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Abstract— Finer-grained decoding at a phoneme or
syllable level is a key technology for continuous recog-
nition of silent speech based on surface electromyogram
(sEMG). This paper aims at developing a novel syllable-
level decoding method for continuous silent speech
recognition (SSR) using spatio-temporal end-to-end neural
network. In the proposed method, the high-density sEMG
(HD-sEMG) was first converted into a series of feature
images, and then a spatio-temporal end-to-end neural net-
work was applied to extract discriminative feature rep-
resentations and to achieve syllable-level decoding. The
effectiveness of the proposed method was verified with
HD-sEMG data recorded by four pieces of 64-channel elec-
trode arrays placed over facial and laryngeal muscles of
fifteen subjects subvocalizing 33 Chinese phrases consist-
ing of 82 syllables. The proposed method outperformed
the benchmark methods by achieving the highest phrase
classification accuracy (97.17 ± 1.53%, p < 0.05), and lower
character error rate (3.11 ± 1.46%, p < 0.05). This study
provides a promising way of decoding sEMG towards SSR,
which has great potential applications in instant communi-
cation and remote control.

Index Terms— Silent speech recognition, high-density
surface electromyography, spatiotemporal feature, lan-
guage model, time sequence decoding.

I. INTRODUCTION

SPEECH, is at once the most natural way of communicating
with others and also a survival skill. Automatic speech

recognition (ASR) is a common speech technology in people’s
daily life that can recognize the speaker’s intention, while its
development has greatly promoted the relationship between
humans and computers, enabling computers to better under-
stand human language for natural and robust human-computer
interaction. Common applications include digital personal care
[1], smart home [2], smart medical [3], [4], etc. Although
ASR has achieved great success, its use in some special
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scenarios is still limited. These include the degradation of ASR
performance in the presence of acoustic noises and the privacy
concern during communication in public places. In addition,
people who lost the ability to speak due to laryngeal disease
or other reasons cannot benefit from ASR-related technolo-
gies. Silent speech recognition (SSR) technology provides a
solution to the aforementioned challenges because it does not
rely on acoustic signals but other medium. Several signal
modalities have been applied to realize SSR by capturing
the movement of articulatory muscles or extracting neural
information, such as the electromagnetic arthrography [5], the
ultrasound or optical images of tongue or lips [6], [7], [8],
the electromyogram (EMG) [9], [10], [11], [12], and the
electroencephalogram [13], [14].

The surface EMG (sEMG) is an optional choice for SSR,
and it could record muscular activities related to vocaliza-
tion by collecting the electrophysiological signals from the
skin surface using non-invasive electrodes [15], [16]. The
sEMG signal can be viewed as a command source to decode
the neural commands related to movement for establishing
a generalized neuro-machine interface towards myoelectric
control of orthotic robots, hand prostheses and wearable
devices [17], [18], [19]. In the process of speech production,
the movement of articulatory muscles, i.e., facial and laryngeal
muscles, is the intuitive response to the vocal nerve commands
of human body, and the decoding of sEMG signals corre-
sponds to the reconstruction of the speaker’s speech intention.
Therefore, the sEMG-based SSR is actually a branch of the
myoelectric control technology to decode the intention from
the movement of facial and laryngeal muscles, which can be
seen as a kind of application case.

Predecessors have done a lot of researches on sEMG-based
speech recognition and most of them focused on isolated
words with pattern classification algorithms. A variety
of algorithms including linear discriminant analysis
(LDA) [20], [21], support vector machine (SVM) [16],
random forest (RF) [22]were employed to build pattern
classifiers. In addition, with the development of biosensing
technology, high-density (HD) electrode array is widely
applied to simultaneously record multichannel sEMG signals
from a number of target muscles or muscle groups in relatively
large areas, and the use of HD-sEMG signals has been proved
to promote the development of myoelectric control system
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as well [23], [24], [25]. Some researchers applied the HD
electrode arrays to the sEMG-based SSR, demonstrating that
their spatial information of muscle activities can improve the
SSR performance [26], [27], [28]. It was worth note that
the HD-sEMG data recorded by two-dimensional electrode
arrays can be viewed as an image, where discriminative
spatial features can be well characterized by deep image
processing techniques such as convolutional neural networks
(CNNs) [29]. Nevertheless, these common classification
algorithms treated a phrase or a sequence of words as a
single pattern, ignoring the grammatical or contextual relation
between syllables and phonemes. Continuous SSR capable of
decoding semantics has always been a pursuit.

