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Upper Limb Movement Decoding Scheme
Based on Surface Electromyography Using

Attention-Based Kalman Filter Scheme
Anyuan Zhang , Qi Li , Zhenlan Li, and Jiming Li

Abstract— Convolutional neural network (CNN)-based
models are widely used in human movement decoding
based on surface electromyography. However, they cap-
ture only the spatial information of the surface elec-
tromyography and lack prior knowledge of the system,
resulting in unsatisfactory decoding accuracy. To address
these issues, we propose an attention-based Kalman filter
scheme (AKFS), which uses an attention-based CNN model
to better extract temporal information and a KF to add prior
knowledge of the system. We further solve the problem
of insufficient data due to the short training time of new
subjects by using a transfer learning method based on a
fine-tuning strategy. The proposed scheme was tested in
four scenarios: intra-session, intra-session long-time use,
inter-subject, and inter-subject with a fine-tuning strategy.
The proposed attention-based CNN model outperformed
the vanilla CNN model and a hybrid CNN-long short-term
memory (LSTM) model in intra-session and intra-session
long-time use. After fine-tuning with a small amount of data
on a new subject, the attention-based CNN model achieved
higher decoding accuracy than the vanilla CNN model and
lower response time than CNN-LSTM model. Furthermore,
the schemes with KF outperformed the schemes without
KF in all scenarios. Our proposed scheme improves the
decoding accuracy of the traditional CNN model for a single
subject by better capturing the temporal information of
the surface electromyography signal and increasing the
prior knowledge of the system. Additionally, the proposed
scheme can be easily transferred to a new subject using
only a small amount of data.

Index Terms— Attention mechanism, convolutional neu-
ral network, human movement decoding, Kalman filter, long
short-term memory.
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I. INTRODUCTION

HUMAN movement decoding based on surface elec-
tromyography (sEMG) has been widely used in

prosthesis control and human–machine interaction (HMI)
[1], [2], [3], [4]. Many researchers have adopted convolu-
tional neural network (CNN) models as practical approaches
to decode human movement from sEMG [5], [6], [7], [8].
In contrast with machine learning approaches [9], [10], these
CNN models are not as time-consuming in feature engineering
and can realize multiple degrees of freedom (DoFs) angle
prediction in human movement decoding [11]. Moreover, these
CNN models can use small amounts of data after electrode
shifting and user change to retrain the model through a
fine-tuning strategy to improve the robustness of the decod-
ing method in the case of electrode movement and user
change [12], [13], [14], [15]. However, due to neglect of the
temporal information of sEMG and lack of prior knowledge of
the system, the accuracy of human movement decoding based
on CNN models is unsatisfactory, which limits its clinical
application [16].

Many researchers have tried to improve the accuracy of
human movement decoding schemes based on CNN models
by proposing mixed structure models [17], [18], [19], [20].
Although these CNN models are popular solutions for human
movement decoding based on sEMG, single CNN methods
focus only on the spatial information of sEMG and ignore the
temporal information of sEMG. Thus, a novel structure model
to better capture spatial information and temporal information
of sEMG needs to be explored. Because the long short-term
memory (LSTM) structure is suitable for processing time
series and has achieved considerable improvements in human
movement decoding based on sEMG [21], [22], [23], [24],
many researchers have proposed hybrid CNN-LSTM struc-
tures to improve the accuracy of human movement decoding
based on CNN models by better capturing the temporal
information of sEMG. Xia et al. [25] proposed a CNN-LSTM
model to decode the upper limb movement in three dimensions
(3D) space. This method performed better than the support
vector regression (SVR) and CNN models. Bao et al. [26]
also proposed a CNN-LSTM method; they adopted a CNN
model to extract features from Fourier-transformed sEMG and
adopted an LSTM model to estimate the degrees of angles
from human joints. The method is superior to a single CNN
model in decoding accuracy.
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The attention mechanism has recently been proposed to
improve the performance of LSTM-based models in natural
language processing [27], [28], [29], [30] by focusing on
more important information in time series through an attention
weight matrix. Hu et al. [31] proposed an attention-based CNN
architecture for sEMG-based gesture classification that outper-
formed CNN, LSTM, and CNN-LSTM models. However, their
method focused solely on human discrete movement decoding.
Consequently, the effectiveness of the attention mechanism in
human continuous movement decoding needs investigation.

