. It integrates

the operator with the electromechanical equipment to improve
the walking ability and weight-bearing capacity. This technol-
ogy has broad application prospects in the field of rehabili-
tation training [1]. According to structural differences, lower
limb exoskeletons can be categorized as rigid exoskeletons
and soft exoskeletons. The rigid exoskeleton can provide more
assistive torque, with more powerful machinery that boosts the
wearer’s load-bearing capacity. However, it also tends to have
poor flexibility, and thus limits the bodily activities of the
operator [2]. The soft exoskeleton is constructed with more
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flexible materials, such as Bowden cable. It is more lightweight
and flexible than the rigid exoskeleton and thus has important
research significance and social value [3], [4], [5].

By combining its own mechanical structure, control
system and human-computer interaction, the soft exoskeleton
achieves assistive force for the wearer on the basis of its own
protection and motion intent recognition [6], [7], [8]. In the
past five years, soft exoskeletons have made breakthroughs
in various fields such as the assistive mode, motion intent
recognition and adaptive control algorithm. Ulkir et al. [9].
proposed a data-driven predictive control (DDPC) algorithm.
Their experiment verified that DDPC outperforms the PID
controller in trajectory tracking with different conditions.
Ma et al [10] proposed an underactuated soft exoskeleton
by using a single motor to assist knee extension and ankle
plantarflexion. The experimental results show that the
exoskeleton device is helpful to produce sequential assistive
force at each joint effectively. A new controller based on
parametric optimal iterative learning control (POILC) was
proposed by Chen et al [11]. The controller selected different
auxiliary strategies for different terrains and reduce tracking
errors. Liu et al. [12] proposed a man-machine cooperative
control method based on the analysis of surface Electromyo-
gram(EMG) signals. With the surface EMG signal and joint
angle, regression analysis was used to predict the value of
joint torque. Zhang et al. [13] proposed a control framework
based on model-free reinforcement learning (RL) to optimize
the control parameters. With consideration on this operation,
the exoskeleton provided personalized assistive torque curves
in order to achieve hip assistive force during walking.

The Bayesian Optimization algorithm can search the appro-
priate parameters automatically for obtaining optimal per-
formance through a finite number of trials. It is also often
used in the parameter optimization of exoskeleton robots.
Gordon et al. [14] proposed a method for identifying the
location of an ideal exoskeletal cuff with the human-in-the-
loop optimization process. It used a Bayesian optimization
algorithm to determine the optimal position of the exoskeletal
cuff by measuring the subject’s muscle activity. A sample-
efficient method was proposed to adopt a model-based walking
controller for a lower-limb exoskeleton based on Bayesian
Optimization [15]. The effectiveness of the proposed method
was finally demonstrated experimentally.

The terrain where people walk is often different.
In different terrains, the control parameters should be
matched accordingly. Therefore, in this paper, the Bayesian
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Fig. 1. The soft exoskeleton for hip assistive force and flow diagram
of PID.

optimization algorithm is selected to solve the multi-terrains
adaptive optimization problem of soft exoskeleton. The pro-
posed method has three major contributions as follows:

1) The assistive force parameters are determined by analyz-
ing the system’s motion dynamics. The terrains are recognized
by the CNN model.

2) The assistive force parameters corresponding to the
certain terrain are optimized by the Bayesian algorithm.

3) The optimal assistive force parameters are transferred
to the system for improving the performance of the soft
exoskeleton. The final results show that on the net metabolic
rate decreased by 12.7% (up stairs), 11.6% (uphill), and 19.6%
(flat ground) averagely.