Based on these considerations, some researchers made
attempts on continuous speech recognition with prior seman-
tic knowledge. The three-state left-to-right fully continuous
hidden Markov models (HMMs) with a Gaussian mixture
model emission probability were designed to realize con-
tinuous speech recognition, and they demonstrated how to
train the phoneme-based acoustic models using sEMG [30].
Similarly, another study reported a method using HMMs to
achieve speech recognition at a word and phoneme level using
sEMG, achieving a word error rate of 8.90% on a 2200-word
vocabulary [9]. In such an HMM-based recognition algorithm,
many essential models need to be trained separately, such as
the acoustic model, the pronunciation dictionary model, and
the language model (LM). These models played different roles
in speech recognition tasks and they required not only a large
number of time-alignment training materials, but also repeated
experiments to determine each model’s parameters. These
limitations raise the technical threshold of SSR applications,
which are not conducive to the popularization of SSR systems.

In recent years, deep learning has been applied to
decoding the temporal information and has greatly con-
tributed to the development of speech recognition technology
[31], [32], [33], [34], [35]. For example, the bidirectional long
short-term memory (BiLSTM) network has a strong advantage
in characterizing temporal or sequential information, and it
has been widely used in natural language processing [34].
The end-to-end method provides a feasible scheme for speech
recognition due to its unique way of handling signal samples
and it connects the input end (speech waveform or feature
sequence) to the output end (word or syllable sequence) by
constructing a neural network. Compared with the conven-
tional ASR systems (i.e., the aforementioned HMM-based
method), this end-to-end method assumes all the functions
in the neural network, so there is no need for training
additional acoustic model, pronunciation dictionary model or
LM. Connectionist temporal classification (CTC) is a typical
end-to-end model and it maps the original acoustic signal to
the sequence of phonemes or syllables without segmenting
the training signals in advance, thus removing the need to
locate ambiguous label boundaries. Actually, it has been
successfully applied in the field of ASR [31], [32], [33]. How-
ever, the usability and practicality of these end-to-end meth-
ods for sEMG-based speech recognition have not been well
investigated.

Inspired by the above considerations, we hypothesized that
the end-to-end decoding techniques can significantly improve
SSR performance. To evaluate this hypothesis, a novel silent
speech decoding method was proposed based on the CTC algo-
rithm, which mainly provided a solution to the time-alignment
challenge of continuous silent speech sEMG signals [33], [36].
Besides, the CNN module and the BiLSTM module of deep
neural networks were also employed toconstitute a feature
extractor, due to their good abilities of characterizing spatial
and temporal information from the HD-sEMG data, respec-
tively. The proposed method allows us to decode silent speech
continuously at a syllable level, leading to improved per-
formance with a variety of potential applications in instant
communication and remote control.

II. METHODS
A. Subjects and Experiments

1) Subjects: Fifteen subjects (aged: 21-27 years, mean ±

standard deviation: 24.53 ± 1.45 years) without any known of
language disability participated in the experiment. All of them
are native speakers of Mandarin. This study was approved by
the Ethics Review Board of the University of Science and
Technology of China (Hefei, Anhui, China). All participants
were informed of the experimental procedures in detail, and
they signed the informed consent before any experiment.