Inspired by the application of the attention mechanism in
human discrete movement decoding, we hypothesized that it
can further improve the performance of CNN-LSTM models in
human continuous movement decoding using sEMG by better
capturing the temporal information of sEMG.

Lack of prior knowledge of the system also leads to
low accuracy of human movement decoding based on CNN
models. To address this issue, many researchers have adopted
post-processing strategies to increase the prior knowledge
of human movement decoding systems. Englehart and Hud-
gins [32] proposed a majority vote approach to determine
the current output of the decoding model through voting on
the previous three or more outputs of the decoding model
to reduce classification error outputs. Amsuss et al. [33]
proposed a post-processing strategy based on an artificial
neural network to reduce classification errors. The movement
was determined by the maximum likelihood estimation of the
artificial neural network and the forearm muscle activity. Their
method significantly reduced the classification errors of dis-
crete movement decoding. Zhang et al. [34] proposed a post-
processing strategy based on a threshold-based motion onset
detection method to reduce classification errors. The method
significantly reduced the classification errors compared to the
original classification. These post-processing strategies add
prior knowledge to human movement decoding schemes and
significantly reduce the classification errors of the schemes.
However, as they focus solely on human discrete movement
decoding, a post-processing strategy for human continuous
movement decoding needs to be explored.

The Kalman filter (KF) has been applied to CNN-LSTM
models to improve the performance of human continuous
movement decoding. KF uses Kalman gain to determine the
weight of the internal transition and observation models and
uses noise measurement to calculate the optimal output of
the model [35]. Bao et al. [36] proposed a CNN-LSTM with
a KF scheme to estimate the single DoF of the finger and
wrist. The CNN-LSTM with KF scheme achieved significantly
higher performance than the CNN scheme and CNN-LSTM
schemes. However, their method focused solely on the pre-
diction performance of a single DoF joint angle under the
same subject. The performance of KF in predicting multiple
DoF joint angles between different subjects requires further
investigation.

To solve the low decoding accuracy of CNN due to the
neglect of temporal information of sEMG and the lack of
prior knowledge of the system, we propose a human move-
ment decoding scheme named the attention-based KF scheme
(AKFS), which combines an attention-based CNN model with

a KF. We adopt the attention-based CNN model to improve
the decoding accuracy of the CNN model by better capturing
the temporal information of sEMG and adopt the KF as a
post-processing strategy to improve the decoding accuracy of
the CNN model by adding prior knowledge of the system.
In contrast to previous studies, we use the attention mechanism
to solve the problem of continuous motion decoding based
on sEMG signals, and explore the problem of multi-degree
of freedom angle prediction of KF in different subjects.
The proposed scheme was evaluated in four scenarios: Intra-
session, intra-session long-time use, inter-subject, and inter-
subject with a fine-tuning strategy. To evaluate the effective-
ness of each part of the proposed scheme, we examined the
performance of six different schemes (CNN, CNN-LSTM,
attention-based CNN, CNN with KF, CNN-LSTM with KF,
and AKFS) by combining the three decoding models with the
two post-processing strategies under the four scenarios.

II. METHODS

A. Subjects
Ten non-disabled subjects (all right-handed males, age: 26–

30 years) participated in this experiment. None of the subjects
had a history of neuromuscular diseases. Before the experi-
ment, we informed the subjects of the process and purpose
of the experiment, and they provided informed consent. The
study was approved by the ethics committee of Changchun
University of Science and Technology (CUST), 20210013,
July 3, 2021.