II. THE PROPOSED METHODS

A. Hardware Structure
Our exoskeleton device consists of six main parts: con-

troller, actuator module, tension band, tension sensor, inertial
sensor, and battery. The soft exoskeleton is shown in Fig.1
STM32F429 chip has been selected as the primary controller.
The actuator mainly consists of the motor, motor driver, gear,
and reel. One end of the strap is attached to the reel, the
other end is connected to the fixation device on the knee.
The IMU sensor is fixed under the knee to collect the hip
joint swing’s angle and angular velocity. The tension sensor
is connected to the tension band at one end, the other end is
connected to the knee fixation device, which is used to collect
the interactive force. The master control collects changes in
the angle and angular velocity of the hip joint during the
wearer’s walk to determine the assistive time and the assistive
force. Meanwhile, the reference force value is derived from
the assistive force equation. A force closed-loop method for
controlling the device is selected to transfer the assistive
force to the wearer. The error between the actual force and
the reference force is used as the input to the PID control
algorithm. The reference force is calculated by the assistive
function which will be introduced in chart B. With the PID
algorithm, the actual force tends to be the reference force.

Fig. 2. Human dynamic model.

B. System Dynamics
In this section, the parameters influence on the soft

exoskeleton are given by the analysis of the motion dynam-
ics. The Lagrangian energy method is utilized to establish
the dynamics equations for the human-machine system with
the soft exoskeleton in the sagittal plane [16]. The human
dynamics model is shown in Fig. 2. O is the human head.
B is the human hip joint. C is the knee joint. D is the human
simplified foot. E is the force point of the exoskeleton drive
device. F is the fixed point of the waist of the exoskeleton
device. OB is the upper limb torso. Its weight and length can
be defined as m0 and L0 respectively. BC is the thigh. Its
weight, rotational inertia, and length are defined as m1, J1,
and L1 respectively. CD is the lower leg. Its weight, inertia
of rotation, and length are given by m2, J2 and L2. The
exoskeleton device is defined as the weight of m E . FSW is
the exoskeleton assistive force value. Assume that the torso is
vertical and the velocity V⃗ = (X, 0) in the sagittal coordinate
system is uniform. Define the coordinate origin as the hip joint
B, and the positive direction of x-axis as the walking direction.

According to the dynamics model, the position vectors r⃗1
and r⃗2 defined as follows:

r⃗1 =
−→
BC = [L1 sin θ1 -L1 cos θ1]T , (1)

r⃗2 =
−→
B D = [L1 sin θ1 + L2 sin θ2 − L1 cos θ1

−L2 cos (θ1 − θ2)]T , (2)

where θ1 and θ2 are the hip and knee flexion angles.
The kinetic energy of the system TSW is defined as:
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The Lagrangian operator L SW can be calculated as:

L SW = TSW − PSW . (5)

The Lagrangian equation is calculated by combining equa-
tions (3), (4), and (5). Its term is defined as:

d
dt

[
∂L SW
∂θ̇1

∂L SW
∂θ̇2

]
−

[
∂L SW
∂θ1

∂L SW
∂θ2

]
=

[
τ1 + τ2 + τSW

τ2

]
. (6)

where τsw is the exoskeleton’s assistive torque to the hip joint,
τ1 and τ2 are the equivalent muscle torque of the hip and knee
joints. The dynamics equations of the man-machine system are
given as follows:

M (θ) θ̈ + G (θ) = τ + τa, (7)

In the equation (7), the specific expressions for each term are
given as follows:

τ = [τ1 + τ2]T

τa = [τSW 0]T

θ̈ =
[
θ̈1 θ̈2

]
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]
G (θ) =

[ 1
2 (m1 + 2m2) gL1 sin θ1 +

1
2 m2gL2 sin (θ1 − θ2)

−
1
2 m2gL2 sin (θ1 − θ2)

]
,

(8)

According to the dynamics equation (7), the human motion
track can be affected by the torque τ + τa . In the condition of
the same track, the torque τ + τa is fixed curve. The change
of the assistive torque τa can directly affect the joint torque
τ of the human body. The assistive torque τa is tuned by
the assistive force function. In this paper, we use the assistive
force function to determine the soft exoskeleton assistive force
value [17]. The terms of the assistive force function are given
as follows:

F(t) = A sin(π
t
T

+ α sin(π
t
T

)) + f, (9)

where F represents the output assistive force. f represents the
preload force (usually set to constant). t represents the timing
of the assistive force. T is the period value of the swing phase.
In this paper, we take the average time of the first three swing
phases as the T . α is a phase shift factor. A represents the
assistive force amplitude.