2) Data Collection Protocols: A total of 64 electrodes were
arranged in four pieces of HD electrode arrays, with a bilateral
symmetrical design. These arrays were in irregular shapes
to better fit uneven surface of the skin as shown in Fig. 2.
We made such efforts to ensure a good electrode-skin contact
so as to reduce effect of motion artifacts. Two arrays of the
face were placed on the buccinators, masseter and orbicularis
oris muscle. The arrays placed on the laryngeal muscles were
designed to record muscular activities from the cervical muscle
and anterior belly of the digastric muscle. For an electrode on
each array, there was a round probe with a diameter of 5 mm,
constituting one sEMG channel in a monopolar manner with a
reference electrode attached to the uricularis posterior behind
the ear. The inter-electrode distance between two consecutive
electrodes on the laryngeal muscles was 18mm while the
distance was 18 mm along the horizontal direction, and 10mm
along the vertical direction on the facial muscles, respectively.
The ground electrode was attached to the uricularis posterior
behind the other ear different from the location of the reference
electrode.

During the experiment, the subjects were invited to sit
comfortably on a height-adjustable chair. Before attaching the
electrode array, 75% medical alcohol was used to clean the
surface of the skin. Meanwhile, we applied the double-sided
medical-grade adhesive tapes with cutouts to secure the arrays
to be placed firmly.

A total of 33 phrases from an 82-character vocabulary made
up the corpus and each phrase consisted of a number of 2 to
6 syllables or characters, as shown in Fig. 1. Each character
corresponded to a syllable in the Chinese language, so we
labeled each syllable by one Chinese character. This set of
phrases were determined by referencing common words or
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Fig. 1. List of the 33 phrases and 83 basic Chinese syllables.

phrases used in previous studies [20], [21], [37] and expanding
them with some useful phrases, to meet the requirements of
different interactive applications in silent speech scenarios.
Specifically, T1-T9 were related to the spatial motion of the
object, such as the unmanned aerial vehicle and unmanned
ground vehicle. T10-T24 were closely bound up with industrial
control for joystick or mechanical arm with multiple degrees
of freedom. T25-T33 were designed from fire-fighting terms
to provide clear and concise communication in a noisy fire
scene environment. For each phrase, the speakers were asked
to read the phrase silently under normal and natural conditions
following the voice guide of the computer, in 20 repetitions.
A 4-s delay was applied between repetitions to prevent mental
or muscular fatigue. These 33 phrases consisted of 82 basic
Chinese syllables, labeled as 0-81 in total. Moreover, a “blank”
character was marked as 82 with the symbol “_” representing
no meaningful output at a particular frame. These characters
were regarded as the basic elements in syllable-level decoding.

During the experiment, the sEMG signals first passed
through a two-stage amplifier with a gain of 64dB and a band-
pass filter of 20-500Hz. Subsequently, these analog sEMG
signals were converted to digital signals by the analog-to-
digital converter with 1KHz sampling rate. Then the signals
were transmitted to a laptop computer via a USB cable for
data monitoring and storage.

3) HD-sEMG Images Splicing and Feature Extraction: In
order to extract spatial information conveniently from the HD
electrode array, we rearranged the position of 64 electrodes
into a regular 8 × 8 shape, like an image as shown in
Fig. 2, and each pixel of the image corresponds to a sEMG
channel. During the process of a phrase phonation, a series of
sEMG burst activities can be observed with large-amplitude
fluctuations. A routine sEMG amplitude-thresholding algo-
rithm was adopted,with the threshold set to three times as

Fig. 2. The display of sEMG electrode positions and scheme for
electrode position rearrangement as a regular image.

large as the baseline amplitude from 64 channels, to judge
the onset and offset of the sEMG activities. Thus, a data
segment corresponding to each phrase was determined as a
basic sample between both the onset and the offset.

