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Abstract— Deep Convolutional Neural Networks (CNNs)
have recently demonstrated impressive results in
electroencephalogram (EEG) decoding for several
Brain-Computer Interface (BCI) paradigms, including
Motor-Imagery (MI). However, neurophysiological
processes underpinning EEG signals vary across subjects
causing covariate shifts in data distributions and hence
hindering the generalization of deep models across
subjects. In this paper, we aim to address the challenge of
inter-subject variability in MI. To this end, we employ causal
reasoning to characterize all possible distribution shifts in
the MI task and propose a dynamic convolution framework
to account for shifts caused by the inter-subject variability.
Using publicly available MI datasets, we demonstrate
improved generalization performance (up to 5%) across
subjects in various MI tasks for four well-established deep
architectures.

Index Terms— Brain-computer interfaces (BCIs), causal-
ity, motor-imagery (MI), electroencephalogram (EEG).

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) technology primar-
ily aspires to provide neural communication and control

between a user and a machine bypassing the normal neuromus-
cular pathways. This is feasible by analyzing brainwaves cap-
tured by electroencephalogram (EEG) signal recordings using
signal processing and Machine Learning (ML) techniques.
Nowadays, BCIs find application in various areas, including
emotion recognition (e.g. [2], [3]), epileptic seizure detection
(e.g. [4], [5]), robotic control [6] as well as video gaming [7].
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One of the first and most popular BCI paradigms is
Motor-Imagery (MI). MI-BCIs are based on a neural process,
by which a subject mentally simulates a motor action, for
example the movement of a hand or foot, without actu-
ally executing it [8]. Developing MI-BCI systems (e.g. [9],
[10]) mainly relies on robust decoding of a subject’s motor
intentions from the recorded EEG signals, under the prior
assumption that these signals encode that relevant informa-
tion, and are mainly used for movement rehabilitation pur-
poses (e.g. [11], [12], [13], [14], [15], [16]) as well as the
wheelchair/exoskeleton control [17].

Several works have addressed the problem of EEG-based
motor-imagery classification using classical feature extraction
techniques [18]. The technique of common spatial pattern
(CSP) algorithm [19] and its various extensions, like the
Filter-Bank CSP (FBCSP) [20], are among the most popular
methods of this category due to their simplicity in design and
computational efficiency in implementation. In all these meth-
ods, specific band-pass filters are applied to the EEG signals
prior to the design of spatial filters, sacrificing flexibility and
adaptivity to some extend.

In recent years, Deep Learning (DL) techniques - and
most specifically Convolutional Neural Networks (CNNs) -
have largely alleviated the need for manual feature extraction,
achieving state-of-the-art performance in various areas, most
notably computer vision [21]. Due to their massive progress,
CNN-based feature extractors have been introduced in various
paradigms in the field of BCIs (e.g. [22], [23], [24], [25]), in an
effort to become generic EEG signal processing tools com-
pared to classical feature extraction techniques (e.g. [18], [19],
[20]). DeepConvNet and ShallowConvNet [26] are among the
first deep learning architectures employed in MI-BCIs and are
inspired by common spatial pattern (CSP) filters [19] since
they include convolutions across time followed by convolu-
tions across EEG channels. EEGNet [27] is a lightweight BCI
architecture which consists of a compound of temporal and
spatial filtering inspired by the filter bank common spatial
pattern (FBCSP) technique [20]. EEG-Inception [28] shares
the exact same fundamentals with EEGNet and has strong
performance results across different benchmarks. Although it
is similar to EEGNet, it includes several Inception branches,
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originally introduced in [29]. These branches consist of train-
able convolutional temporal filters of different scales, captur-
ing several temporal modulations of the EEG signals.