The effect of the assistive force amplitude A and the phase
shift factor α with different parameters is shown in Fig.3(a)
and Fig.3(b). The swing phase amplitude A determines the
peak magnitude of the function waveform. Different shift
parameters α affect the peak position of the assist force curve.
Different assist force curves will produce different assistive
torque. Different assistive torques on the hip joint will have
different assistive effects. Therefore, the parameters α and A
are selected as optimization parameters.

Fig. 3. The curves of the assistive force function on different parame-
ters.

C. Bayesian Optimization Algorithm
The Bayesian optimization algorithm is a method for cal-

culating the global extrema of an unknown objective function
by learning the shape of the objective function and finding
the parameters that make the objective function approach the
global optimum [18]. The Bayesian optimization algorithm
consists of a probabilistic surrogate model and an acquisition
function. The probabilistic surrogate model includes a prior
probability model and an observation model. The probabilistic
surrogate model can estimate the distribution of the unknown
objective function based on a finite number of observations.
An acquisition function is constructed from the posterior prob-
ability distribution and used to determine the next observation
[19]. A functional relationship between the parameters to be
optimized and the objective function as follows:

x∗
= argx∈X max ( f (x)) . (10)

In this paper, x denotes the parameters A and α to be
optimized. f (x) is an unknown objective function with the
mapping relationship between the optimized parameters (A,
α) and the D-value of the heart rate variation.

The Gaussian process is selected as the probabilistic sur-
rogate model. Gaussian process can obtain the function dis-
tribution by using the sampling point (x, y), where x is the
assistive force parameters to be optimized. y is the D-value of
the heart rate variation(quiescent condition and walking state)
on different parameters [19], [20]. The D-value on heart rate
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variation is sensitive to the state of the human body in different
terrains with different parameters.

The Gaussian process is an extension of a multivariate
Gaussian distribution to infinite dimensions, including the
mean function and covariance function [21]. The formulae is
as follows:

f (x) ∼ G P
(
µ (x) , K

(
x, x ′

))
, (11)

where µ (x) is the mean function and K
(
x, x ′

)
is the covari-

ance function. Typically, the mean can be set to zero. The
covariance function always uses a Gaussian kernel function,
which will be modified and expressed as follows:

K
(
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)
= σ 2

f exp

[
−

(
x − x ′

)2

2l2

]
+ σ 2

n δ
(
x, x ′

)
, (12)

where δ
(
x, x ′

)
=

{
1 x=x′

0 x ̸= x′ , σn = 3, σ f and l are hyperpa-

rameters. After that, we can determine the expression for the
prediction point based on the posterior probability as follows:[

y
y∗

]
∼ N

(
0,

[
K K T

∗

K∗ K∗∗

])
. (13)

With the Gaussian regression process, the function distribu-
tion on heart D-value can be obtained by the sampling points.
The acquisition function will generate the new sampling
points. In this paper, Upper Confidence Bound(UCB) is used
as a Bayesian optimal acquisition function [22].

UC B = µ (x) + kσ (x) k ≥ 0. (14)

In the equation (14), µ (x) denotes the mean of the sampling
points. σ (x) denotes the variance of the sampling points. The
x corresponding to the largest UCB is selected as the next
sampling point.

D. Heart Rate Data Acquisition
Heart rate is a common metric for characterizing the state

of the human body. It is sensitive to the state change of the
human movement. Therefore, in this paper, the heart rate data
is collected as a reference quantity for evaluating the state of
human movement. The objective of our Bayesian optimization
algorithm is to obtain the parameters A and α corresponding
to the smallest heart rate variation under different terrains.

