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Network Analysis of Magnetoencephalogram
Signals in Schizophrenia Patients When

Viewing Emotional Facial Stimuli
Dengxuan Bai , Wenpo Yao , Wei Yan, and Jun Wang

Abstract— Schizophrenia is a serious mental disorder.
Network analysis of magnetoencephalogram signals may
help to identify potential biomarkers of schizophrenia. The
goal of this investigation was to identify potential biomark-
ers in the magnetoencephalogram signals of patients with
schizophrenia, global brain connectivity measures was
used for emotion recognition in discriminating the patients
from controls. First, we employed a mutual information
method to explore the topological characteristics of the
brain network in patients with schizophrenia among differ-
ent frequency bands in response to four different stimu-
lus conditions. Second, multidimensional cross-recurrence
quantification analysis was performed to investigate the
differences in dynamic coupling among different frequen-
cies of brain magnetic waves in patients with schizophrenia
in response to four different stimulus conditions, as the
major novel contribution of our study. We found that the
differences in topological features of the brain network
appear in different frequency bands under different stim-
ulus conditions. The differences are evident in the alpha 1
(8-10 Hz) and beta (13-30 Hz) frequency bands in response
to negative stimuli, in the alpha 1 (8-10 Hz) frequency band
in response to positive stimuli, and in the theta (4-8 Hz) and
alpha 1 (8-10 Hz) frequency bands in response to neutral
and gray-cross stimuli. In addition, differences in dynamic
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coupling among pairs of frequency bands were the most
prominent in response to positive stimuli. The character-
istics identified by our methods may be potential markers
of schizophrenia present in magnetoencephalogram data,
which can facilitate the clinical identification of schizophre-
nia patients. Our method provides a comprehensive per-
spective of brain networks in patients with schizophrenia
and has practical applications for the clinical diagnosis of
this disease.

Index Terms— Schizophrenia, magnetoencephalogram,
functional network, topological characteristics, dynamic
coupling analysis.

I. INTRODUCTION

SCHIZOPHRENIA is a common and serious mental
disorder with symptoms including hallucinations, delu-

sions, disordered thoughts, and cognitive impairment [1], [2].
Although schizophrenia has been studied for many years, its
pathophysiological pathogenesis is still unclear [3]. In addi-
tion, the diversity and complexity of its symptoms have led
schizophrenia treatments to focus on symptom reduction [4].
However, identifying potential biomarkers of schizophrenia
is of particular interest [1], [5], [6]. Magnetoencephalogram
(MEG) signals not only have high temporal resolution but also
high spatial resolution, which can be used to accurately locate
the source of neural activity. Many studies have employed
MEG for diagnosing schizophrenia [6], [7], [8], [9], hence,
using MEG to study schizophrenia is a hot topic in this field
recently.

To obtain a comprehensive understanding of the dynamics
of the human brain, images of emotional faces are often
used to elicit changes in brain activity, as the brain responds
differently to different facial emotion stimuli [10], [11], [12].
Similar facial emotion stimuli are used in schizophrenia
research. Notably, Hempel et al. [13] found that the heart rate
of patients with schizophrenia increased when viewing positive
stimuli (i.e., pictures of faces exhibiting positive emotions).
In addition, Duval et al. [14] verified that viewing negative
stimuli (i.e., pictures of faces exhibiting sadness) enhanced
the neurophysiological responses of schizophrenia patients.
Moreover, Chu et al. [15] proved that electroencephalogram
(EEG) signals of patients with schizophrenia exhibited dif-
ferent levels of entropy when viewing different facial emotion
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stimuli. Martin et al. [16], [17] also found that changes the late
positive potential (LPP) of patients with schizophrenia differed
when viewing different stimuli. The above examples show that
the physiological characteristics induced by different stimuli
are different; thus, exploring the MEG signals of patients with
schizophrenia when viewing different facial emotion stimuli
may help to reveal potential biomarkers of schizophrenia.

