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Abstract— Classifying the patient’s depth of anesthesia
(LoH) level into a few distinct states may lead to inappropri-
ate drug administration. To tackle the problem, this paper
presents a robust and computationally efficient framework
that predicts a continuous LoH index scale from 0-100 in
addition to the LoH state. This paper proposes a novel
approach for accurate LoH estimation based on Stationary
Wavelet Transform (SWT) and fractal features. The deep
learning model adopts an optimized temporal, fractal, and
spectral feature set to identify the patient sedation level
irrespective of age and the type of anesthetic agent. This
feature set is then fed into a multilayer perceptron network
(MLP), a class of feed-forward neural networks. A compar-
ative analysis of regression and classification is made to
measure the performance of the chosen features on the
neural network architecture. The proposed LoH classifier
outperforms the state-of-the-art LoH prediction algorithms
with the highest accuracy of 97.1% while utilizing min-
imized feature set and MLP classifier. Moreover, for the
first time, the LoH regressor achieves the highest perfor-
mance metrics (R2 = 0.9, MAE = 1.5) as compared to
previous work. This study is very helpful for developing
highly accurate monitoring for LoH which is important for
intraoperative and postoperative patients’ health.

Index Terms— Level of hypnosis (LoH), multilayer per-
ceptron (MLP), electroencephalogram (EEG), stationary
wavelet transform (SWT).

I. INTRODUCTION

PATIENTS undergoing surgery and mechanical ventilation
require sedation for their safety and comfort [1]. Sedation,

also called monitored anesthesia care or conscious sedation
is mostly used for minor surgical procedures where local
anesthesia is not an option. However, for complex and critical
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procedures, general anesthesia is mostly used. Maintaining and
monitoring the optimal level of sedation is very important
since both over and under-sedation can have serious results
such as severe hypotension, cardiovascular collapse, critical
illness neuromuscular abnormalities, and maybe even death
if not managed promptly [2]. In the past, several methods
have been used to assess the level of sedation for patients
in ICU, most of them being based on the subjective behavior
of the patient. Different numerical scoring methods such as
Richmond Agitation Sedation Scale (RASS) and Ramsay scale
are being used in the current level of anesthesia monitoring
systems [3].

EEG signal is an electrophysiological monitoring method
that records electrical activities and changes in a human brain
during different states of consciousness such as sleep and
general anesthesia. Hence, EEG is widely used in LoH moni-
toring systems to estimate cerebral electrical activity. Different
algorithms estimate the changes in oscillatory behavior in
EEG [4], [5], [6]. Most of these estimations are done in the
frequency domain. The signal is transformed into the fre-
quency domain using Fourier Transform. The Bispectral Index
(BIS) monitored by Medtronic (Dublin, Ireland) calculates
the BIS value by tracking two parameters: The changes in
the log ratio of 2 energy bands (Beta Ratio) and the sum of
spectrum peaks in two frequency bands (SynchFastFlow) [7].
The BIS values correlate well with the LoH in adult patients
undergoing general anesthesia [8], [9]. On the other hand,
multiple studies proved that several induction agents were
not efficiently tracked by BIS such as ketamine and nitrous
oxide [4], [10], [11], [12]. In addition, these monitors have
been rarely validated on pediatric patients, and their data have
been mostly induced based on adults patients’ data [13]. The
BIS values in children demonstrate major inconsistencies with
the dosages of anesthetics [14]. Studies have revealed that BIS
values are changed for pediatric patients and impacted by age
group and by injecting a muscle relaxant [15], [16], [17], [18].
The study in [15] suggested that the BIS values of the
younger age group (under 5 years) were higher than those
of the older age group (5 - 12 years) at the same time after
introducing the anesthetic agent. It was noticed that after the
injection of muscle relaxants, BIS values may decline owing
to the frontal EMG components reduction, which affects the
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monitoring of the level of sedation [18]. Hence, the precision
and consistency of BIS monitors for pediatric patients are
still under investigation, specifically for toddlers, infants, and
neonates [19].

The SEDLine monitor from Masimo (Irvine, CA) estimates
the power spectral index (PSI) of various frequency bands
along with the interhemispheric synchrony [5]. By utilizing
the EEG signal’s spectral parameters only, these systems
can miss important time-domain information [20]. Previously,
many studies proposed LoH systems that have used linear
analysis for feature extraction of EEG such as the relative
power in the frequency bands (Delta, Theta, Alpha, Beta, and
Gamma) of the signal and the beta ratio [6]. From the previous
electrophysiological studies, variability in time is exhibited in
EEG signals [4], [6].