In order to obtain human exercise data, we chose a heart
rate band as the data collector. In addition, the phase shift
parameter α was set in the range of [-1,1] and A was set
the range of [30, 50]. We finally selected [ −1, 50],[ −0.5,
50],[ −0.5, 40],[ −1, 40],[ −0.5, 30],[1, 40],[0.5, 45],[ −1,
35],[0, 35],[1, 50] and [0, 50] as our acquisition values. On this
basis, six volunteers were recruited for data collection. All
volunteers signed an informed consent form before the start
of the experiment. The details of volunteers A to F are shown
in Table I.

For the staircase exercise, a real staircase was chosen as the
data collection environment. For the other two exercise modes,
a treadmill with a normal speed of 4 km/h was chosen for data
collection. In the experiment, six volunteers wore exoskeletons
and heart rate bands. The real-time heart rate was collected

TABLE I
TESTER DATA

Fig. 4. The D-value on heart rate were collected on flat ground, on the
stair, and ramp.

via a mobile phone app. Before the formal experiment began,
the volunteers measured each individual’s normal heart rate
without the exoskeleton, as each individual’s physical and
environmental factors could affect the results. Each subject
then wore the exoskeleton and sat down for a period of time
with the heart rate monitor turned on. After observing the
subjects’ heart rate data return to relaxed state, each subject
began a 5-minute static heart rate measurement, followed by
the start of formal data collection for the three terrains.

For the assistive parameters corresponding to upstairs ter-
rain, volunteers wearing the exoskeleton with a heart rate band
were asked to walk up and down a seven-story staircase twice
before the collection of heart rate data. After a ten-minute
rest period at the starting point, the volunteers continued the
staircase test with other sets of assistive force parameters until
all six volunteers and 11 sets of assistive force parameters
had been tested. The final D-value between the volunteer’s
mean heart rate in the initial resting state and the mean heart
rate after exercise was considered as the change in heart
rate corresponding to the selected parameters. The heart rate
dataset was composed by the D-values corresponding to the
different parameters.

The experimental procedure for heart rate acquisition on flat
terrain and walking uphill was the same as that for walking
up stairs, and the data acquisition process is shown in Fig.4.
The final heart rate data corresponding to 11 sets of assistive
force parameters were obtained for the three terrains and this
was used as the data set for Bayesian optimization of the
parameters.

E. Parameter Optimization
The average D-value on heart rate changes with differ-

ent parameters was collected under three assistive exercises,
namely walking upstairs, walking uphill and walking on flat
ground. Next, these data were used as the input data of the
Bayesian optimization algorithm to finally get the optimal
solution.
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Fig. 5. Parameter optimization results of the walking upstairs mode.

Fig. 6. Parameter optimization results of the walking uphill mode.

Firstly, Bayesian iterative optimization was performed on
the data collected from the stair walking. The total number
of iterations was set at 10 in the optimization algorithm,
and the exploration parameter was e = 0.2. The optimized
parameters and the corresponding heart dataset were sent to the
Bayesian optimizer to obtain the optimal solution after three
iterations. The optimization results are shown in Fig.5. The left
side corresponds to the objective function, and the right side
corresponds to the acquisition function. As can be seen from
the table, with the increment of the value A, when walking
upstairs, the exoskeleton operator showed a more natural heart
rate decline. The dynamical parameters of the α change of
heart rate variation also had a certain influence. Finally, it was
concluded that the optimal parameters are A = 50 and α =

0.212. The overall exertion level in the exoskeleton operator
was relatively low while performing the upstairs exercise.

The distribution between the optimized parameters and
D-value of the heart rate variation in uphill terrain is shown
in Fig.6. When optimizing the parameters for this terrain, the
number of iterations was set to 10. As can be seen from the
Fig.6, the body has the smallest change in heart rate when the
assistive force parameter is A = 50 and α = −0.051.