The proposal of the small-world network [18] provides a
new perspective for studying complex systems [19]. When
analyzing time series by complex network, the dynamic infor-
mation in time series can be mined by analyzing the topolog-
ical characteristics of the network [20], [21], [22], [23], [24].
The brain consists of a complex networks with characteristics
similar to those of networks in physical systems. Studying
brain networks enhances overall understanding of nervous
system activity [25], [26], [27], [28], [29], [30]. Since Rubinov
and Sporns [23], methods of analyzing complex networks
have been widely employed in investigations of various brain
signals [29], [31], [32], [33], [34]. There are many examples
of the use of such methods in schizophrenia research. Through
the network analysis of brain signals, Hadley et al. [35] found
that the topological characteristics of the brain network in
patients with schizophrenia were related to the treatment that
they received. Importantly, Jiang et al. [36] utilized a causal
network to analyze the causality of changes in brain structures
in patients with schizophrenia. Moreover, Lee et al. [37]
successfully predicted the clinical symptoms of schizophrenia
by using brain network features. Furthermore, Strauss et al.
[38] utilized network analysis and found that alogia and
avolition were the main negative symptoms of schizophrenia
and demonstrated that these symptoms were also related to
the patient’s sex. Strauss et al. [39] further used complex
network analysis to explore the underlying structural char-
acteristics of patients with negative schizophrenia symptoms.
Li et al. [40] successfully identified patients with schizophrenia
using a classifier trained on brain network topology parame-
ters. Through network analysis, Karyakina and Shmukler [41]
proved that the cognitive processing speed of patients with
schizophrenia was markedly slowed. Kong et al. [42] verified
that neurological soft signs (NSS) were closely related to
changes in brain network topology in patients with schizophre-
nia. Ye et al. [43] employed network analysis and found
that as the course of the disease progressed, the relationships
among different symptoms in patients with schizophrenia
weakened, and the probability of positive symptoms increased.
Masychev et al. [44] extracted information on the efficient
connectivity of brain networks in schizophrenia and used it to
successfully differentiate between schizophrenia patients and
controls. In conclusion, the above applications of complex
network-based analysis of brain signals from schizophrenia
patients illustrate the feasibility of applying this method to
analyze the MEG data of patients with schizophrenia. The
complex network analysis of MEG time-series data has pro-
vided valuable insights for schizophrenia research.

Interestingly, Lin et al. [45] demonstrated that the interac-
tion among brain rhythms differed according to sleep stage,
providing a new model for network research on sleep-related
brain signals. Inspired by their findings, we hypothesized

that schizophrenia patients might demonstrate differences in
the coupling of brain rhythms among frequency bands under
different conditions. However, most of the network analyses of
brain signals in schizophrenia have used statistical correlations
of time-series data to describe the information exchange (i.e.,
the functional connectivity) within the brain of schizophrenia
patients [46], [47], [48], [49], [50]; they did not explore
the coupling among brain rhythms. We believe that simple
network analysis is insufficient for examining the biomarker
in MEG signals of patients with schizophrenia. It is also
necessary to understand the relationships among MEG signals
of different frequency bands to obtain a more comprehensive
network analysis of MEG data in patients with schizophrenia.
Therefore, we believe that it is necessary to explore the
interactions among different brain rhythms in patients with
schizophrenia.

The complexity, synchronization, and functional network
of brain signals exhibit different emotional characteristics
under different stimulus conditions [51], [52], [53]. There-
fore, we proposed the following hypotheses for the network
analysis of MEG data elicited by facial emotion images in
patients with schizophrenia. First, we predicted that there are
differences in the network characteristics of MEG signals
of different frequency bands in schizophrenia patients when
viewing different facial emotion stimuli. Second, we predicted
that different facial emotion stimuli would elicit differences
in the coupling strength of MEG signals among frequency
bands in schizophrenia patients. To verify these hypotheses,
we analyzed the network topology of MEG signals among
six frequency bands in schizophrenia patients under four
stimulus conditions. In addition, we examined the dynamic
coupling among MEG signals of different frequency bands
in schizophrenia patients under different stimulus conditions;
these data are the major novel contribution of this study. Thus,
this study provides a new perspective on the network analysis
of MEG signals in patients with schizophrenia.

The remainder of this paper is organized as follows:
Section II introduces the acquisition and preprocessing of
experimental data, the experiment design and related algo-
rithms employed in the experiment. Section III presents the
experimental results. Section IV introduces some discussions
about this research. Section V draws conclusions of this
investigation.

II. METHODS

A. Participants
A total of 17 schizophrenia patients (age: 24.67 ± 2.640)

and 15 healthy controls (age: 23.06±5.494) participated in the
study. All patients were clinically diagnosed with schizophre-
nia by psychiatrists and were recruited from outpatient clinics
in the Nanjing Brain Hospital. Healthy controls were recruited
by the hospital’s psychiatrists via an advertisement posted
on the hospital’s home page. The inclusion criteria for all
participants were as follows: a) not diagnosed with other
mental disorders, b) no severe brain trauma, c) normal cogni-
tive function, d) normal or corrected-to-normal vision, e) not
currently pregnant, and f) no abuse of drugs or alcohol in the
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two weeks prior to MEG recordings. All participants signed
an informed consent form after the relevant details of this
investigation were explained. This study was approved by the
Ethics Committee of the Affiliated Brain Hospital of Nanjing
Medical University (2017-KY015).