Different studies in the past [21], [22], [23] have used these
non-linear and non-stationary approaches for EEG signal inter-
pretation and prediction of LoH. These include complexity
and information content analysis such as Shanon permutation
entropy (SPE), Sample Entropy (SampEn) [24], Lempel-Ziv
complexity, fractal dimension (Petrosian Fractal Dimension
(PFD)), Detrended Fluctuation Analysis, and Phase-Rectified
Signal Averaging (PRSA) [21]. Similarly, some of the pre-
viously proposed LoH systems were based solely upon the
fractal dimension analysis of EEG signals [25], [26]. Pet-
rosian adapted box and Higuchi fractal dimension (HFD) has
been used in these systems. Results show an inverse relation
between HFD with the level of anesthesia [27]. The previous
studies show that despite this information from EEG, none
of the systems have reliably been used for the estimation
of the LoH index. This is because most of these systems
were based on solely temporal or spectral features [21],
[25], [26], [27], [28] which is insufficient to predict the BIS
values accurately with changes in consciousness. As a result,
mostly these systems use a classifier to predict the levels of
sedation which has more chances of error in the LoH index
as compared to the regressor which requires values to be
very precise and has less error tolerance. Spectral features
have been extracted using different transforms such as Fourier,
continuous [29] and discrete wavelet transforms (DWT) [20].
EEG features extraction from fast Fourier Transform (FFT)
results only in spectral features and since FFT is a linear
transform, it does not perform well for non-stationary signals
like EEG. Non-linear transforms especially DWT have shown
some promising results [11] since it estimates both spectral
and temporal features of EEG, hence no loss of time-domain
information as was the case in FFT. However, DWT is subject
to the problem of translational invariance [30], [31]. It is due
to the time-variant property of DWT which means that the
transform of the EEG signal and shifted version of EEG is
not time-shifted versions of each other which is a problem in
non-stationary signals.

This study aims to develop an accurate estimation of the
LoH index and LoH state. In the previous studies [32],
[33], [34], [35], although the LoH classification algorithms
have predicted the LoH state very accurately, this still does
not solve the problem for the LoH indexes which are on the
borderline of the LoH states. As a result of these values, the
LoH state can be misinterpreted and result in inaccurate drug

Fig. 1. Proposed deep learning-based LoH classifier and regressor for
estimating the states of anesthesia and LoH Index.

administrating during different states which can cause seri-
ous inter-operative and postoperative health conditions [36].
To avoid such scenarios and predict the LoH accurately, this
study proposes a combination of a Multi-Layer Perceptron
(MLP) classifier and regressor. The continuous regression val-
ues computed by the proposed algorithm are referred to as the
Level of hypnosis (LoH) Index. Moreover, to overcome these
problems of denoising and translational-invariance in DWT
and computational complexity, this study proposes a novel
LoH monitoring system for both adult and pediatric systems
based on SWT and a deep learning-based feed-forward neural
network. By using the Stationary Wavelet Transform (SWT),
not only both spectral and temporal information is extracted
but also the translational-invariance problem is solved. Fig. 1
describes the proposed LoH algorithm for predicting the states
of anesthesia and the LoH Index.

This work is based on a comparative study of feed-forward
network-based classifier and regressor which use a balanced
feature matrix of spectral, temporal, and fractal features. The
EEG data used here comprises 95 patients including both
adult and pediatric patients undergoing general anesthesia for
their surgeries. The level of anesthesia was defined from the
LoH Index depending on patients” subjective behavior and
the doctor’s judgment. The proposed feed-forward network for
the LoH system is compared with different ML models and
previously proposed systems.

This paper is organized as follows: The patients’ EEG
recordings databases are described in Section II. Section III
describes the proposed features of the LoH estimation system.
Section IV elaborates on the deep learning-based approach for
classification and regression. Section V summarizes the LoH
system results and discusses the performance of the proposed
system on one patient as a case study. Finally, Section VI
concludes the paper.

II. EEG DATABASE

The EEG dataset used in this study includes the data from
a research study conducted by the Technical University of
Munich (TUM) and a clinical study at Children’s Hospital
Lahore [37], [38]. The data recorded consists of 115 patients
including both adult and pediatric (age: 5 months – 67 years,
weight: 6 – 90 kg) undergoing general anesthesia for surgeries.
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Fig. 2. The block diagram of the proposed LoH Feature Extraction
Engine utilizing temporal, fractal, and SWT-based spectral features.

EEG recordings were sampled at 256 S/sec and the BIS values
were updated every 1 sec. The children’s database includes
the EEG data and the expert anesthesiologists’ feedback on
patients’ LoH during surgery.

The value of the reference BIS scale from the dataset ranges
from 0 to 100 and is divided generally into 4 levels depending
upon the state of anesthesia the patient is in. The states
of anesthesia were divided into four different levels namely,
awake (75 to 100), light (40 to 75), moderate (25 to 40), and
deep (0 to 25) anesthesia. The state was selected very carefully
depending upon the anesthesiologist’s judgment or BIS values,
the patient’s subjective behavior, weight, age, and anesthetic
agent delivery protocol.