As shown in Fig.7, the assistive force parameters on flat
ground walking were optimized after 5 iterations. Similarly,
the results showed that as the assistive force increased, the
heart rate had a tendency to reduce. The effect of different
assistive force parameters on heart rate variability is shown
in Fig.7. It can be concluded that the subject with the control
parameter (A = 50, α = −0.232) can achieve the least change
in heart rate, which shows that it can save energy.

In the three terrains above, the 11 red data points on the
function distribution plot corresponding to the collected heart
rate dataset in the left panel are the original collected heart
rate sampling points. The corresponding red data points on
the acquisition function distribution plot in the right panel are
the data points corresponding to the optimal parameters.

III. OVERALL CONTROL STRATEGY

The overall process on multi-terrains assistive force of the
soft exoskeleton is shown in Fig.8. The whole process can
be divided into two parts: terrain recognition and assistive
force parameter optimization. For terrain recognition, the data
(Angle, angular velocity, angular acceleration) is obtained on
human walking in different types of terrains. The collected
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Fig. 7. Parameter optimization results of the flat ground walking mode.

Fig. 8. The process on terrain recognition and the assistive force parameters optimization.

data is filtered to become stable by band-pass filtering and
Kalman filtering. Then, the data is transferred to the convo-
lutional neural network (CNN) to train the recognition model
offline. The backbone of this convolutional neural network
consists of three blocks. Each block consists of a convolutional
layer and a pooling layer. The features generated from the
backbone are transferred to three fully connected layers to
obtain the final result. The pre-trained model was then used for
online terrain recognition The recognition experimental results
are shown in Fig.9. The online gait recognition method can
effectively recognize the different terrain environments. The
assistive force parameters A and α corresponding the terrain
can be optimized iteratively by the collected D-value on heart
rate variation with the Bayesian optimization algorithm.

In the process of walking with soft exoskeleton, the IMU
data is real-time collected for terrain identification. When
the current terrain is identified as downstairs or downhill,
the exoskeleton will not provide assistive force for safety
and stability. The downstairs and downhill is the process
on potential energy falling of the body’s center. It should
maintain the stability of the body. When the terrain is identified
as flat, the master control device will set A = 50, α =

−0.232 as the parameters of the assistive force equation. When

Fig. 9. Terrain recognition results, the red curve is the angle change
data of unilateral hip joint, and the blue curve is the recognized gait type.
flat ground walking:0, ramp ascent:1, ramp descent:2, stairs ascent:3,
stairs descent:4, sitting:5, standing:6.

the terrain is detected as uphill, the master control device will
set A = 50 and α = −0.051 as the control parameters. When
the current terrain is detected as upstairs, the master control
device will set A = 50 and α = 0.212 as the parameters.
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TABLE II
COMPARISON WITH OTHER PAPERS

Fig. 10. Metabolic testing experiments in different terrains.

With the above consideration, the assistive force effect can
be optimized adaptively. In the next section, we will further
verify the effectiveness of the proposed assistive force strategy
by metabolic testing.

IV. EXPERIMENTAL VERIFICATION

A. Metabolic Testing
In order to evaluate and validate the effectiveness of our

proposed multi-terrains assistive force parameter optimization
method, we conducted metabolic experiments on three healthy
subjects with different assistive force parameters. The subjects
were three male students, 174 ± 6 cm in height and 24±2
years old. They were free of any physical or psychological
disorders. In the meanwhile, an informed consent was signed
all before the experiment. The experimental procedure is
shown in Fig. 10.

The experimental protocol was divided into one day of train-
ing and three days of testing. On the day of training, the three
subjects were asked to take turns walking for ten minutes on
three different terrains wearing our soft exoskeleton equipment
and a portable gas analysis system (K4b2, C, Roma, Italy). The
subsequent part of the test was divided into three days, with
each person being tested on only one kind of terrain each day.
For flat and uphill terrain, the experiment was operated on the
treadmill. For upstairs terrain, the experiment was operated on
a seven-story laboratory building. The experimental process is
shown in Fig.11.