Although these deep learning architectures are inspired
by classical EEG feature extraction techniques and achieve
impressive performance in MI classification tasks, they usually
fail to tackle the problem of inter-subject variability [30],
preventing the successful deployment of a previously trained
MI classifier to new unseen subjects. Inter-subject variability
is defined as the change in data distributions across different
subjects: each individual has a unique brain anatomy and
functionality that makes the discovery and exploitation of
shared invariant features extremely difficult. In fact, these
differences are so distinct that previous works have shown that
the identification of a specific subject out-of-many is actually
feasible (e.g. [31], [32], [33]). Therefore, modern DL-based
BCIs tend to fail to generalize well in unseen subjects due
to this type of data distribution shift. For many years, nor-
malization techniques (e.g. [34], [35]) - data scaling using a
mean and standard deviation - in conjunction with classical
machine learning techniques have been considered the gold
standard to solve the problem of inter-subject variability. With
the advent of deep learning, methods like transfer learning
have emerged in an effort to provide a solution (e.g. [36],
[37], [38], [39]). In most of these methods, a small calibration
set from the unseen subject is utilized to fine-tune parts of
the pre-trained deep network architecture. In [39] only the last
fully-connected layers are fine-tuned while the previous layers
are frozen. In [36] some identified layers are fine-tuned to
maximize knowledge transfer for MI classification. Although
transfer learning has been proven to perform well, it still
requires a calibration session in order to generalize well to
unseen subjects. In the direction of zero-calibration networks,
[40] proposes an adversarial inference framework that learns
subject invariant features. In this work, we aspire to pro-
vide an alternative solution to the problem of inter-subject
variability and enhance the above mentioned BCI deep
architectures dynamically without the need of a calibration
session.

Causal reasoning provides tools to breakdown and analyze
important aspects of a BCI task, identify and possibly resolve
some of these challenges by employing appropriate ML
strategies. The methodical breakdown of a BCI task and the
identification of the causal relationships between the various
variables of interest take into account the expert’s knowledge
of the involved biological and neurophysiological processes
and can be of vital importance when designing and building
ML-based models in the field of BCIs. In this work, we focus
mainly on MI-BCI systems, and inspired by the work of [41],
we analyze the task of MI EEG signal classification through
the lens of causal reasoning. Motivated by this causal analysis,
we introduce a framework based on dynamic convolutions that
provably tackles the identified problem of data distribution
shift across subjects.

Our contributions can be summarized as follows:
1) We employ causal reasoning to breakdown and analyze

important challenges / distribution shifts in the task of
MI brainwave decoding

2) We propose a subject attention network based on learn-
able Gabor wavelets that can accurately identify the
different available subjects

3) Inspired by [42], we propose a framework based on
dynamic convolutions that utilizes our proposed subject
attention network and with zero calibration provably
tackles the issue of inter-subject variability in the task
of MI brainwave decoding according to our proposed
causal breakdown. More specifically, our causal analysis
allows us to design an evaluation setup which keeps
all the identified distribution shifts intact but the inter-
subject variability. Therefore, unlike other works in the
area which claim improved cross-subject performance
and often utilize a mixture of techniques like data
augmentation (which can affect also other causal vari-
ables of interest), our work is theoretically proven to
target the problem of inter-subject variability through
this specifically crafted evaluation setup.

The remainder of the paper is organized as follows:
Section II describes our causal analysis to breakdown impor-
tant challenges / distribution shifts in the task of MI brainwave
decoding. Section III outlines our proposed framework based
on dynamic convolutions that improves the generalization of
MI-BCI systems. Section IV consists of the experimental part,
where performance results and comparisons are detailedly
presented. Section V acts as a discussion part to demonstrate
the advantages and disadvantages of our proposed framework.
The last section summarizes and concludes our work and
briefly outlines future research steps.