III. EEG FEATURES EXTRACTION

Fig. 2 shows the block diagram for the proposed LoH
feature extraction engine utilizing temporal, fractal, and SWT-
based spectral features. The EEG signal sampled at 256S/s is
processed to extract important features which are correlated
with the patient’s state of anesthesia. Preprocessing is impor-
tant before feature extraction since it removes DC offset, noise,
and other artifacts from the signal. EEG signal is filtered using
a bandpass filter (BPF) with cutoff frequencies at 0.5 – 60 Hz
since no proper neural activity in EEG related to the conscious
level is observed above this frequency range and most of the
artifacts are traced in the higher frequency region of EEG.
As a result of this BPF, the higher and lower frequency muscle
artifacts and skeletal muscle activation (EMG) are minimized
from the EEG signal.

The preprocessed EEG signal is then supplied as an input
to the feature extraction engine where different types of
discriminating features from the signal are extracted and then
a feature vector is formed. There are three types of features in
the feature vector: spectral (frequency domain), temporal and
fractal. This feature vector is then fed into the Feed Forward
Neural Network architecture to classify the LoH states and
estimate the LoH Index. These features (spectral, fractal, and
temporal) are explained below in detail:

Fig. 3. A sample example to illustrate the complexity and predictability
of EEG using SvdEn against the BIS values in a 5-sec epoch (Pearson
Correlation Coefficient = 0.75).

A. Singular Value Decomposition Entropy (SvdEn)
SvdEn finds the complexity and predictability of the bio

signals by estimating the number of attributes that are neces-
sary to characterize the signal. Thus, SvdEn is very helpful in
the case of non-stationary signals such as EEG. The attributes
of the EEG are associated with the regularity and information
of the signal and hence the regularity acts as a function of
attributes of the EEG [39]. Higher SvdEn values relate to
more complex and less regular EEG signals [27] which is an
indicator that for the given state, more attributes of the signal
are required. SvdEn is calculated as follows: Suppose the input
signal is [x1, x2, . . . . . . . . . , x N ]. The delay vector set is
constructed as:

y (i) = [xi, xi + t, . . . . . . . . . , xi + (r − 1)t] (1)

where ‘r’ is the embedding dimension and ‘t’ is the delay for
the delay vector calculation. In this proposed work, values are
set to t = 2 and r = 15. After the delay vector construction,
the embedding space is calculated by:

Y =
[
y (1) , y (2) , . . . , y (N − (r − 1) t)

]T (2)

For estimating the normalized singular values of Y, singular
value decomposition is performed on Y which results in the
singular spectrum σ1, σ2, . . . . . . , σM. The normalization of the
singular spectrum is done as:

σi = σi/

M∑
j=1

σj (3)

Fig. 3 describes the correlation of complexity of EEG signal
using the SvdEn and reference BIS values. These calculations
result in the normalized singular spectrum of the EEG epochs.
Finally, the SvdEn is calculated as:

HSV D = −

M∑
i=1

σi log2 σi (4)

where ‘M’ is the number of singular values in the singular
spectrum.
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B. Fractal Features
To completely understand and measure the nonlinear

dynamics of nonstationary signals such as EEG, linear analysis
such as Fourier or wavelet analysis is not enough. During
different states of anesthesia, the spatially dispersed changes
in electrocortical activity cause fluctuations in the EEG signal
which can be seen as varying in these states. These changes
in EEG can be modeled by estimating the fractal dimensions
of the signal [31]. The fractal dimension of EEG is an
estimate of the complexity and self-affinity of the time domain
EEG signal. Two fractal dimensions estimations have been
proposed:

1) Higuchi Fractal Dimension: HFD calculates the fractal
dimension of EEG directly in the time domain without
embedding the signal in the phase space. It works well with
shorter epochs for nonstationary signals. Moreover, HFD is
also resistant to noise, and artifacts and can be computed
in real-time. HFD is not very computationally complex and
very fast compared to other fractal dimensions [40]. These
advantages led us to prefer HFD over other fractal algo-
rithms. It is calculated as follows; For an input original series
[x1, x2, x3, . . . ., x N ]. Then new ‘k’ series are reconstructed
using the original series as:

[xm, xm+k, xm+2k, . . . .., xm+(|N−m|/k)k] (5)

where m = 1,2,3,. . . .. k. After the series is constructed from
the previous equation, the length of each constructed series
L(m,k) is computed using the:

L(m, k) =

∑|
N−m

k |

i=2 |xm+ik − xm+(i−1)k |(N − 1)

|(N − m)/k|k
(6)

The average length of the series is then calculated by:

L (k) = [

k∑
i=1

L(i, k)]/k (7)

This process of estimation of the average length of the
series is repeated k times for each k from 1 to k. Then curve
of ln(L(k)) versus ln(1/k) is plotted and the slope of the
line which best fits the curve is calculated using the least
square method. The estimated slope of the line is the HFD
value. Fig. 4 shows the fractal dimension of the EEG signal
computed using HFD against the reference BIS values.