B. Experimental Design
We utilized pictures from the Chinese Affective Facial

Picture System (CAFPS) [54] as stimuli and categorized them
into negative stimuli, positive stimuli, neutral stimuli and gray-
cross stimuli. Negative stimuli included sad faces, positive
stimuli included happy faces, and neutral stimuli included
neutral faces. For each of these three types of stimuli, 24 corre-
sponding images of facial expressions were selected (12 males
and 12 females), and each picture was randomly repeated
3 times, for a total of 72 stimuli. The gray-cross stimuli were
comprised of 72 pictures of a gray cross. During stimulus
presentation, the four categories of stimuli appeared randomly,
with each stimulus presented for 600 ms and an stimulus
interval of 650 ms to 800 ms, for a total of 288 stimuli.
Four additional stimuli (the numbers 1, 3, 5, and 7) were
included to evaluate participant attention; when these four
stimuli appeared, the participants were instructed to press the
corresponding keys.

C. Collection of MEG Signals
MEG signals were collected and recorded by a senior

engineer using the Canadian CTF/VSM 275 channel full-head
MEG system. Before MEG signal collection, all subjects
were asked to remove all metal-like objects on their person
that could impair electromagnetic signals. Each participant
entered the collection room with electromagnetic shielding,
sat quietly on the test chair, placed their head in the array
of helmet-shaped sensors and stared at the display in front of
them. At the time of MEG collection, three coils were placed
(one on the tip of the participant’s nose and one in front of each
ear) to detect the relative position of the brain to the sensor
array. After ensuring that the participants were in a relaxed
state, the stimuli were projected onto the monitor in front of
the participants, and MEG signals were collected and recorded
simultaneously, with a sampling frequency of 1,200 Hz. Dur-
ing the whole MEG signal recording, the electrocardiogram
(ECG) and electrooculogram (EOG) signals of the participants
were simultaneously recorded to facilitate manual inspection
of MEG signals in the later stage. During the scanning pro-
cess, participants were monitored and instructed via cameras
and intercoms located in the electromagnetic shielded room.
Participants were instructed not to move, as blinks and muscle
movements could impact the reliability of the data during the
MEG signal recording. If any participant movements were
found to affect the reliability of the data, the signal was
dropped and recorded again.

D. Preprocessing of MEG Data
First, the MEG data were manually checked (removed

artifacts) through the MATLAB toolbox EEGLAB 12.0, and
the data sets with excessive interference were removed. Then,

the MEG data were preprocessed. All MEG data preprocess-
ing was performed offline using the SPM8 toolbox in the
MATLAB environment. First, SPM8 was used to intercept
data segments from 200 ms before each stimulus to 600 ms
after each stimulus. Then, the intercepted MEG data were
separated according to different stimuli, and the 50 Hz power
line components were removed by using the relevant band stop
filter for notching. Finally, the MEG signal was decomposed
into signals of different frequency bands by using relevant
bandpass filters of different frequency bands [52], [53]. More
specifically, the different frequency bands were delta (1-4 Hz),
theta (4-8 Hz), alpha 1 (8-10 Hz), alpha 2 (10-13 Hz), beta
(13-30 Hz), and gamma (30-60 Hz) [32], [55].

E. Establishment of a Functional Network and Analysis
of its Topological Parameters

A functional network was established at the sensor level,
in which each sensor served as a node of the network.
Since the MEG acquisition system had 275 channels, the
established functional network had 275 nodes. We used mutual
information, a characteristic of information theory, to measure
the network connectivity. Mutual information provides a good
measure of the coupling of time-series data and is defined
as follows. Assuming that the two random processes are X
and Y , the probability distributions of the variables are p(x)

and p(y), respectively. In addition, their joint probability is
p(x, y), and their mutual information can be calculated by
formula (1).

I (X; Y ) =

∑
p(x, y) log

p(x, y)

p(x)p(y)
(1)

The calculation formula of the connection matrix A(i, j) of the
functional network is shown in formula (2).