II. CHARACTERIZING DISTRIBUTION SHIFTS IN
MOTOR-IMAGERY (MI) DECODING USING

CAUSAL REASONING

The main goal of this paper is to propose a framework that
tackles the issue of inter-subject variability in CNN-based BCI
models. To achieve this, we will first investigate the problem of
MI brainwave decoding through the lens of causal reasoning.
As it has been demonstrated in [41], causal models encode
naturally more information which can be vital in the machine
learning design process and if appropriately used can lead to
models which are more robust to certain types of distribution
shifts. But why is this causal analysis important in this work
and for the proposed framework? By performing this causal
breakdown, we can identify most of the possible distribution
shifts that can be met in the task of MI classification. By asso-
ciating the inter-subject variability to a distribution shift in one
of the core variables of interest, we can design an evaluation
setup which keeps all the identified challenges intact but the
inter-subject variability. Therefore, we can certainly claim that
our framework specifically contributes in solving the targeted
problem.

A. Preliminaries
Causal reasoning is the analysis of a task / problem in terms

of cause-effect relationships between the different variables
of interest: if a variable A is a direct cause of variable B,
we express it as A → B (A causes B or B is the effect
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Fig. 1. Key challenges in machine learning for a MI EEG classification task. X represents input EEG signals, Z the true unobserved brain activity,
Y the associated MI labels. • and × represent EEG signals of different labels. Dots represent data points of any label and their color represent
different EEG acquisition devices.

of A). When designing a machine learning algorithm, it is
crucial to understand all the involved factors as well as their
causal relationships. A causal breakdown of a system can
be represented as a directed acyclic graph (DAG) where the
nodes are the variables of interests and the edges represent
direct causal relationships. These diagrams can capture vital
information for the involved variables of interests such as
conditional dependencies as well as independencies.

B. Causality in Motor-Imagery Decoding
In a MI classification problem, we want to accurately predict

the mentally performed task from a recorded EEG signal.
Mathematically, given an input EEG signal X , we train a
statistical model to predict the correct MI task Y , which can be
the imagery movement e.g. of a hand or foot. In essence, this
statistical model tries to estimate the conditional probability
P(Y |X) using an appropriate objective function.

In machine learning tasks, given the input X and the
prediction target Y , we can establish that the task to estimate
P(Y |X) can be either [43]:
• Causal: when X → Y , predict effect from cause
• Anti-causal: when Y → X , predict cause from effect
Using the above basis, we can define an MI EEG classifica-

tion task as an anti-causal problem, since the true MI intention
(observed with the MI label Y ) can be considered the cause
of the recorded EEG signal X . Additionally, inspired by [43],
we can consider X as a sequence of imperfect observed
measurements of the true unobserved brain activity Z within,
mainly, the cortical areas responsible for the sensorimotor
rhythms, i.e. Z → X . Therefore, using a causal diagram,
an MI EEG classification task can be described as:

X ← Z ← Y (1)

As a consequence of the above anti-causal definition and
causal diagram, we can explore the problem of MI EEG

classification through the following causal factorization:

P(X, Y, Z) = P(X |Z)P(Z |Y )P(Y ) (2)

Through this causal breakdown, we can categorize the
major challenges associated with Motor-Imagery (MI) EEG
classification tasks into three main categories as illustrated in
Figure 1. Challenges related with the:

1) Training EEG signals - X . One of the renowned
challenges in motor-imagery classification problem -
as in any medical-related machine learning problem -
is the scarcity of labelled data due to the lengthy
acquisition process (e.g. [44], [45], [46]). Subjects are
required to spend hours in a laboratory facility perform-
ing successive motor-imagery tasks [47]. This process
has been reported to cause fatigue and discomfort, even
when devices with dry electrodes are utilized. To make
things worse, due to the wide variety of available
EEG recorders in the market, the data acquisition can
be undertaken with various devices (acquisition shift
P(X |Z)) which have completely different specifications
(e.g. number of electrodes, sampling frequency to name
just a few), making the combination of publicly available
EEG datasets extremely difficult [48].

2) Anatomical differences of subjects - P(Z |Y ). Each
subject has a unique brain anatomy and functionality that
results in polymorphous neural activity patterns when
appeared in the surface observed EEG signal (e.g. [49],
[50]). When designing a generic ML-based MI-BCI,
researchers need to take this inter-subject variability
(data distribution shift across subjects) into account.