For each phrase sample, the data segment was further
divided into a series of frames. The frame settings needed
to be appropriately set to characterize the phoneme/syllable
information finely. We conducted sensitivity analyses on both
frame length and frame increment, to assess their effects on
the SSR performance. The frame length varied from 120ms
to 240ms and the frame increment was assigned from 100ms
to 200ms, both for every 20 ms. Subsequently, features were
extracted for each frame over all channels. A total of four
features including mean absolute value of the sEMG signal
amplitude and three time-dependent power spectrum descrip-
tors (TD-PSDs) [38], [39] were extracted from each channel
of one frame. Thus, we finally get a feature map with the
shape of T × 8 × 8 × 4 from a 64-channel sEMG sample,
where T was the number of frames of a sample.

B. Spatio-Temporal End-To-End Neural Networks for
Syllable-Level Speech Decoding

The neural networks employed in this study consisted
of three major modules: a spatial block (equivalent to the
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Fig. 3. The architecture of the proposed method.

common CNN module), a temporal block (equivalent to the
BiLSTM module) and a CTC decoder, as shown in the Fig. 3.
Both the spatial and temporal blocks were designed to well
characterize spatiotemporal information. The spatial block
consisted of two convolutional layers, each followed by a
batch normalization (BN) layer and dropout layer. The BN
layer was designed to alleviate this internal covariate shift
by introducing a normalization step that fixed the means and
variances of layer inputs [40]. The dropout layer was applied
after each BN layer with a rate of 20% to avoid overfitting.
The feature map was first processed by the spatial block to
extract spatial information which represented the activation
and location of facial and laryngeal muscles. Next, the spatial
block produced these feature representations to the temporal
block through the flatten layer to further learn semantic and
contextual information. The temporal block comprised two
BiLSTM layers, each followed by a dropout layer. Then, the
extracted spatio-temporal features were sent to the dense layer
for syllable classification with SoftMax activation function
and the neural numbers in this dense layer were equal to
the number of basic Chinese syllables (that is 83 in this
paper). After that, the classification probability matrix (CPM)
produced from the dense layer was sent to the CTC decoder
for further processing. The CPM showed the probabilities of
all syllables to align true sequences with the input sequence.
The function of the CTC decoder aims at utilizing the syllable
probability to calculate the sequence probability sum of all
possible combinations of a true sequence in the training
process while searching the sequence related to the maximum
decoded sequence probability in the inference process. For
a sequence X = [x1, x2, . . . xt , . . ., xT ], a probability of
sequence π can be calculated as:

p (π | X) =

T∏
t=1

yπt (1)

where πt represents a syllable at t position of the sequence
π and yπt is the probability of observing the syllable πt .
In this mapping process, every input frame xt is mapped to
a certain label πt . Any output sequence π generated from
the aforementioned last dense layer could be mapped into a
target sequence L using the many-to-one mapping function
(π). Such function could merge any repetition in a sequence
of consecutive non-blank syllables to a single syllable and
subsequently remove all blank symbols. Thus, the probability
of the target label L is formulated as

p (L | X) =

∑
π∈β−1(L)

p (π | X). (2)

The negative log probability was regarded as the loss function
for training the neural networks of the proposed method.

CTCLoss= − log p (L | X) (3)

A dynamic programming approach was applied to calculate
the loss value more efficiently [33].

Given the well-trained networks, any input data sample
in the testing phase can finally be inferred into a decoded
sequence of syllable decisions by either a beam search or
greedy search algorithm [33]. Both were expected to achieve
comparable performance, and the proposed method could work
by choosing either one. There might be syllable-level errors in
the decoded sequence. Such errors could be further corrected
due to a limited number of phrases in the corpus. Thus,
we adopted a LM using editing distance algorithm [41] to
obtain the similarity of the decoded sequence with that of every
true phrase, and the phrase with the minimum distance was
determined as the final sequence. The training and inference
procedures of the neural networks incorporated with the LM
are summarized in Algorithm 1.