2) Katz Fractal Dimension: The KFD measures the com-
plexity of EEG by estimating its spatial information, con-
volutedness, and space-filling tendency. It is an algorithmic
approximation of the box dimension of the EEG signal over
a defined scale [39].

The calculation of KFD is done in the following steps: First,
the sum of the Euclidean distance between successive points
of the sample in the signal is calculated as:

L = sum(dist (i, i + 1)) (8)

where L is the Euclidean distance and ‘i’ is the point in each
sample of the signal. The average of this distance is calculated
as ‘a’. After this, the planar extent of the signal is estimated.
The planar extent or the diameter of the waveform is the

Fig. 4. Correlation of the fractal dimensions of the EEG signal with
BIS index by estimating the HFD in a 5-sec epoch (Pearson Correlation
Coefficient = 0.69).

Fig. 5. Correlation of KFD which estimates the spatial information and
space-filling tendency of EEG signal with BIS index in a 5-sec epoch
(Pearson Correlation Coefficient = 0.78).

farthest distance between the starting point and any other point
in the sample ‘j’.

d = max(dis(1, j) (9)

Finally, the KFD of the EEG signal is estimated as:

D = log
(

L
a

)
/log(

d
a

) (10)

D =
log (n)

log (n) + log(d/L)
(11)

where n = L/a, the total number of steps in the EEG sample.
The correlation of the spatial information and space-filling
tendency of EEG with the BIS values can be seen in Fig. 5.

C. Spectral Features
Conventionally FFT has been used mostly for the analysis

of EEG signals for proposed LoH algorithms [6], [32]. Since
the frequency band of 0.5 - 60 Hz contains very useful
information for the prediction of the state of anesthesia.
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However, since EEG is a nonstationary complex signal and
has a broad frequency spectrum, estimating the frequency
features only through the FFT results in the loss of key
time-domain information due to its linear nature. To solve
this problem, wavelet transforms (WT) come into play. The
WT is a localized transform in frequency and time (space),
and this helps it to extract information from the EEG in
both space and frequency domain which was not possible
with FFT. Using the WT on EEG helps estimate the signal
into different scaling components at various levels [29]. The
DWT on the EEG decomposes the signal using a wavelet
function and then computes different wavelet coefficients
depending upon the levels of decomposition for EEG [34].
Generally, 5 levels of decomposition are selected since there
are six frequency regions in the 0.5 – 60 Hz EEG spectrum.
At each level, two coefficients (approximation and detailed
coefficients) based on level and location (space) are estimated.
The signal is passed through high pass and low pass filters to
estimate approximation and detailed coefficients of each level.
Nevertheless, DWT has a problem with translation invariance
since it is a spatial variant transform. It means that the DWT of
the shifted EEG signal is not equal to the shift in the DWT of
the unshifted EEG signal. Hence even with the periodic signal
extension, the DWT of the shifted EEG signal is not the shifted
version of the DWT of EEG. This mainly is due to the critical
sub-sampling of the EEG in the DWT. Critical sub-sampling
discards every second coefficient at each level to enforce
implicit time-frequency uncertainty of the wavelet analysis.
This results in small shifts in the EEG waveform which causes
large changes in the coefficient values and fluctuations in
the energy distribution at different levels. Hence, variations
in the reconstructed EEG from the coefficients are observed.
Moreover, the problem of aliasing also arises here since the
wavelet coefficients of all the levels (including the noise band)
are not utilized for the reconstruction of EEG by Inverse DWT.

It is therefore desirable to use a transform that is better
at denoising the signal, removing the spatial variant property,
and aliasing. This work proposes the SWT for the spectral
features’ extraction of the EEG signal. SWT has three major
advantages over DWT: (i) SWT is translationally invariant,
so even if the EEG signal is shifted, the estimated coefficients
will not vary. (ii) SWT outperforms DWT in edge detection
and denoising. (iii) Compared to the DWT which required
the discrete input signal to have a size of power of 2, SWT
does not have this limitation [34]. SWT solves the problem
of translational invariance since it is different from DWT in
terms of decimation and shift-invariance making it better at
denoising, change detection, and feature extraction [30]. The
coefficients for SWT are computed as follows:

di,k =

∫
∞

−∞

x (t) ⊗ 9i,k(t)dt (12)

where x (t) is the input EEG signal, di,k are the SWT wavelet
coefficients at the decomposition level ‘i’ an space ‘k’ and
9i,k(t) is the mother wavelet function. The mother wavelet
chosen for the SWT is Daubechies wavelet ‘db4’.