3) Class Imbalance - P(Y ). Class imbalances can arise
between the training and the deployment set of a MI-
BCI. It is necessary for the training set to be as closely
balanced to the deployment set as possible when training
machine learning models.
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III. OUR PROPOSED FRAMEWORK

In this work, we mainly focus on the challenge of subject
distribution shift (or inter-subject variability). Using the causal
breakdown described in Section II, we will use two publicly
available MI datasets - which contain a large number of
different subjects, are class balanced, have relatively enough
trials per subject and all trials come from a single EEG
recorder (within each dataset) - essentially solving all the
above identified challenges but the subject distribution shift.
In terms of the causal factorization (Eq. 2), the problem of
inter-subject variability can be seen as a distribution shift S
where:

P(X, Y, Z) = P(X |Z)PS(Z |Y )P(Y ) (3)

Our framework can be applied to any established CNN-
based MI-BCI architecture, resulting in performance increase.
Inspired by [42], we utilize dynamic convolutions in the
domain of MI brainwave decoding. Instead of having a BCI
architecture that tries to discover a common latent space for
all K subjects in the training set, we use K parallel trainable
convolutional layers (corresponding to the K available training
subjects) for each convolutional block of a CNN-based BCI
network. Using a subject attention network that learns to
distinguish between the available individuals, the subjects
are separated from one another and essentially K parallel
personalized models of the same BCI architecture are trained
simultaneously, as illustrated in Figure 2.

Our proposed framework is inspired by the work of [42]
in the field of computer vision, but it includes various modi-
fications to address challenges apparent in the EEG domain.
Although the complete framework will be detailedly described
in the following subsections III-A and III-B, these differences
can be summarized as follows:
• Instead of fully trainable attention mechanisms, it utilizes

our novel subject attention network (described in III-A)
which uses only trainable Gabor filters making it more
lightweight and explainable than a shallow fully trainable
neural network and it achieves very high performance in
the subject identification task.

• Unlike [42] where there is an attention mechanism
for each convolutional layer and these mechanisms are
trained in an unsupervised manner, our framework uses
only one attention mechanism for all convolutional layers,
and with supervised training, it learns to distinguish
between the available different subjects.

• The K number of parallel layers in our proposed frame-
work is not a tunable hyperparameter (like in [42]) but
coincides with the number of available subjects in the
training set.

• Instead of using the output vector of the attention mech-
anism as [42], our framework utilizes the proposed “uni-
formly attended” vector A* (described in III-B) in order
to be more robust to the low Signal-to-Noise Ratio (SNR)
of the EEG signal.

A. Attention Network
The first layer of our subject attention network is the

first order wavelet scalogram of the input EEG signal X .

Mathematically, let x(t) ∈ RT denote a one-dimensional input
EEG signal, where T is the number of initial EEG time points,
and ψϵ(t) be a wavelet. The 1st order scalogram is defined as
X(ϵ, t) = |x(t) ∗ ψϵ(t)|, where ∗ stands for the convolution
operator. To perform this operation, the raw input signal from
each EEG channel is convolved with a wavelet kernel with
size (1, W ) = (1, Fs

2 ) where Fs is the sampling frequency.
This wavelet kernel follows the real Gabor wavelet format:

ψϵ(t) =
1

√
2πσ

e−
t2

2σ2 cos(2πϵt) (4)

with t ∈ [−W
2 , W

2 ] and 1
σ

denotes the bandwidth and ϵ
the normalized frequency of the Gabor wavelet and these
two properties are the only trainable parameters of this
layer. During training, ϵ is restricted (ϵ ∈ [0, 1

2 ]) to sat-
isfy the Nyquist theorem. The three-dimensional (3D) tensor
X(c, ϵ, t) ∈ RC×F×T (where F is the number of Gabor filters
and C the number of EEG channels) containing the first order
wavelet scalograms X(ϵ, t) for each EEG channel is followed
by a global average pooling across time and frequency. Finally,
the resulted vector is passed through a fully-connected layer
to compute the subject id vector π .