B. Collection of sEMG Data
Seven dual-electrode wireless sEMG sensors (Noraxon,

USA) were used to collect sEMG signal from seven positions
corresponding to the following muscles: biceps, brachioradi-
alis, flex carpi rad, flex carpi ulnaris, triceps, ext carpi ulnaris
and ext dig communis (as shown in Fig 1.). Sensors were
placed on the belly of muscles, according to the Noraxon
instructions. The locations of the electrodes on the skin were
cleaned with 75% alcohol to reduce the impedance between
the skin and the electrodes. The sEMG were sampled at
1500 Hz and were band-pass filtered by a seventh-order
Butterworth filter in the range of 20–500 Hz.

Each subject performed nine upper limb movements, which
included elbow flexion (EF), wrist flexion (WF), wrist exten-
sion (WE), wrist pronation (WP), wrist supination (WS), wrist
flexion and pronation (WFP), wrist flexion and supination
(WFS), wrist extension and pronation (WEP), and wrist exten-
sion and supination (WES).

Data from two sessions were collected for each subject.
Each session contained 9 upper limb movements and each
movement contained 5 repetitions. Each repetition consisted
of four time periods: 3 s of relaxing in the original position,
3 s of reaching the target position, 3 s of keeping the target
position, and 3 s of returning to the original position; a total
of 12 s. Thus, each movement contains 60 s continuous data.
Between every two movements, all subjects had enough rest
to avoid fatigue. Each session lasted approximately 30 min.
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C. Kinematic Data Collection
To ensure that all the subjects’ motions had similar move-

ment trajectories and to label the sEMG data to obtain suffi-
cient training data, we developed a HoloLens virtual system
(HVS), as shown in Fig. 2.

A red cross was generated in front of the subject according
to the limb position by a unity program run on HoloLens.
The trajectory of the upper limb motion was simulated by the
trajectory of the red cross. A laser pen was fixed to the hand
of the subject. A green cross was also projected in front of
the subject by the laser pen. The subject was instructed to
control the green cross to track the trajectory of the red cross.
An MPU6050 sensor was fixed on the laser pen to collect
the continuous kinematic data of upper limb movement (the
Euler angles of three axes were calculated from the data of
the accelerometer and gyroscope). To synchronize the kine-
matic data with the sEMG of upper limb movements, the
MPU6050 sensor communicated with an STM32F103 board
at 115200 baud through a serial port and synchronized with
Noraxon sEMG acquisition software. The kinematic data of
the human upper limb were sampled by MPU6050 at 100 Hz.
We normalized the collected sEMG signal and kinematic data,
respectively, as shown in (1).

∧
xi =

xi − u
σ

(1)

where xi is the i th sample of data, u is the mean value of the
data, σ is the variance of the data, and

∧
xi is the i th sample of

normalized data.
During the experiment, the hand of each subject was placed

on a cross-shaped metal rod with the elbow supported by
a bracket. When the subjects felt uncomfortable, they were
allowed to quit at any time. All subjects conducted nine upper
limb movements each by tracking the trajectory of the red
cross movement in a unity program on a HoloLens.

The trajectories of the nine movements are shown in Fig. 3.
All subjects were encouraged to control the green cross
projected by a laser pen to follow the trajectories of a red cross
projected by HoloLens without fatigue. Before the experiment,
the subjects familiarized themselves with the nine upper limb
movements and the HVS.

D. Data Segmentation
The sEMG signals were segmented using a 250 ms sliding

window with 80% overlapping (Fig. 4). To label the sEMG
signal, we downsampled the kinematic data from 100 Hz
to 20 Hz (taking the last point every five points). The number
of samples in the first second was 16, and thereafter, 20 sam-
ples per second. In this way, the kinematic data collected by
MPU6050 can be labeled with the sEMG signals to interpret
the movement of the human upper limb.