By using SWT, the EEG signal is convolved with low pass
and high pass filters just like in the DWT, but no decimation

Fig. 6. The block diagram of the Stationary Wavelet Transform for
the proposed LoH algorithm estimates the detailed and approximation
coefficients at each level.

is involved in estimating the wavelet coefficients. Five levels
of decomposition for SWT are chosen. After thresholding, the
detailed coefficients are extracted while the low-frequency and
high-frequency components are separated. The approximation
coefficients, threshold data from the detailed coefficients, and
the remaining EEG signal are labeled as noise. Fig. 6 shows
the block diagram for the SWT coefficients estimation at
different levels for the LoH algorithm. There is no decimation
required for wavelet coefficients at any level rather the filter
coefficients (high aw pass) are up-sampled by a factor of
2( j−1) in the j th level of the algorithm. As a result, the output
value of each decomposition level in SWT contains an equal
number of samples as in the input.

The wavelet coefficients obtained by SWT are used to
compute the energy of the five bands of the EEG signal. Since
we filtered the EEG in the 0.5 – 60 Hz frequency range,
the EEG signal is decomposed into 5 frequency bands with
each band representing different activities in certain regions
of the brain during each state of LoH. These bands include
the following:

1) delta band (1) (0.4–4 Hz).
2) theta band (θ) (4–8 Hz).
3) alpha band (α) (8–16 Hz).
4) beta band (β) (16–32 Hz).
5) gamma band (γ ) (32–60 Hz).
The Energy of the bands of frequency calculated from SWT

is defined as:

E
(
C D j

)
=

∑
k

∣∣C D j (k)
∣∣2 (13)

where CD is the detailed wavelet coefficient calculated from
SWT at each decomposition level. Fig. 7 shows the spectral
changes in EEG for the four different states of anesthesia.
Different types of actions occurring in the human brain are
depicted by the above-selected spectral bands. When the
patient is awake, the EEG signals exhibit irregular activity of
low amplitude and fast oscillations [41] as shown in Fig. 7(a).
The theta band is important in the prediction of the light state
of anesthesia as shown in Fig. 7(b). During the moderate state
of anesthesia, the delta and alpha bands coexist as can be
seen in Fig. 7(c). This stage is suitable for performing surgical
procedures. The state of deep anesthesia is characterized by
slow EEG activity [41] which is in the delta frequency region
as shown in Fig. 7(d).
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Fig. 7. Power in dB of the four states of anesthesia computed by the five level Stationary Wavelet Transform: (a) power in awake LoH (b) power in
light LoH (c) power in moderate LoH (a) power in deep LoH.

The features for the proposed LoH algorithm are selected by
assigning a feature significance score to each feature and then
selecting the highest-scoring features. The feature significance
score method used in this study depends on the average scores
of the Pearson Correlation Coefficient (PCC) and Maximum
Relevance – Minimum Redundancy (MRMR) PCC for the
individual features. The feature significance scores of the
features having the highest correlation with BIS are described
in Table I. The SWT_Energy are the spectral energies of the
five bands of the EEG signal described previously while the
DWT_Energy refers to energy computed using the DWT.

From Table I, the results of the feature significance scores
demonstrate that the proposed combination of SWT-based
spectral band energies, KFD, HFD, and SvdEn outperform
the scores of other features. Moreover, the scores also help
us in selecting the highest correlated features with the BIS
values which will be used in the proposed LoH estimation
algorithm. The box plots of the eight highly correlated features
for the estimation of states of anesthesia in the LoH monitoring
system can be visualized in Fig. 8.

Age-related changes in the EEG coherence and power
spectrum during general anesthesia in children are observed
in the form of an age-varying coherogram and spectrogram.
These age-related changes in the EEG could reflect underlying
neurodevelopmental processes that occur over childhood and
adolescence, including synaptogenesis, neural pruning, and the
maturation of neural circuits. We observed significant changes
in the EEG structure during anesthesia-induced unconscious-
ness over the first year of life. In infants (less than 1 year
old), the EEG consisted mainly of slow oscillations. The rise
in EEG power over the first several years of life, followed
by a decline in the adolescent years, is most consistent with
previous pediatric EEG studies during wakefulness, sleep, and
anesthesia [42]. Similarly, in previous studies of infants receiv-
ing general anesthesia, we noticed that alpha–beta oscillations

TABLE I
THE FEATURE SIGNIFICANCE SCORES OF THE HIGHEST CORRELATED

FEATURES FOR THE PROPOSED LOH ALGORITHM USING TWO

SELECTION MEASURES:PEARSON CORRELATION COEFFICIENT

(PCC) AND CORRELATION-BASED MRMR(MRMR_PCC)

started to appear at approximately 5 months of age but did not
become coherent until approximately 1 year of age [42], [43].

IV. DEEP LEARNING

Various machine learning and deep learning-based
approaches for estimating the LoH have been proposed in
the literature [24], [35], [44], [42], [43], [44], [45], and [46].
By utilizing the Bagged Tree ML algorithm [20], the highest
classification accuracy achieved was 95% while using a
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Fig. 8. The Box Plots of the eight highly correlated features against the
states of anesthesia for the proposed LoH algorithm in a 10-sec EEG
window.