B. Subject-Attended Dynamic Convolutions
The proposed framework takes the EEG signal X as input

and tries to learn both the correct MI task Y (estimate the con-
ditional probability P(Y |X)) as well as the correct subject id
π (estimate the conditional probability P(π |X)). The subject
attention network and the K parallel convolutional layers are
trained simultaneously using the following loss function:

Loss = (1− acc)× ℓAttention + acc × ℓM I (5)

where acc is the training accuracy of the subject attention
network and ℓ denotes the cross-entropy function (ℓAttention
for the subject attention network and ℓM I for the MI clas-
sification task). This loss function effectively enforces first
the training of the subject attention network and, as the
attention’s accuracy increases, it switches its focus to train
the parallel convolutional layers for the different MI tasks.
As also suggested in [42], since softmax does not work well
due to its near one-hot output, we use a large temperature in
the softmax of the attention network during training in order
to flatten the framework’s attention, allow a broader gradient
backpropagation and effectively assist in the subject attention
network’s training in the early epochs.

During inference, when an input EEG signal (x) from a
new unseen subject Sx is processed, it passes firstly through
the attention network and the subject attention vector π is
computed where

∑
i πi = 1. We empirically observed that this

vector is quite sparse, and if it was used during inference, only
a handful of parallel convolutional layers would be utilized
during the mixing. Instead, we would ideally like to use knowl-
edge from all K individuals and “shift” the attention more to
the most relevant subjects. To accomplish that, we compute
what we call the “uniformly attended vector” A*. If there
was no attention network, the K parallel convolutional layers
would be mixed with a uniform factor Ai =

1
K . To compute
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Fig. 2. Dynamic convolution framework for BCI architectures. X represents input EEG signal trial. The K different subjects in the training set
are represented by different colors in the convolutional blocks. Colored rectangles and arrows (namely green, red and dark blue) demonstrate the
different blocks that are taken into account when computing the final convolutional blocks for the MI classification task.

the “uniformly attended vector”, the uniform attention vector
A is combined with the subject attention vector π and the
result is passed through a softmax activation to flatten the
attention across all subjects - while maintaining the focus on
the most relevant ones (we refer the reader to the Appendix
for a performance comparison between using π and A* as
attention). Mathematically, this operation can be described as:

A1
A2
. . .

Ak


︸ ︷︷ ︸

A

+


π1
π2
. . .

πk


︸ ︷︷ ︸

π

σ
−→


A∗1
A∗2
. . .

A∗k


︸ ︷︷ ︸

A*

(6)

where σ denotes the softmax operation, A the uniform atten-
tion vector with Ai =

1
K and A* the “uniformly attended”

vector where
∑

i A∗i = 1. Let us denote with W j
i the learned

convolutional kernel of the network’s i th convolutional layer
from the j th parallel network and with W∗i the dynamic
convolutional kernel of the network’s i th layer, as illustrated
in Figure 2. In our proposed framework, we compute the
dynamic convolutional as follows:

W∗i (x) =

K∑
k=1

A∗k(x)Wk
i (7)

In other words, using the causal factorization (3), our
proposed framework estimate the probability PSx (Z |Y ) of a
new unseen subject Sx as the linear combination of K learned
conditional probabilities. More specifically:

PSx (Z |Y ) = A∗1 × PS1(Z |Y )+ A∗2 × PS2(Z |Y )

+ . . .+ A∗k × PSk (Z |Y ) (8)

IV. EXPERIMENTS

To validate our proposed framework based on our causal
breakdown in Section II, two publically available MI datasets
are used namely:

1) PhysioNet [51]: The original Physionet dataset includes
brain recordings from 109 healthy participants, regis-
tered via 64 EEG sensors with a sampling frequency
of 160 Hz, while performing a series of pseudoran-
domized cue-triggered MI tasks. In our experiments,
we first excluded data from 6 participants (subjects 88,
89, 92, 100, 104 and 106) due to differences in either the
sampling frequency or duration of the performed tasks.
We extracted trials corresponding to MI hand or feet
movements in the form of segments starting with the
visual cue and lasting for 4.1 seconds.