E. Attention-Based CNN
An attention-based CNN model was introduced in this study

(Fig. 5). Raw sEMG signals from seven channels in a sliding
window were used as the input of the model to directly
decode the human movement intention. The model was mainly

composed of one input layer, three convolutional modules,
two LSTM modules, one attention mechanism module, one
fully connected layer, and one output layer. The structure of
the CNN module was adopted from [14], and the structure
of the LSTM module was adopted from [25]. Because the
decoding test in our study was significantly simpler, the
structure of the proposed model was significantly simpler
than those of the original models. Each sliding window had
375 samples of 7 channels as the input of the model. The
filter numbers of the 3 convolution layers were 64, 96, and
128, and the kernel sizes of the 3 layers were 23, 13, and
11. All convolution layers adopted the same padding in the
stride of 1.

There were five layers in the first and second CNN modules
(convolution layer, batch normalization layer, rectified linear
unit (ReLU) layer, average pooling layer, and a dropout layer).
The epsilon of the batch normalization layers was set to 0.001.
The pooling size and the stride of the first pooling layer
were set to 15. The pooling size and the stride of the second
pooling layer were set to five. The drop rate of the two dropout
layers was set to 0.15. The third CNN module had a special
design: There was no pooling or dropout layer in the third
CNN module. The number of hidden units of the two LSTM
modules was 128. The number of time steps of the two LSTM
modules was set to five according to the increment of the
sliding window. An attention mechanism module was followed
by the last LSTM module to enhance the relationship between
the sequences. The fully connected layer was followed by the
attention mechanism module, which comprised 128 hidden
units. Finally, the three Euler angles of the three axes were
output by a regression layer.

The attention mechanism adopted in this study is shown
in Fig. 6. After the second LSTM module, the shape of the
sequence was 128 × 5. Q, K, and V matrices were defined.
Q, K, and V were obtained from the dot product of the output
of the second LSTM and three 128 × 128 matrices. The
dimensions of the Q, K, and V matrices were 5 × 128. The
Q matrix was multiplied by the transpose of the K matrix
and then passed through a softmax layer to obtain a 5 ×

5 relationship matrix between sequences. Then, the dot product
of the relationship matrix with the V matrix produced the
attention weight matrix. The output attention weight matrix
can be described as in (2).

Attention(Q, K , V ) = so f tmax(QK T )V (2)

where Q, K, and V are three matrices. A softmax function was
adopted in the attention mechanism.

For human decoding schemes, the model was trained using
an Nvidia Quadro P620 GPU. The stochastic gradient descent
optimizer with momentum was applied to the model. The
momentum and learning rate were set to 0.001 and 0.8 based
on the results of multiple experiments.

F. Kalman Filter (KF)

A KF was adopted in this study to add prior knowledge
of the system. The kinematics of the transition model and
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observation model are described by (3) and (4):

xi = Fxi−1 + w (3)
zi = H xi + v (4)

where xi is the output of the transition model at time i , F is
the state transition matrix, zi is the output of the observation
model at time i , H is the measurement transformation matrix,
and w and v are the state and measurement uncertainties drawn
from Gaussian distributions N(0, Q) and N(0, R).

After these parameters are determined, the state transition
equation and the prior state covariance matrix of the system
can be expressed using (5) and (6):

∧
xi = Fxi−1 (5)
∧

Pi = F Pi−1 FT
+ Q (6)

where is the prior state estimate for the time i and is the prior
state covariance matrix.

The Kalman gain can be calculated using (7):

Ki =

∧

Pi H T

H
∧

Pi H T + R
(7)

The output and covariance matrix Pi optimized by the KF
can be expressed using (8) and (9):

xi =
∧
xi +Ki (zi − H

∧
xi ) (8)

Pi = (1 −
∧

Ki H)
∧

Pi (9)

In KF, the parameters H , Q, and R need to be determined
manually. H was set to 1, Q was set to 10−4, R was set to
10−3, and zi was the real output of the scheme. The designed
KF was followed by a decoding model to add prior knowledge
of the system.