In the test, we used K4b2 to collect data on oxygen
consumption and carbon dioxide emissions from the sub-
jects [23] and then calculated metabolic rates [24], [25]. The
net metabolic rate was obtained by subtracting the resting
metabolic rate from the metabolic rate under exercise and
normalizing it by the subject’s body weight.

The net metabolic rates of the subjects with different
assistive force parameters on flat ground terrain are shown in
Fig.12. Different assistive force parameters produce different
effects on different people. Significantly, the net metabolic

Fig. 11. Experimental flow chart.

rates of all subjects with the optimal assistive force parameters
are lower. Compared without assistive force on the metabolic
rates, the net metabolic rates were decreased by 12.2%, 22.7%,
and 23.9%, respectively, in the three subjects with optimal
exoskeleton assistive force parameters.

The net metabolic rates of the subjects with different
assistive force parameters on uphill terrain are shown in Fig13.
Compared without assistive force on the metabolic rates, the
net metabolic rates were decreased by 18.2%, 11.5% and
5.2%, respectively. The net metabolic rates of the subjects
with different assistive force parameters on walking upstairs
are shown in Fig.14. The net metabolic rates were decreased
by 9.7%, 13.2%, and 15.2%, respectively.

B. Comparison and Discussion
Currently, the environment perception is very important

for the adaptive control of the exoskeletons. As the method
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Fig. 12. Net metabolic rate in subjects with different assistive force parameters on the flat ground terrain.

Fig. 13. Net metabolic rate in subjects with different assistive force parameters on uphill terrain.

Fig. 14. Net metabolic rate in subjects with different assistive force parameters on the up-stairs terrain.

of the environment perception, deep learning, such as CNN,
appears competing performance for multi-terrains recognition.
However, it is challenging to control the exoskeletons under
different terrains adaptively. To this end, a parameter adap-
tive optimization method for exoskeleton assist is proposed

with multi-terrain. The method is optimized by the Bayesian
optimizer to calculate the optimal assistive parameters for
three types of terrains: uphill, downhill and flat. With this
consideration, the soft exoskeleton can adapt to different
terrain environments effectively.
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There are also many studies in the literature about exoskele-
tons with different assistive terms. Some of which are shown
in TABLE II. By comparison, our exoskeleton equipment is
not only lighter in weight, but also can be adapted to different
terrain environments. In the meanwhile, the proposed adaptive
control method can save more energy consumption in several
common types of terrain. As shown in the TABLE II, the
exoskeleton proposed by Chen et al. [11] reduced metabolic
value by 22.08% in the uphill environment. We considered
that the hip flexion extension and knee synergistic assistive
solution would be more effective than our hip extension assist.
In addition, the exoskeleton proposed by Ding et al. [27] had
a lighter weight with the same hip extension assistive force.
Compared with his work, the efficiency of assistive force about
our work was more competitive.

V. CONCLUSION

The aim of this study is to develop a hip-assisted soft
exoskeleton that can be adapted to different terrains. This
will help exoskeleton wearers in their daily activities and
provide them with better walking support. Therefore, we pro-
pose a method to optimize the assistive force parameters
based on a Bayesian optimization algorithm. The assistive
force parameters A and α are optimized by the Bayesian
optimization algorithm. Meanwhile, the heart rate variations
for different terrains are collected as the dataset to generate
the optimal parameters. Finally, the metabolic is conducted on
three subjects. The results show that the average net metabolic
rate of the subjects decreased by 19.6% on flat ground, 12.7%
on upstairs, and 11.6% uphill. The above experimental results
verified the effectiveness of the proposed multi-terrain assistive
force method. In the future, we will combine soft exoskeletons
with reinforcement learning so that our devices can adapt
to more complex road conditions in real-life environments
and generate different assistive parameters based on different
wearers’ characteristics.
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