Fig. 9. Complete flowchart of the deep learning network starting from
network initialization to training and testing the model along with all the
steps involved in it.

feature set consisting of 12 features. While in deep learning-
based systems, several studies have utilized long short-term
memory (LSTM) and CNN [35] which have reported an
overall classification accuracy of 87.36% and an Area under
the Curve (AUC) of 79% for regressively predicted values
of BIS. However, the CNN-based proposed systems for EEG
classification still face the issue of: (i) limited big datasets
which are required to train the CNN. (ii) The training of
the CNN model requires more CPU and GPU power along
with the memory. (iii) CNN performs features extraction
more like a black box [46]. There is no way of knowing
what is happening in these convolutional layers for feature
extraction of the EEG signals. Hence, this model exhibits
poor performance during state transitions. The shift in the
states is often unstable and the changes in the brain activities
are not observed by the CNN-based models which results in
low accuracy of these systems.

This paper presents a novel EEG-based LoH algorithm by
utilizing deep learning with fully optimized hyperparameters.
There are three layers in general in a deep neural network

namely: input, hidden, and output layers, and the output of
the previous layer is processed by the next layer. In addition,
there is no such thing as the best network rather different
variations of hidden layers and a varying number of neurons
along with other hyperparameters need to be checked to find
the best network architecture suited for a specific task. The
nonlinear function used in the neurons is called the Activation
Function and is one of the most important parameters in neural
network model tuning. In this work, the SoftMax function is
used for multiclass logistic classification while the Sigmoid
function is used for two-class regression. The optimizer used in
our proposed network is Adam (a stochastic gradient descent
method). In this work, we propose an MLP network, a type
of feedforward neural network, for predicting the LoH Index
and states of LoH.

Fig. 9 describes the working of the MLP network starting
from network initialization to training and testing the model
along with all the steps involved in it. The EEG dataset was
divided randomly into a 70/30 ratio for the training and testing
of the trained model. 70% of the data was used for training
and validation of the model while the remaining 30% was
used for the testing of the network. We propose a 3-layered
MLP network with input, output, and 3 hidden layers with
128 nodes each. The input layer is set to 8 nodes since it is
equal to the number of the features in the feature matrix. Since
the goal is to achieve high classification accuracy, low error
(Mean Absolute Error and Mean Squared Error) on regression
and to compare the results of both class-based LoH with the
LoH Index-based LoH algorithm, the network architecture is
modified slightly for both scenarios. For classification, the
dataset used is already classified into 4 states of anesthesia
depending upon the sedation level. The output nodes used
in this setting are 4 since the proposed LoH algorithm must
classify 4 LoH states.

Moreover, the activation function is set to “Softmax” for
the output layer. In the case of predicting the LoH Index,
a regression approach is used. Instead of classes in the dataset,
the BIS values are provided as target values of the network.
The “Sigmoid” activation function is used for the output layer
of the network. For the training of the network, the learning
rates are varied from 0.01 to 0.00001 along with changes in
batch sizes of 25, 32, 64, and 128 to estimate the best model.
Each model is trained with different epoch sizes ranging from
50 to 300 for smoothening the training and test accuracy
curves.

Different deep learning regularization techniques such as
L1/L2 and Dropout regularization were applied to the net-
work for avoiding the overfitting of the model on the EEG
dataset. To reduce the complexity of the model, regularization
techniques are used in deep learning [36]. It penalizes by
adding the penalty term to the loss function of the network.
The L1 regularization works by minimizing the absolute value
of the weights. Since L1 regularization has the advantage
of being robust to outliers as compared to L2, we used
L1 regularization.

Fig. 10 describes the visual comparison of the change
in the architecture of the neural network with and without
dropout regularization. While the dropout works by changing
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Fig. 10. A visual comparison of Neural network architecture with
and without the application of the Dropout regularization resulted in
increased accuracy and low regression errors.

the network architecture itself rather than modifying the cost
function. Hence, it results in the training of different neural
networks which eventually means a different fit for each model
resulting in the reduction of overfitting. The dropout rate for
our network is set to 0.3.

V. RESULTS AND DISCUSSION

Different evaluation metrics are used to determine the
accuracy and efficiency of the proposed model. These metrics
were mainly divided into two types depending on classifi-
cation and regression. For regression analysis, three statisti-
cal parameters including mean absolute error (MAE), mean
squared error (MSE), and R-square value is used. According
to [47], R-square and symmetric mean absolute percentage
error (SMAPE) are the only two regression scores having
strict real number values. These values are within the range
in the [0,1] interval for R-square and [0,2] for SMAPE.
The comparison of both [47] shows that R-square is more
informative and truthful than the SMAPE. It estimates a high
value only when the regression analysis correctly predicts
true values from the ground truth group. MAE is a model
evaluation parameter used for regression models. It is the mean
of the absolute values of the predictions on the test set for all
the instances in the test dataset. MSE is a risk function related
to the expected value of squared error loss. It is often used with
MAE and R-square values and hence estimates the variance
of the estimator (LoH Index in this case).