G. Scheme Adaptability Analysis Experiment
In human movement decoding based on sEMG, the model

is usually challenged by long-time use and user changes.
Thus, a robust model that can cope with long-time use and
user changes is essential. To solve this issue, we proposed
AKFS that combines the attention-based CNN model with KF.
To evaluate its effectiveness, we examined the performance
of six different schemes (CNN, CNN-LSTM, attention-based
CNN, CNN with KF, CNN-LSTM with KF, and AKFS) under
four scenarios. The four scenarios were as follows.

1) Scenario 1. Intra-Session: The first session from each
subject was chosen as the data, and five-fold cross-validation
was performed on the data. The first session contained
9 movements and each movement contained 5 repetitions.
Each repetition was segmented by a 250 ms sliding window
with 80% overlapping. Thus, there were 236 samples in
each movement trial. Therefore, the training set contained
8496 samples (9 movements × 4 trials × 236 samples) and
used the remaining trials of all movements as the testing set
(9 movements × 1 trial × 236 samples). Five-fold cross-
validation was conducted. One repetition of one subject was
chosen as the training set and the remaining repetitions were
chosen as the testing set.

2) Scenario 2. Intra-Session Long-Time Use: Two sessions
from each subject were used as the data. Each session
contained 9 movements. To simulate the long-time use of
movements, the five consecutive repetitions of each movement
(60 s) were segmented. Each movement was segmented by
a 250 ms sliding window, with 80% overlapping. Thus,
there were 10764 samples in a session (9 movements ×

1196 samples) after segmentation. Two-fold cross-validation
was conducted. One session of one subject was chosen as the
training set and the other session was chosen as the testing
set.

3) Scenario 3. Inter-Subject: The first session of each sub-
ject was chosen as the data. The continuous 60s data of each
movement of the first session was segmented by a 250 ms
sliding window with 80% overlapping. The first session
of each subject contained 10764 samples (9 movements ×

1196 samples). Two-fold cross-validation was conducted on
each pair of subjects. We chose data from one subject as
the training set and the trained model was tested on the first
session of the remaining subjects. To investigate whether the
proposed scheme can learn the human muscle activities of
multiple subjects, we also investigated whether a model trained
on multiple subjects can accurately predict data from a new
subject. Ten-fold cross-validation was conducted. We chose
data from the first session of nine subjects as the training set
(9 movements × 9 subjects × 1196 samples) and data from
the first session of the remaining subject as the testing set (9
movements × 1196 samples).

4) Scenario 4. Inter-Subject With a Fine-Tuning Strategy:
After changing the subjects, the performance of the model
with the data from new subjects will be significantly reduced.
To solve this problem, a fine-tuning strategy was applied,
in which only a small amount of sEMG data was used to
retrain the model to obtain a satisfactory performance of the
model for the specific subject. Two-fold cross-validation was
conducted on each pair of subjects. The data from the first
session of one subject was chosen as the training set (9
movements × 1196 samples). The data from the first session
of the remaining subjects were used to construct testing and
calibration data. Five-fold cross-validation was conducted on
the test subject. We used one repetition of each movement
as a calibration set (9 movements × 236 samples) to retain
the trained model. The remaining four repetitions were used
as the testing set (9 movements × 4 trials × 236 samples)
to evaluate the fine-tuned model. The efficiency of the model
trained on multiple subjects was also investigated. Ten-fold
cross-validation was conducted. We used the first session of
nine subjects as the training set (9 subjects × 9 movements ×

1196 samples). Five-fold cross-validation was conducted on
the test subject. We used one repetition from each movement
as a calibration set (9 movements × 236 samples) to fine-tune
the trained model. The remaining four repetitions were used
as the testing set (9 movements × 4 trials × 236 samples) to
evaluate the fine-tuned model.

H. Performance Index and Statistical Analysis
The coefficient of determination (R2) was used as the

performance index to evaluate the efficiency of the decoding
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Fig. 1. Experimental setup of sEMG sensors on seven muscles of
subjects. (A) Positions of sensors on biceps, brachioradialis, flex carpi
rad, and fulnaris. (B) Positions of sensors on triceps, ext carpi ulnaris,
and ext dig communis.