A(i, j) =

{
ai j = I (Si ; S j ) (i ̸= j)
ai j = 0 (i = j)

(2)

where Si and S j represent two single subseries in a multi-
dimensional time series (in this work, the i-th channel and
the j-th channel of MEG signals), and ai j represents the
connection strength between the i-th node and the j-th node.
Usually, to ensure the network connections are not redundant,
thresholding is performed on the connection matrix A(i, j). The
selection of threshold parameters referred to the suggestions
of Wijk et al. [56], Stam et al. [57] and Heuvel et al. [58].
A threshold parameter that is too large will result in a
disconnected network, and too small will result in a redundant
network connection. To eliminate false connections and ensure
the connectivity of the network, in this work, we integrated the
above suggestions for network threshold parameter selection
and retained connections with more than 75% of the strongest
connection strength; all other connection strengths were set
to 0. Then, we analyzed network topology parameters after
threshold processing.

We used the average node degree, average clustering coef-
ficient, average shortest path length and average global effi-
ciency to analyze the topological structure of the functional
brain network.
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The node degree is the sum of the connection strengths of all
links connected to the node. It characterizes the importance of
that node in the network. It can be calculated by formula (3),
where N represents the number of nodes in the network.

ki =

∑
j∈N

ai j (3)

The clustering coefficient is a parameter used to measure the
clustering of network nodes. For a single node, the clustering
coefficient is defined as the ratio of the number of connected
nodes to the possible maximum number of edges [18], [59],
which can be calculated by formula (4), where N represents
the number of nodes in the network.

Ci =

∑
j,m∈N

ai j aimamj

ki (ki − 1)
(4)

The clustering coefficient of the entire network is the average
of the clustering coefficients of all nodes. It can be calculated
by the formula (5).

C =
1
N

∑
i∈N

Ci (5)

In a complex network, the distance between two nodes is
defined as the number of edges in the shortest path connecting
these two nodes. The average shortest path length L of a
network is the average of the distances between all nodes [59],
which is calculated by formula (6), where N represents the
number of nodes in the network.

L =
1

N (N − 1)

∑
i ̸= j

di j (6)

where di j represents the distance between node i and node j .
The global efficiency of the network is defined as the

average of the efficiency of all network nodes. It measures the
efficiency of information exchange in a complex network [60]
and is calculated by formula (7), where N represents the
number of nodes in the network.

E =
1
N

∑
i∈N

Ei =
1
N

∑
i∈N

∑
j∈N , j ̸=i

di j
−1

N − 1
(7)

F. Multidimensional Cross-Recurrence
Quantification Analysis

Our MEG device had 275 channels; therefore, MEG datasets
from a subject consisted of 275 time series. Therefore, the
MEG data can be mathematically viewed as a multidimen-
sional signal, and the general method of describing the correla-
tions of one-dimensional time-series data is not appropriate for
analysis. We employed a multidimensional cross-recurrence
quantification analysis [61] to measure the nonlinear dynamic
coupling among different frequency bands. The multidimen-
sional cross-recurrence quantification analysis is defined as
follows.

A d-dimensional time series P is given, as is shown in
formula (8).

P =


P1
P2
...

Pn

 =


p1,1 p1,2 · · · p1,d

p2,1 p2,2 · · · p2,d
...

...
. . .

...

pn,1 pn,2 · · · pn,d

 (8)

where pi, j is the value of the j-th dimension of the time-series
data at time i , d is the number of dimensions of the multidi-
mensional time series. Thus, we can obtain the phase space
vector V of the time-series data P , as shown in formula (9).

V =


V1
V2
...

Vn

 =


P1 P1+τ · · · P1+(D−1)τ

P2 P2+τ · · · P2+(D−1)τ

...
...

. . .
...

Pn−(D−1)τ Pn−(D−2)τ · · · Pn


(9)

where D is the embedding dimension, and τ is the embedding
delay. The estimation of embedding dimension D and embed-
ding delay τ followed the multidimensional false-nearest
neighbors (MdFNN) method [62].

In the same way, the phase space W of another
d-dimensional time series Q can be obtained. Then, the multi-
dimensional cross-recurrence plot is defined as equation (10).

MdC R P,Q
i, j = H

(
r −

∥∥Vi − W j
∥∥)

(10)

where H(x) is the Heaviside function, r is a threshold param-
eter, and ∥•∥ is the Euclidean distance between Vi and W j .
According to Wallot’s suggestion [61], when the embedding
dimension required by multidimensional time-series data was
far less than the actual dimension of the time-series data,
embedding was not required. Therefore, the multidimensional
cross-recurrence plot was simplified as equation (11).