The network structures and settings were empirically deter-
mined by a variety of pretests with the aim of the optimal
performance. For training the networks, the Nadam algorithm
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Algorithm 1 Training and inference procedure for the pro-
posed method

Input: a feature map (T × 8 × 8 × 4)
Initialize: k (0 ⩽ k ⩽ T)
1: Extract discriminative feature representations from the

feature map using spatio-temporal neural network
2: Obtain the CPM (T × 83) from the last dense layer
3: If train:
4: Calculate the CTC loss according to the CPM and

target label
CTCLoss = − log p (L | X)

5: Output: CTC loss
6: end if
7: If inference:
8: If greedy search decoding:
9: Find every character xt corresponding to the

maximum probability value of each row of
CPM, then the predicted sequence X
could be obtained.

10: Apply many-to-one function β to X and get
t-he decoded sequence.

11: Output: the decoded sequence β(X) by the
LM processing

12: end if
13: If beam search decoding:
14: while t ⩽ T do
15: Find top k probability: p (π | X) =∏t

1 yπt at the t frame
16: Apply many-to-one function β(π) to the

k predicted sequence and sum the
probability with the same decoded
sequence.

17: end while
18: Output: a total of k decoded sequence β(π)

after the LM processing
19: end if
20: end if

was applied to optimize all parameters with a full batch
size [42]. The networks were trained with a 0.01 learning
rate for 500 epochs. The proposed method was established
on Keras framework by Python 3.6 running on a NVIDIA
GeForce GPU of RTX3060.

C. Evaluation Criteria and Comparison Methods
The model was tested in a subject-specific manner. The data

from each subject were divided into a training set, a validation
set and a testing set, with a proportion of 60%, 20%, and 20%,
respectively. In addition, a five-fold cross-validation strategy
was adopted to make full use of data.

Character error rate (CER) is a classic metric to evaluate the
performance of Chinese ASR. In this paper, we labeled each
syllable by one Chinese character. Comparing the decoded
sequence with a sequence of character labels in the actual
phrase, three kinds of errors could be reported, namely inser-
tion, deletion and substitution. These errors were counted to
compute CER according to Eq. 4, to evaluate the decoding

TABLE I
CONFIGURATIONS OF THE COMPARISON METHODS

performance at the syllable/character level. A smaller CER
indicates better performance.

C E R =
I nsertions + Substi tutions + Deletions

T otalcharactersinphrases
(4)

Besides, phrase classification accuracy (PCA) was designed
to evaluate classification performance at the entire phrase level.
It is defined as:

PC A =
Numberof correctlyrecognizedsamples

Numberof allphrasesamples
(5)

The effectiveness of the proposed method was verified from
perspectives of both decoding and classification, and some
conventional methods for myoelectric pattern recognition were
also selected and carried out for performance comparison. For
decoding syllable/character sequences, another method was
designed following the idea of ablation experiment. In this
method, the spatial block for characterizing spatial information
was removed, to identify how spatial features mined by the
proposed method contribute to the decoding performance.
Both modules remained in the neural networks including
the temporal block (i.e., the BiLSTM module) and the CTC
decoder, and this method is termed BiL-CTC. Specifically,
the LM was not considered to directly reflect the decoding
performance of the neural networks. Likewise, corresponding
part of the proposed method can also be denoted as CBiL-CTC
by adding the spatial block of the CNN module. We optimized
neural network settings of the BiL-CTC method. Finally, three
BiLSTM layers were adopted with the neuron number set to
256, 256 and 128, respectively. Each layer was followed by
a BN layer and a dropout layer (a learning rate of 0.2). The
original feature map (T × 8 × 8 × 4) were reshaped into
the size of T × 256, suitable for being fed into the BiL-CTC
method.

In addition, several classifiers commonly explored in the
literature were selected as benchmark classification methods
for performance comparison in terms of the PCA, including
the CNN, BiLSTM, RF, SVM, LDA and logistic regression
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Fig. 4. The syllable-level decoding of the CBiL-CTC method using greedy search algorithm. The horizontal axis represents time frame and the
vertical axis is the index of the basic Chinese syllables as listed in Fig. 1. The color bar represents probability of a syllable to be decoded by the
proposed method.