For evaluating the performance of the multiclass classifica-
tion, a confusion matrix or error matrix between the observed
and predicted state of anesthesia is analyzed. By using the true
positives/negatives and false positives/negatives, the evaluation
parameters including the accuracy, sensitivity, specificity, and
R-score are calculated. In a confusion matrix, the number of
true and false predictions are summarized by each class and
their count values. In this study, we started with small batch
size and epoch along with varying the layers of the neural net-
work. The training started with a batch size of 16 and the num-
ber of hidden layers was set to 2 with a very low learning rate
of 0.0005. Since the EEG signal features vary with time, and
to obtain improved accuracy and performance, the parameters
were changed and optimized constantly. Therefore, the MLP
network provides us the chance to optimize and vary layer
architecture, epoch, batch size, learning rate, and kernel size.

TABLE II
THE CLASSIFICATION AND REGRESSION EVALUATION PARAMETERS OF

THE PROPOSED MLP REGRESSOR FOR ESTIMATING THE LOH
INDEX IN DIFFERENT NETWORK ARCHITECTURES

TABLE III
THE COMPARISON OF THE REGRESSION RESULTS FOR THE

PROPOSED ALGORITHM INDEX WITH OTHER ML AND

DEEP LEARNING ALGORITHMS FOR THE

PREDICTION OF THE LOH INDEX

Fig. 11. Comparison of the classification metrics of the proposed deep
learning-based LoH algorithm with different ML/DL models.

Table II compares the results of different regression and
classification performance evaluation metrics of the proposed
MLP network with the change in network architecture. The
best results in both classification and regression are observed
for a network with 3 layers. All the models were trained with
a batch size of 32 and an epoch to 250. The proposed LoH
algorithm achieves the highest classification accuracy of 97.1%
along with an R-square value of 0.91 and a minimum reported
MSE of 4.21.

Table III shows the comparison of the regression results
from the proposed MLP regressor with other machine learning
and deep learning algorithms for the LoH Index. The MLP
network performs well in predicting the LoH Index with a
very high correlation coefficient, R-Square, and low MSE.
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Fig. 12. Comparison of proposed DoA algorithm results with anesthesiologist’s reference for (a) a 20-year adult male patient undergoing a surgical
procedure, (b) 10 years old male patient undergoing Hernia procedure, ND (C) A 2.6 years old male patient undergoing Orchidopexy procedure.

The MAE and MSE of the proposed model are relatively
very low as compared to other ML models with values being
3.53 and 4.21 respectively. On top of that, the high R-square
value of 0.91 demonstrates that the model predicts the LoH
Index with very high accuracy.

The proposed LoH algorithm is also compared with different
ML classifiers and classification models to estimate how the
proposed LoH model is superior to the others.

Fig. 11 shows this comparison of classification metrics with
other ML/DL models. The MLP network with the input feature
matrix of a combination of SWT-based spectral, temporal,
and fractal features outperforms all the other models with the
highest classification accuracy of 97.1% and the lowest MAE
(regression) of 3.53.

The proposed LoH classifier and regressor are verified using
three case studies of three different patients from an EEG
database. The selected case study in Fig. 12 (a) is a patient
(a 20-year-old male with a 75.5 kg weight). The EEG was
recorded for 25 minutes and 30 seconds just a little before
and after the surgical procedure. At 10:50:00 A.M, the EEG
recording for the patient started. At 10:52:00 A.M, the patient
was injected with Propofol, and afterward, it was followed by
intubation after 4 minutes. The two anesthesiologists present
in the operation theatre declared the patient state as light LoH
during the period of 10:53:25 A.M to 11:00:17 A.M. Around
11:05:04 A.M, it was observed by the anesthetists that the
patient is not able to breathe on his own and the intubation
was done around that time. The patient lost the ability to do
motor actions but was not paralyzed at that time. However, the
heart rate and pulse vitals were stable during this period. The
moderate state of LoH was estimated by the anesthesiologists
for the period of 11:00:20 A.M. to 11:50:44 A.M. As soon as
the surgery was completed, the supply of anesthetic agents
was cut off. At 11:53:00 A.M the patient was observed
moving. A series of the stimulus was given to the patient
from 11:54:25 A.M to 12:00:15 P.M. and the responses were
observed at 12:01:00 P.M. During this time, the proposed LoH
algorithm classified the patient in light LoH, despite the values
of the reference BIS were on the borderline of moderate state.
This case of the borderline values could have resulted in an
extra dosage of anesthesia while the patient was in a moderate
state instead of a light state.