MdC R P,Q
i, j = H

(
r −

∥∥Pi − Q j
∥∥)

(11)

When analyzing the dynamic coupling of different MEG
frequency bands in patients with schizophrenia, according to
a MdFNN method, we calculated the embedding dimension
D = 2 for the MEG signals. The actual dimension of our
MEG signals was high. Therefore, in this work, we used the
simplified model of multidimensional cross-recurrence plot.
Then, we used the feature quantity recurrence rate (R R) of the
cross-recurrence plot to measure the coupling strength between
the two multidimensional time series. The R R quantifies the
ratio of recurrence points to the total number of points in the
recurrence plot plane and can be calculated by formula (12).
In addition, according to the suggestion of Webber and Zbi-
lut [63] to keep the R R at 1%-5%, we set the threshold
parameter r to 0.62.

R R =
1
n2

N∑
i, j=1

MdC R P,Q
i, j (12)

G. Statistical Analysis
First, a two-factor ANOVA with group (patients with

schizophrenia and controls) and stimulus condition (positive,
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Fig. 1. The brain network topology parameters of schizophrenia patients and controls in the negative stimulus condition. In the figure, HC indicates
the MEG signals of healthy controls, and SC represents the MEG signals of patients with schizophrenia. In the figure, ns indicates p ≥ 0.05, ∗

denotes p < 0.05, ∗∗ means p < 0.01, ∗∗∗ represents p < 0.001.

negative, neutral and gray cross) was performed. Subsequently,
post hoc independent sample t-tests were used to explore the
significant difference between patients and the controls under
a single stimulus condition.

III. EXPERIMENTAL RESULTS

A. Analysis of Topological Characteristics of the
Functional Network

We analyzed the topological characteristics of the cor-
responding network of MEG signals among schizophrenia
patients and controls under different stimulus conditions. The
results of the two-factor ANOVA for the topological parame-
ters of the brain network are shown in Table I. It is clear from
Table I that the topological parameters differed according to
group and that there was no interaction between the two factors
(Group and Stimulus condition). We also found significant
differences between the patient and control groups mainly in
the theta, alpha 1 and beta bands. The results of the post hoc
independent sample t-test within specific stimulus conditions
were as follows.

The brain network topology parameters of schizophrenia
patients and controls in the negative stimulus condition are
shown in Fig. 1. In the theta, alpha 1, and beta frequency
bands, the average node degree of the brain network of
schizophrenia patients was significantly higher than that of
the controls, while in the theta and alpha 1 frequency bands,
the average shortest path length of the brain network of
schizophrenia patients was significantly shorter than that of
the controls. In addition, the average clustering coefficient and
average global efficiency of the brain network in the alpha
1 and beta bands in schizophrenia patients were significantly
higher than those in the controls.

TABLE I
THE RESULTS OF THE TWO-FACTOR ANOVA FOR THE TOPOLOGICAL

PARAMETERS OF THE BRAIN NETWORK

The results of the brain network topology parameters of
schizophrenia patients and controls in the positive stim-
ulus condition are shown in Fig. 2. The average node
degree of the brain network in the theta, alpha 1 and beta
bands of schizophrenia patients was significantly higher than
that of the controls. In addition, the average clustering coef-
ficient and average global efficiency of the brain network in
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Fig. 2. The brain network topology parameters of schizophrenia patients and controls in the positive stimulus condition. In the figure, HC indicates
the MEG signals of healthy controls, and SC represents the MEG signals of patients with schizophrenia. In the figure, ns indicates p ≥ 0.05, *
denotes p < 0.05, ** means p < 0.01, *** represents p < 0.001.

the alpha 1 frequency band in schizophrenia patients were
significantly higher than those in controls, but the average
shortest path length of the brain network in schizophrenia
patients was significantly lower than that in controls at this
frequency band.

The results of the topological parameters of the brain
networks of patients with schizophrenia and the controls in
the neutral stimulus condition are shown in Fig. 3. First,
in the neutral stimulus condition, the average node degree of
the brain network in the theta, alpha 1, and beta bands was
significantly higher in patients with schizophrenia than that in
controls. Second, in the alpha 1 and beta bands, the average
clustering coefficients of brain networks in schizophrenia
patients were significantly higher than those in controls. Third,
the average global efficiency of the brain network in the theta
and alpha 1 bands was significantly higher in schizophrenia
patients than that in the controls, but the average shortest
path length of the brain network in schizophrenia patients
was significantly shorter than that in controls in these two
frequency bands.