(LR) methods. For the CNN method, we converted the orig-
inal 64 channel signals into images in the form of 64 ×

T × 4, so that the convolution kernel was able to extract
the spatio-temporal features simultaneously from HD-sEMG
signals, where T was the number of frames and 4 represented
the number of features in each frame. In the CNN network
structure, two convolutional layers were applied with 32 and
16 convolution kernels, respectively. Each convolutional layer
was followed by a BN layer, maxpooling layer and dropout
layer with a learning rate of 0.3. We designed three bidirec-
tional LSTM layers for the BiLSTM method and each layer
is followed by a BN layer. The number of neurons in each
layer was optimally set to 512, 256 and 128 respectively. The
input dimension of the BiLSTM method was the same with the
BiL-CTC method. We selected 700 decision trees for the RF
method, and the SVM method with a linear kernel was applied
in this study. For the LR method, 500 iterations were set.
These methods (i.e., the RF, SVM and LR method) required
data input in a one-dimensional feature vector, by flattening
the features from original 64 channels into a one-dimensional
vector. Both the network design and the parameter setting were
verified by sufficient pretests towards optimal performance.
Specific configurations are reported in Table I. Specifically,
the BiL-CTC decoding method incorporated with the LM was
also used for classification performance comparison, termed
BiL-CTC-LM. Thus, the proposed method can be denoted as
CBiL-CTC-LM.

A one-way repeated-measures ANOVA was applied to CER
to examine the effect of the decoding method (2 levels:
the BiL-CTC method and the CBiL-CTC method). Another
one-way repeated-measures ANOVA was applied to PCA
toexamine the effect of classification methods (8 levels: the
RF, LR, LDA, SVM, CNN, BiLSTM, BiL-CTC-LM and
proposed CBiL-CTC-LM methods). Before any ANOVA was
applied, the normality tests were applied using the Shapiro-
Wilk test. If possible, post hoc multiple pairwise compar-
isons were conducted with Bonferroni corrections. All of
the statistical analyses were performed using SPSS software
(22.0 version, SPSS Inc.) and the significance level was
set to 0.05.

III. RESULTS

A. Visualization of Syllable-Level Speech Decoding
To shed light on how the proposed method decoded the

articulatory features at each frame, Fig. 4 presents four cases
of decoding syllable-level speech with the greedy search
algorithm using the CBiL-CTC method from a representative
subject, where the frame length and increment were selected
as 200ms and 120ms, respectively. In Fig. 4, the predicted
sequence showed the intuitive decoding results at every frame,
and then a many-to-one function was adopted to obtain the
decoded sequence by removing duplicated syllables and blank
symbols. Fig. 4(a) illustrates a correctly decoded sequence
(T33). Fig. 4(b-d) shows three types of syllable-level errors
in the decoded sequences, namely deletion, insertion and
substitution with respect to the true sequences (T22, T22,
T24), respectively. In addition, more errors even in different
types might take place simultaneously in the decoded sequence
with respect to one true sequence.

B. End-to-End Decoding Performance
Table II compares the decoding performance in terms of

CER between the CBiL-CTC method and the BiL-CTC
method using the beam search algorithm under different frame
lengths and increments. We can notice that the CBiL-CTC
method achieves the minimum CER value (3.11 ± 1.46%)
when frame length and increment are 200ms and 180ms
respectively, showing superior performance than the BiL-CTC
method (4.76 ± 1.94%) when both frame length and incre-
ment are set to 180ms, with statistical significance (p =

0.026 < 0.05). The Shapiro-Wilk test prior to the ANOVA con-
firmed that both groups of data followed normal distributions
(p > 0.05).