2) OpenBMI - MI [52]: The original OpenBMI dataset
consists of 3 BCI paradigms: ERP-based speller, MI and
SSVEP. The MI trials include brain recordings from
54 healthy participants, registered via 62 EEG sensors
with a sampling frequency of 1000 Hz. In the MI part
of the dataset, the participants performed a series of
cue-triggered MI tasks either with or without receiving
feedback (cursor moved according to the prediction of a
trained classifier). For the purpose of this study, we kept
only the MI-trials without feedback, since the neurofeed-
back was not included as a factor in our initial causal
analysis. In particular, we extracted trials corresponding
to MI hands in the form of segments starting with
the visual cue and lasting for 4 seconds. Furthermore,
we applied a notch filter at 60Hz - and its harmonics
(120, 180, 240, 300, 360, 420, 480) - to remove power-
line noise. We also applied a notch filter at 460Hz due
to a spurious artifact (consistent across all trials).

A. Subject Verification
The subject attention mechanism is a vital part in our

proposed framework. Therefore, we evaluated its performance
separately first in order to ensure its ability to distinguish
between the various available subjects in the two datasets.
We performed 10-fold trial-wise cross-validation to measure
its performance. Adam optimizer was used with learning rate
of 0.01 for the first 30 epochs (to allow the Gabor filters
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TABLE I
PERFORMANCE OF SUBJECT ATTENTION NETWORK (TRAINED AND

EVALUATED USING 10-FOLD CROSS-VALIDATION) IN PREDICTING THE

SUBJECT ID IN PHYSIONET AND OPENBMI - MI DATASETS.
CV STANDS FOR CROSS-VALIDATION

TABLE II
HYPER-PARAMETER CHOICES FOR THE EXPERIMENTS

to quickly adapt to the data) and 0.001 for the remainder
20 epochs. As shown in Table I, the subject attention network
performs sufficiently well in both datasets which makes it an
ideal candidate for the attention mechanism in our proposed
dynamic framework.

B. Comparison Between Standard and Dynamic Models
We tested our proposed framework in four well-established

BCI architectures, namely DeepConvNet [26], ShallowCon-
vNet [26], EEGNet [27] and EEG-Inception [28] in the
following MI tasks: for the publically available MI dataset
Physionet [51] one binary classification task (MI Left vs Right
Hand) and a 3-class classification problem (MI Left Hand /
Right Hand / Feet)) and for OpenBMI - MI [52] one MI binary
classification task (MI Left vs Right Hand).

As shown in Table II, we trained the standard networks for
30 epochs with learning rate of 0.001 while their dynamic
versions for 30 epochs - in the first 20 epochs with learning
rate of 0.01, to assist the attention’s Gabor filters to quickly
adapt to the data, and 10 epochs with learning rate of 0.001 and
frozen attention, to fine-tune to the MI task. In all cases,
we used an Adam optimizer. Finally, a temperature of 30 was
used during training in the attention mechanism as described
in the previous section. We evaluated the performance of
the standard networks and their equivalent dynamic networks
in a leave-one-subject-out fashion (cross-subject performance)
Table III.

C. Comparison With State-of-the-Art Approaches
In this work, we are not only interested in comparing the

models trained with our framework versus regularly trained
CNN-based BCI architectures but also to compare our frame-
work with other transfer learning approaches in the EEG
domain. Therefore, we evaluated the performance of the
standard networks and their equivalent dynamic networks in a

1
±% Refers to the rounded standard deviation across 10 runs of 10-fold

cross-validation experiments.
2Early stopping has been applied to some folds during the fine-tuning phase.