Fig. 4 shows the results of the topological parameters of
the brain network in schizophrenia patients and controls in
the gray-cross stimulus condition. First, in the gray-cross
stimulus condition, the average node degree of the brain
network in the theta, alpha 1, and beta bands was significantly
higher in schizophrenia patients than that in the control group.
In addition, the average clustering coefficient and average
global efficiency in the theta and alpha 1 bands of the brain
network in schizophrenia patients were significantly higher
than those of participants in the control group. Third, the
average shortest path length in the alpha 1 band of the brain
network in schizophrenia patients was significantly shorter
than that of participants in the control group.

For the four different stimulus conditions, significant dif-
ferences in topological brain network characteristics between
schizophrenia patients and controls mainly occurred in the
theta, alpha 1 and beta bands. In these three frequency
bands, a significant difference in the average node degree
was observed under the four different stimulus conditions.
Therefore, the stimulus condition had little effect on the impor-
tance of the corresponding functional network nodes of MEG
data in patients with schizophrenia. For the average clustering
coefficient, the significant difference between schizophrenia
patients and controls varied according to stimulus condition.
The difference in the average clustering coefficient between
the two groups of participants mainly appeared in the alpha
1 and beta bands under negative and neutral stimulus con-
ditions. When gray-cross stimuli were presented, there was
a significant difference in the theta and alpha 1 frequency
bands, while under the positive stimulus condition, there was a
significant difference in only the alpha 1 band. For the average
global efficiency, there was a significant difference between the
two groups in the alpha 1 and beta bands under the negative
stimulus condition. In the neutral and gray-cross stimulus
conditions, the significant difference between the two groups
of participants mainly appeared in the theta and alpha 1 bands,
but there was a significant difference in only the alpha 1 band
under the positive stimulus condition. For the average shortest
path length, there were significant group differences in the
theta and alpha 1 bands under the negative and neutral stimulus
conditions, while there were significant differences in only
the alpha 1 frequency band under the positive and gray-cross
stimulus conditions. The above analysis of the brain network
topology characteristics of schizophrenia patients and controls
under different stimulus conditions demonstrated that negative
stimuli mainly affect the network topology characteristics in
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Fig. 3. The topological parameters of the brain networks of patients with schizophrenia and the controls in the neutral stimulus condition.
In the figure, HC indicates the MEG signals of healthy controls, and SC represents the MEG signals of patients with schizophrenia. In the figure,
ns indicates p ≥ 0.05, * denotes p < 0.05, ** means p < 0.01, *** represents p < 0.001.

Fig. 4. The topological parameters of the brain network in schizophrenia patients and controls in the gray-cross stimulus condition. In the figure,
HC indicates the MEG signals of healthy controls, and SC represents the MEG signals of patients with schizophrenia. In the figure, ns indicates
p ≥ 0.05, ∗ denotes p < 0.05, ∗∗ means p < 0.01, ∗∗∗ represents p < 0.001.

the alpha 1 and beta bands of schizophrenia patients, and
positive stimuli mainly affect the brain network topology in
the alpha 1 band of patients with schizophrenia. The influence
of neutral stimuli and gray-cross stimuli on the topological
characteristics of the brain network mainly appeared in the
theta and alpha 1 bands in schizophrenia patients.

B. Analysis of the Dynamic Coupling Strength Among
MEG Frequency Bands

The dynamic coupling among different MEG frequency
bands was analyzed in schizophrenia patients and controls

under different stimulus conditions. A two-factor ANOVA
with group (patients with schizophrenia and controls) and
stimulus condition (positive, negative, neutral and gray cross)
was performed. The results of the two-factor ANOVA for
dynamic coupling strength are shown in Table II. It is clear
from Table I that there was no interaction between the two
factors (Group and Stimulus condition). Table II also shows
that the difference in dynamic coupling strength between
the two groups mainly appeared in three frequency pairs
(the theta-alpha 1, theta-gamma and delta-gamma pairs). The
results of the post hoc independent sample t-tests in each
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TABLE II
THE RESULTS OF TWO-FACTOR ANOVA FOR DYNAMIC

COUPLING STRENGTH

stimulus condition were as follows. The coupling between
different pairs of MEG frequency bands in schizophrenia
patients and controls under different stimulus conditions are
shown in Fig. 5.

Under the negative stimulus condition, the coupling between
the theta and gamma bands (highlighted in Fig. 5(a)) in
schizophrenia patients was significantly stronger than that in
the controls. The results of the statistical analysis are shown
in Fig. 6.