C. Effect of The Language Model for
Phrase Classification

Fig. 5 reports the mean PCAs using both the BiL-CTC and
CBiL-CTC methods, and the combination of each method with
the LM (i.e., the BiL-CTC-LM method and CBiL-CTC-LM
method). It is evident that the use of LM leads to a PCA
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TABLE II
CER (%) OF THE CBiL-CTC AND BiL-CTC METHODS CALCULATED AS A FUNCTION OF THE FRAME LENGTH AND INCREMENT. THE CER IS

AVERAGED ACROSS ALL SUBJECTS WITH THE STANDARD DEVIATION

Fig. 5. The PCAs averaged across all subjects under different frame lengths and increments, using the BiL-CTC method (blue bar) and the
CBiL-CTC method (red bar), and each method incorporated with the LM. The green bar indicates PCA improvement derived from the LM under
each condition. Error bars represent standard deviations.

improvement, which is highlighted in green bars under dif-
ferent conditions. The BiL-CTC-LM method had the optimal
PCA of 96.06 ± 1.52% at both the frame length and increment
set to 180ms, including a PCA lift of 2.02% by the LM. At a
frame length of 200 ms and a frame increment of 180ms, the
proposed CBiL-CTC-LM method yielded the highest PCA of
97.17 ± 1.53%, including a PCA improvement of 1.51%.

D. Phrase Classification Performance
Table III lists the phrase classification performance in terms

of PCA using the proposed method and other classification
methods, under different conditions of the frame length and
increment, respectively. Four methods with deep neural net-
works (i.e., the CNN, BiLSTM, BiL-CTC-LM and proposed
CBiL-CTC-LM method) exhibited relatively higher PCAs
reaching to 91.72 ± 4.63%, 93.23 ± 2.99%, 96.06 ± 1.52%
and 97.17 ± 1.53%, respectively. Four other non-deep classifi-
cation methods had PCAs lower than 90% (i.e. 87.98 ± 5.26%
for the SVM method, 84.54 ± 2.17% for the RF method,

88.38 ± 4.49% for the LDA method and 85.76 ± 5.13% for
the LR method).

Fig. 6 shows the boxplots of the PCAs for all subjects
using eight different methods, when the frame settings were
customized corresponding to each method towards optimal
performance. After the Shapiro-Wilk test reported a normal
distribution for any data group (p > 0.05), the ANOVA
revealed that the proposed method significantly outperformed
other methods (p < 0.05) except the BiL-CTC-LM method
(p = 0.84).

IV. DISCUSSIONS

Conventional SSR studies focus on the classification of
a finite number of words or phrases. When a phrase or a
sequence of words was regarded as a single pattern, the
fine-grained phoneme or syllable relevance might be ignored.
Such fine-grained information needs to be well character-
ized, thus leading to improved SSR performance. This paper
presents an efficient method for decoding continuous syllable
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TABLE III
PCAs (%) AVERAGED OVER ALL SUBJECTS USING THE PROPOSED METHOD AND OTHER CLASSIFICATION METHODS, UNDER DIFFERENT

CONDITIONS OF THE FRAME LENGTH AND INCREMENT

Fig. 6. The boxplot of PCAs for all subjects using eight different
methods, when the frame settings were customized for each method
towards the highest PCA. The statistical significance was reported for
comparison between the proposed method and each of other seven
methods.

sequence in silent speech from HD-sEMG recordings, using
spatio- temporal end-to-end neural networks.

From an intuitive view of the syllable-level decoding pro-
cess using the CBiL-CTC part of the proposed method in
Fig. 4, we can notice that each frame had a syllable/character
decision (according to the maximum of the probabilities of
the frame data belonging to all possible syllables) in the inter-
ference stage. In the original sequence of decoded syllables,
a single syllable can be repeated consecutively over multiple

frames. This can be explained by the fact that each frame may
not precisely cover one syllable to be articulated. It is possible
that a syllable articulation may last over multiple frames.
Such a finding indicates the necessity of applying a many-
to-one function on the originally decoded sequence to merge
repetitions of consecutive non-blank syllables and to remove
the blank symbols, as described in our method. Besides,
some occasional syllable errors (i.e., deletions, insertions and
substitutions as shown in Fig. 4(b-d) found in the decoded
sequence further confirms usability of the LM in rectifying
these errors, which is consistent with previous studies in
natural language processing [43], [44], [45]. The performance
improvement by the simple LM conducted in our study was
demonstrated as accuracy increments for phrase classification
(see Fig. 5).