TABLE III
PERFORMANCE OF GENERIC (TRAINED AND EVALUATED IN A

LEAVE-ONE-SUBJECT-OUT FASHION) MODELS FOR DEEPCONVNET,
SHALLOWCONVNET, EEGNET, EEG-INCEPTION AND THEIR DYNAMIC

EQUIVALENT NETWORKS (OURS). THE K PARAMETER USED IN

DYNAMIC MODELS IS COLOURED WITH VIOLET. THE P-VALUE OF

PAIRED T-TESTS BETWEEN PERFORMANCE OF STANDARD AND

DYNAMIC IS COLOURED WITH GRAY. THE RATIO OF TRAINABLE

PARAMETERS ( Dynamic
Standard ) IS COLOURED WITH BLUE

leave-M-subjects-out fashion Table IV. Furthermore, we com-
pared our framework with two other commonly used trans-
fer learning EEG techniques: 1) an adversarial approach,
namely [40], that (similarly to our approach) does not use
a calibration set and 2) Euclidean alignment [53] that projects
data into a domain-invariant space but it uses all the trials of a
subject. We trained the Euclidean alignment networks similar
to their vanilla equivalent after performing the data projection
for each subject. And we trained the equivalent adversarial
networks with early stopping and adversarial regularization
weight ϵ = 0.005 (hyperparameters taken from the original
paper [40]). As it can be seen from Table IV, our proposed
method outperforms adversarial networks (a similar zero-
calibration method) while it achieves the same or higher
performance when compared with Euclidean alignment. It is
worth mentioning though that Euclidean alignment uses all the
trials of an unseen subject while our framework is dynamically
adapted for each trial during inference.

D. Calibration Methods
We evaluated the performance of the calibrated networks

(using a small calibration set of the unseen subjects to fine-tune
the final classification layer). For a fair comparison, we also
fine-tuned the last layer of the equivalent dynamic networks
using the same calibration sets. As it is shown in Table V,
the calibrated dynamic models also outperform their equivalent
vanilla calibrated networks.

E. Investigation of Negative Transfer Learning
Although our proposed framework showed increased

cross-subject performance as experimentally shown above,
we wanted to investigate if there are any signs of negative
transfer learning during the process. As it is shown in Figure 3,
although there are limited cases of negative transfer learning,

3Average result of 10 calibrated models. Each model uses 20% of each
testing subject’s samples for calibration (chosen randomly) and 80% for
testing.
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TABLE IV
PERFORMANCE OF GENERIC (TRAINED AND EVALUATED IN A LEAVE-M-SUBJECTS-OUT FASHION) MODELS OF MI-CLASSIFICATION (LEFT /

RIGHT HAND) TASKS IN PHYSIONET AND OPENBMI-MI. CV STANDS FOR CROSS-VALIDATION ACROSS SUBJECTS

TABLE V
PERFORMANCE OF GENERIC (TRAINED AND EVALUATED IN A

LEAVE-M-SUBJECTS-OUT FASHION) MODELS OF MI-CLASSIFICATION

(LEFT / RIGHT HAND) TASKS IN PHYSIONET FOR CALIBRATED

DEEPCONVNET AND SHALLOWCONVNET AND THEIR CALIBRATED

DYNAMIC EQUIVALENT NETWORKS. CV STANDS FOR

CROSS-VALIDATION ACROSS SUBJECTS

Fig. 3. Per-fold comparison of the performance of vanilla architectures
versus their equivalent dynamic networks (ours).

the vast majority is either marginally or significantly better
compared to the vanilla architectures.

V. DISCUSSION

The proposed dynamic framework can be used in various
CNN-based MI-BCI architectures to increase the cross-subject
performance and can take us one step closer in tackling
the problem of inter-subject variability as the experimental
evaluation in the previous Section IV illustrates. We expect this
framework, with certain modifications, to be able to generalize
well and get adapted to various BCI paradigms, not only MI.
Investigating different BCI paradigms is beyond the scope of
this paper where the causal analysis of the MI task is a core
factor in ensuring that our proposed framework tackles the
targeted problem and there are no misleading performance
increases. Extending the framework to different paradigms
would require also a causal breakdown for these tasks.