Fig. 5(b) clearly shows that under the positive stimulus
condition, the coupling strength between the alpha 1 wave
and theta wave, between the delta wave and gamma wave,
and between the theta wave and gamma wave of the MEG
signals (links highlighted in Fig. 5(b)) was significantly greater
in patients with schizophrenia than in controls. The statistical
analysis results are shown in Fig. 7. The results revealed that
the coupling strength between the theta wave and gamma wave
of the MEG signals significantly differed between schizophre-
nia patients and controls (p = 0.001).

As shown in Fig. 5(c), there were no significant differences
in the coupling strength of different MEG frequency band
pairs between schizophrenia patients and the controls under
the neutral stimulus condition.

As clearly seen in Fig. 5(d), under the gray-cross stimulus
condition, the coupling strengths between the alpha 1 wave
and the theta wave as well as between the theta wave
and the gamma wave (the links highlighted in Fig. 5(d)) in
schizophrenia patients were significantly higher than those in
controls. The statistical analysis results are shown in Fig. 8.
Statistical analysis revealed that the greatest difference in the
dynamic coupling strength between schizophrenia patients and
the controls occurred in the theta-gamma pair (p = 0.00063).

Under the four different stimulus conditions, the dynamic
coupling strength between the different MEG frequency bands
of schizophrenia patients and the controls varied. The post
hoc independent sample t-tests revealed significant differences
in the coupling intensity of the different frequency band
pairs in schizophrenia patients and controls for three pairs in

the positive stimulus condition, two pairs in the gray-cross
stimulus condition, and one pair in the negative stimulus
condition. There were no significant group differences under
the neutral stimulus condition.

IV. DISCUSSION

Compared with other methods of quantifying the coupling
of time-series data [47], [64], mutual information was simple
to acquire, easy to implement and could be used in quick
calculations, which enabled better exploration of the coupling
between two time series. Therefore, we used mutual infor-
mation as a link indicator to construct a functional network.
Besides, we also tried to estimate the functional connectivity
network of MEG in schizophrenia patients using coherence
and phase lag index, but the topological parameters of the
functional connectivity network constructed by these two
indices were hardly significantly different between the patients
and controls on our dataset. This is because MEG has strong
nonlinear properties, but the coherence describes the linear
correlation in the frequency domain of the MEG signal, and
can’t explore the nonlinear correlation in the MEG signal
[47], [64]. In addition, the phase lag index is sensitive to noise,
and the noise signal in the MEG signal that is not processed
cleanly will enhance the phase synchronization of the MEG
signal leading to false connections [65].

Our study is the first to explore the nonlinear cou-
pling between different pairs of MEG frequency bands in
schizophrenia patients. The MEG acquisition equipment we
used had 275 channels, so the MEG signals we collected
consisted of 275 time series, which is equivalent to a
275-dimension time series. Because of the high dimension-
ality of the MEG data, the general algorithm describing the
coupling between time-series data was not appropriate for
exploring the dynamic network between different frequency
bands of MEG signals in schizophrenia patients. Therefore,
we utilized the nonlinear multidimensional cross-recurrence
quantification analysis method to measure the dynamic cou-
pling between the different pairs of frequency bands of
MEG signals in schizophrenia patients. Multidimensional
cross-recurrence quantification analysis directly calculates the
nonlinear dynamic coupling between multidimensional time-
series data. With this approach, it is not necessary to transform
multidimensional time-series data into one-dimensional time-
series data before calculating the nonlinear coupling between
the two time series. Therefore, this approach is highly suitable
for analyzing the MEG signals of patients with schizophrenia.

The results of the topological features of the functional
network in schizophrenia patients and controls under four dif-
ferent stimulus conditions suggest that, compared to controls,
schizophrenia patients have a higher speed of information
transmission in the brain network and a more complex network
structure. In other words, small changes in specific units of
the brain network of patients with schizophrenia result in
larger changes in the function of the entire brain network [5],
[18], [23]. The presence of abnormal functional connectiv-
ity and structural abnormalities in the brain of schizophre-
nia patients may be the mechanisms underlying the above
results. Regarding abnormal functional connectivity, previous
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Fig. 5. The dynamic coupling among different MEG frequency bands in schizophrenia patients and controls under different stimulus conditions.
The colored nodes in the figure represent MEG signals of different frequency bands, and the width of the connection indicates the coupling strength.
The links highlighted in the figure represent those with statistically significant differences. HC indicates the MEG signals of healthy controls, and SC
represents the MEG signals of patients with schizophrenia.
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Fig. 6. Statistical analysis of the theta wave and gamma wave link
strengths of MEG signals in patients with schizophrenia and controls
under the negative stimulus condition. HC indicates the MEG signals of
healthy controls, and SC represents the MEG signals of patients with
schizophrenia.