The proposed LoH regressor highlighted the true LoH Index
for these borderline values which helped the anesthesiologists
to estimate the actual state of anesthesia and avoided them

giving the extra dosage of anesthetic agents to the patient.
Within 1 to 2 minutes around 11:55:03 A.M., it was concluded
by the anesthesiologists that the patient has entered the light
LoH. At 11:59:19 A.M. the extubation was done and after
several minutes, the EEG recording was stopped, and the
patient was shifted from the operation theatre to the post-
operation room.

The second case (Fig. 12 (b)) is a 10 years old male
patient and his surgical process was herniotomy. His case
belonged to the ASA-2 category with a surgery duration of
25 minutes. The recording was started at 10:10:00 A.M and the
patient was induced with Propofol and the muscle relaxant at
10:14:28 A.M. The mask was placed on the patient’s face
to make him inhale the Sevoflurane and Isoflurane gasses.
Within 1-minute, the patient entered the light LoH state and
was intubated at 10:17:05 A.M. Both of the anesthesiologists
declared the moderate LoH state of the patient at 10:19:49
A.M. As the patient was 10 years old and healthy kid, the
stimulus was often given to tear his muscles, which created
spikes in our recorded EEG. These disturbed values were
misclassified by our proposed algorithm. The gasses were
turned off at 11:19:14 A.M. and the patient started to gain con-
sciousness. He was declared to be in the light LoH state by the
anesthesiologists at 11:20:41 A.M. The surgery was completed
at 11:21:54 A.M. and the patient was giving responses at that
time. The tube was taken out at 11:23:10 A.M. We recorded
the EEG data until 11:26:02 A.M. and then the patient was
taken into the post-operation room.

The third case (Fig. 12 (c)) is for a 2.6 years old male
patient who had an Orchidopexy operation. The recording
started at 9:30:00 A.M when the patient was moved to the OT.
He was induced with Propofol at 9:39:07 A.M., and afterward,
he was in the light LoH state. At 9:41:18 A.M., the muscle
relaxant was injected which was followed by intubation after
9 minutes. The two anesthesiologists concluded the moderate
LoH state of the patient at 9:50:52 A.M after observing
all essential parameters. The patient’s position was changed
to inject caudal at 9:51:20 A.M, which resulted in a false
prediction. The surgeons started the incision at 9:58:11 A.M.
During the surgery, the headset was unintentionally moved
which was interpreted as the LoH light state by our proposed
LoH estimation algorithm at 11:36:09 A.M. The gasses were
turned off when the surgery was finished at 11:37:29 A.M and
the patient was announced to be in the light LoH state by the
anesthesiologists. The extubation was done at 11:39:39 A.M
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TABLE IV
COMPARISON OF THE RESULTS OF REGRESSION AND CLASSIFICATION METRICS OF THE PROPOSED ALGORITHM

WITH STATE-OF-THE-ART LOH SYSTEMS FOR ESTIMATION OF STATES OF ANESTHESIA AND LOH INDEX

and the patient started giving responses. The EEG data was
recorded until 11:42:06 A.M., after which the patient was
shifted to the post-operation room.

During the entire EEG recording, there were two criteria
used for evaluating the LoH. Firstly, for setting the reference
states of anesthesia, the judgment of anesthesiologists based
on their observations of patients’ behavior and vitals was used
as a gold standard. Secondly, a BIS monitor was used to record
the BIS values of the patient in each state. The proposed
MLP classifier and regressor output are in the agreement
with the reference states and BIS values as estimated by the
anesthesiologist and the BIS monitor. The LoH Index and the
anesthesia states predicated by the proposed LoH algorithm
closely follow the trend of the reference values (both LoH
Index and state).

The proposed MLP-based LoH algorithm is also compared
with the previous state-of-the-art LoH algorithms in Table IV.
The comparison shows that the four states of anesthesia and
the LoH Index are predicted with very high classification
accuracy and low regression errors.

Our regression scores in Table IV are significantly better
than the previous methods as discussed below [48], [49].
The proposed algorithm predicts both the states of anesthesia
and the continuous LoH Index very accurately. The criti-
cal problem of borderline values of BIS values is solved
since the MLP regressor predicts LoH Index with the lowest
MAE and MSE while achieving the highest K-score of 0.91.
The proposed MLP classifier can help the anesthesiologist
with an accurate estimate of LoH while for the borderline
values of the LoH Index, the MLP regressor predicts the
continuous LoH Index with very low errors. Hence reduc-
ing the postoperative and intraoperative health risks for the
patients.

VI. CONCLUSION

This paper presents a deep learning-based MLP network
for the accurate estimation of the level of hypnosis during
surgical procedures. The algorithm predicts the 4 states of
anesthesia as well as the LoH Index in real-time from the
EEG signal. The LoH algorithm is based upon a balanced
combination of 8 SWT-based spectral, temporal, and fractal
features. The proposed algorithm achieves the highest reported
classification accuracy of 97.1% for 4 states prediction while
keeping the mean squared error to 4.21 which is also the
minimum reported for the predicted LoH Index.
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