One limitation of our work is the unavoidable increase in
the number of trainable parameters (about × K where K is
the number of available subjects in the dataset). Although our
subject attention mechanism seems to identify well a large
number of subject (e.g. 103 on PhysioNet), this increase in the

TABLE VI
INFERENCE TIMINGS FOR 10 TRAINED MODELS OF

MI-CLASSIFICATION (LEFT / RIGHT HAND AND LEFT / RIGHT HAND /
FEET) FROM THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION FOR

EEG-INCEPTION IN PHYSIONET. MEASURED WITH

torch.autograd.profiler IN 2.9 GHZ 6-CORE CPU INTEL CORE I9

number of trainable parameters might be a limiting factor in
some cases especially if these models are deployed on real-life
applications where devices have limited amount of memory
storage. Fortunately, this tremendous increase in number of
parameters does not translate to execution time. As it is shown
in Appendix, there is a less than × K increase in terms of
inference time cost. Inspired by related works [54], we could
investigate approaches to mitigate this increase in a future
work.

In contrast to other techniques that promise to tackle the
issue of inter-subject variability, our framework is dynamically
adapted to a new subject during inference without the need
of re-training or calibration trials, commonly used in transfer
learning methods. Furthermore, an inherent advantage of our
framework is the training of K parallel personalized models
of the same BCI architecture. During training, these models
are not trained using only the samples of one specific subject
but also samples from “similar” subjects since the attention
mechanism is trained simultaneously. An interesting future
step would be to evaluate the performance of these inherent
personalized models compared to standard personalized mod-
els - trained using strictly the samples of one specific subject.
Although the BCI deep architectures used in Section IV
are considered state-of-the-art and achieve high performance
across different MI-BCI tasks, they are usually comprised
of thousands of trainable parameters, making the training
of standard personalized models difficult with these publicly
available datasets. For that endeavour, we need first to design
more lightweight BCI architectures and then perform these
comparisons.
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Fig. 4. Comparison between using the vector π versus our proposed uniformly attended vector A∗ as attention in our proposed dynamic framework.
The performances correspond to generic (trained and evaluated in a leave-one-subject-out fashion) Dynamic EEG-Inception models in the MI-
classification (Left / Right hand / Feet) task in Physionet.

VI. CONCLUSION

In this work, we analyze the task of MI EEG classification
through the lens of causal reasoning. To the best of our
knowledge, this is the first work that brings machine learning
in conjunction with causal reasoning to the domain of EEG.
Through this analysis, we identify and analyze some of the
major challenges and we introduce a framework based on
dynamic convolutions that tackles the problem of subject dis-
tribution shift (inter-subject variability). Our proposed subject
attention mechanism achieves great performance in identifying
subjects and the overall proposed dynamic framework demon-
strates increased performance when applied to different BCI
architectures while at the same time outperforming other
similar methods. In future work, we plan to use it to tackle
more, if not all, challenges detailedly described in our causal
analysis of MI brainwave decoding.

APPENDIX

As described in Section III, during inference when an input
EEG signal from a new unseen subject Sx is processed,
it passes firstly through the attention network and the sub-
ject attention vector π is computed. Through investigation,
we observed that this vector is quite sparse. Although this is
something we would ideally like, the low SNR of the EEG
signal makes our framework unstable especially when used in
our desired zero-calibration one-trial setup. In order to have a
robust network that dynamically adapts to the new trial from
an unseen subject, we utilized the “uniformly attended vector”
A* that uses knowledge from all k individuals and “shift” the
attention more to the most relevant subjects. A comparison
between using the vector π versus our proposed uniformly
attended vector A* as attention in our proposed dynamic
framework can be seen in the following Figure 4.

A significant drawback of our proposed framework is the
unavoidable increase in the number of trainable parameters
(about × K where K is the number of available subjects in

the dataset). This factor can have limiting effects when these
models are deployed on real-life applications where devices
have limited amount of memory storage. As it is shown in
the following table, the tremendous increase in number of
parameters does not translate to execution time which is less
than × K increase in terms of inference time cost.
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