Fig. 7. Statistical analysis of the link intensity of alpha 1 and theta
waves, delta and gamma waves, and theta and gamma waves in
patients with schizophrenia and controls under the positive stimulus
condition. HC indicates the MEG signals of healthy controls, and SC
represents the MEG signals of patients with schizophrenia.

studies have proven that glutamatergic N-methyl-D-aspartate
(NMDA) receptor function is abnormal in schizophrenia
patients, impairing the feedback loop that regulates neuronal
activity and leading to abnormal firing of neurons in the
brain of schizophrenia patients, resulting in a disruption of
the excitatory-inhibitory balance of nerve cells [66], [67],
[68]. The change in the excitatory-inhibitory balance leads to
desynchronization of the nervous system, which leads to the
abnormal connectivity of the brain observed in schizophrenia
patients [69], [70]. Due to the abnormal connections among
neurons in the brains of patients with schizophrenia [46], [48],
[49], [50], the whole-brain networks of these patients undergo
large changes in performance [71]. Regarding structural abnor-
malities, studies have demonstrated abnormalities in the white
and gray matter of the brain in schizophrenia patients, leading
to changes in brain activity [72], [73], [74]. Overall, these
changes result in increased complexity and disorder of the
entire nervous system in schizophrenia patients, leading to

Fig. 8. Statistical analysis of link intensities between the alpha 1 wave
and theta wave and between the theta wave and gamma wave in
patients with schizophrenia and controls under gray cross stimulus
condition. HC indicates the MEG signals of healthy controls, and SC
represents the MEG signals of patients with schizophrenia.

clinical symptoms. These changes may be the main reason
for the onset of schizophrenia.

The strength of dynamic coupling between different MEG
frequency bands in schizophrenia patients and the controls
differed under different stimulus conditions. We found that
positive stimuli influenced the coupling strength between three
different pairs of MEG frequency bands (theta-alpha 1, theta-
gamma and delta-gamma) in schizophrenia patients. However,
neutral stimuli had almost no effect on the link between
the different pairs of MEG frequency bands in patients with
schizophrenia. Thus, positive stimuli resulted in prominent
brain activity differences in schizophrenia patients. Similar
results were found in previous studies. Aydin et al. [75]
had shown that positive stimulation induces higher activa-
tion of the cerebral cortex. Hempel et al. [13] found that
schizophrenia patients had increased activation of physio-
logical activities when viewing positive emotional stimuli.
Martin et al. [76] demonstrated that the activity in the gamma
band of schizophrenia patients was significantly increased
by positive stimuli. Martin also revealed that the LPP of
schizophrenia patients significantly increased in the positive
stimulus condition [16], [17]. The above findings suggest that
the changes in brain features are greater in schizophrenia
patients than in controls under the positive stimulus condition;
these differences may be a potential biomarker for schizophre-
nia. Therefore, we speculate that in the early diagnosis of
schizophrenia, using positive stimuli may facilitate the iden-
tification of patients with schizophrenia in the early stages.
This early identification may improve clinical interventions
and thereby reduce the incidence of the disease.

This paper investigated the topological characteristics of the
brain network of patients with schizophrenia and the dynamic
coupling between different MEG frequency bands. Although
this study provided a more comprehensive perspective for
the study of brain signals in schizophrenia, there were still
some limitations. First and most importantly, this study had
a small sample size, the conclusions of this study need to
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be further validated on a larger sample dataset. Second, the
functional network of patients with schizophrenia remained
at the sensor level, not at the source-space level. Finally,
we assessed only the dynamic coupling strength between pairs
of MEG frequency bands; thus, the causal relationship of
this coupling was not assessed. Therefore, our future studies
will focus on the functional brain network of patients with
schizophrenia and the causality of the MEG frequency band
coupling in source space.

V. CONCLUSION

This study explored the functional networks of MEG sig-
nals in six different frequency bands under four different
stimulation conditions at the sensor level in schizophrenia
patients. We are the first to explore the dynamic coupling
between pairs of MEG frequency bands in schizophrenia
patients under four different stimulus conditions. In particular,
the nonlinear dynamic coupling between MEG frequency
bands of schizophrenia patients provides a new direction
for schizophrenia research. Our approach revealed impor-
tant information about the brain activity of schizophrenia
patients. Abnormal network feature information in MEG data
of schizophrenia patients can be used as a marker for the
diagnosis of schizophrenia and may be able to successfully
distinguish schizophrenia patients from controls. Our results
have practical applications to enhance patient diagnosis and
expand schizophrenia research.
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