When considering the syllable-level decoding performance,
both the BiL-CTC method and the CBiL-CTC method exhib-
ited good CERs lower than 5% (Table II), indicating the
effectiveness of understanding contextual semantic informa-
tion specifically by both the BiLSTM and CTC modules.
This finding is consistent with most of previous studies in
the fields of speech recognition and handwriting recogni-
tion [46], [47], [48]. By comparing both decoding methods,
the superior performance in terms of significantly lower CER
(3.11 ± 1.46%, p < 0.05) directly demonstrated positive effect
of the CNN module for enhanced spatial feature characteriza-
tion included in the proposed method. Consistent findings have
been reported in advanced myoelectric control studies using
the HD-sEMG recordings [23], [49], [50]. This study further
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confirms usability of characterizing important spatial informa-
tion from the HD-sEMG data in decoding silent speech.

When considering the phrase classification performance,
conventional classifiers (i.e., the CNN, BiLSTM, SVM, RF,
LDA and LR methods) showed acceptable accuracies over
80%, as shown in Table III and Fig. 6. These findings were
consistent with many previous reports [16], [20], [21], [22].
On this basis, the proposed CBiL-CTC-LM method work-
ing in a syllable-level decoding way evidently improved the
accuracy to 95%, with statistical significance (p < 0.05).
Such promising improvement can be attributed into powerful
capability of the CTC decoder in well characterizing seman-
tic relevance between syllables in sequential silent speech
data. By contrast, conventional classification methods failed
to show good ability in describing syllable sequences, being
unsuitable for continuous SSR systems. Furthermore, in the
CTC algorithm, a initial sequence of syllable decisions made
on every input data frame was then refined by a many-to-
one mapping function to meet the actual syllable sequence,
as shown in Fig. 4. This end-to-end decoding way allows
syllable labels not to be strictly aligned to the data stream
in the training dataset, thus overcoming the well-known time-
alignment challenge and facilitating practical SSR.

It is worth noting that both the BiL-CTC-LM method and
the CBiL-CTC-LM method achieved comparable PCAs over
96% (Fig. 6, p = 0.841), although the BiL-CTC method
had inferior decoding performance with a significantly higher
CER than the CBiL-CTC method (p = 0.026). This finding
indicates powerful capability of the LM that compensate the
performance gap between both the BiL-CTC and CBiL-CTC
decoding methods. Please also note that the BiL-CTC-LM
method really had many advantageous aspects that are the
same as those of the proposed method, including the CTC
decoder as discussed above. Another reason for explaining
why the use of spatial block in the proposed method failed
to improve PCA was the limited size of corpus used in
the current study. Advanced characterization of HD-sEMG
spatial information is expected to benefit precise syllable
identification, thus resulting in improved decoding of silent
speech given a large size of corpus.

Besides, other limitations of the current study are summa-
rized. A conditional independence is assumed in the CTC
algorithm, that is, the frames are independent of each other.
This assumption is unfavorable for continuous SSR, because
contextual semantics during speech can be reflected by rel-
evance among consecutive data frames, carrying abundant
temporal information. The ongoing work is to find some
methods (e.g., attention mechanism [51], [52]) to improve the
output of the CTC algorithm. These abovementioned topics
are the directions of our future work.

V. CONCLUSION

This study presents an end-to-end method to achieve
sEMG-based SSR. In the proposed method, the CNN-BiLSTM
neural network was applied to extract discriminative spatio-
temporal feature representations and the CTC decoder was
adopted for syllable-level decoding. Subsequently, the final
decoded results were further improved by the LM. The

proposed method outperformed other benchmark methods
including both syllable-level decoding methods and phrase
classification methods, demonstrating a promising capacity to
decode sEMG-based SSR.
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