Fig. 2. Flow of operation of the HoloLens virtual system (HVS).
A HoloLens projects a red cross in a real environment and the subject
controls a green cross projected by a laser pen to track the red cross.
The upper limb movement is interpreted by the kinematic data of
MPU6050 (Euler angles of x, y, and, z axes). A computer records the
Euler angles of MPU6050 while recording the sEMG signals of the
subject.

schemes. R2 can be described as follows:

R2
= 1 −

∑D
i=1

∑N
t=0 (Pi (t) − Fi (t))2∑D

i=1
∑N

t=0 (Fi (t) − Fi (t))2
(10)

where Fi (t) is the real angle of the i th axis, Fi (t) is the
average angle of the i th axis, Pi (t) is the angle predicted by
the scheme, N is the number of samples in a sliding window,
and D is the number of axes.

The R2 in the four scenarios was analyzed using a repeated
measure analysis of variance (ANOVA) with factors including
the three decoding models (CNN, CNN-LSTM, and attention-
based CNN) and two post-processing strategies (with KF and
without KF) with a significance level of 0.05. A Bonferroni
corrected post-hoc test was also conducted. All results were
analyzed on a personal computer running IBM ®SPSS Statis-
tics 22 software.

Fig. 3. Trajectories of nine upper limb movements projected by
HoloLens in a real environment. The green and red marks represent
the crosses projected by the laser pen and HoloLens, respectively.
A)–D) are the 1-DoF movements, whereas E)–I) are the 2-DoF move-
ments.

Fig. 4. Relationship between kinematic data and sEMG signals. The
red dots represent the labels of the sEMG samples.

Fig. 5. Structure of the attention-based CNN model used to decode the
angle of the three axes.

III. RESULTS

A. Results on Intra-Session Decoding Accuracy
Table I summarizes the decoding accuracy (R2) of the six

decoding schemes of the ten subjects in the intra-session
scenario. An ANOVA analysis showed that both the decoding
model (F2,8 = 13.297, p = 0.003) and post-processing strategy
(F1,9 = 76.278, p < 10−3) had a significant influence on
the decoding accuracy of the schemes and there was no
significant interaction between the decoding model and post-
processing strategy (F2,8 = 2.145, p = 0.179). The schemes
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Fig. 6. Attention mechanism adopted in this study. Q, K, and V are 5 ×

128 matrices.

with attention-based CNN (attention-based CNN and AKFS)
had significantly higher accuracy than the schemes with CNN
(CNN and CNN with KF) (p = 0.005) and the schemes
CNN-LSTM models (CNN-LSTM and CNN-LSTM with KF)
(p = 0.005). There was no significant difference in the
decoding accuracy between the schemes with CNN and CNN-
LSTM (p = 0.443). The schemes (CNN with KF, CNN-
LSTM with KF, and AKFS) with KF had a significantly higher
accuracy than the schemes (CNN, CNN-LSTM, and attention-
based CNN) without KF (p < 10−3).

B. Results on Intra-Session Long-Time Use
Table II summarizes the decoding accuracy (R2) of the

six decoding schemes obtained after combining them with
three decoding models and two post-processing strategies of
the ten subjects in the intra-session long-time use scenario.
An ANOVA analysis showed that both the decoding model
(F2,8 = 25.988, p < 10−3) and post-processing strategy
(F1,9 = 138.798, p < 10−3) had a significant influence on the
accuracy of the decoding schemes. A significant interaction
was found between the decoding model and post-processing
strategy (F2,8 = 6.651, p = 0.02).

The analysis of the simple effect between the decoding
model and post-processing strategy showed that the decoding
model had a significant effect on the accuracy of the schemes
without KF (CNN, CNN-LSTM, and attention-based CNN)
(F2 ,8 = 27.200, p < 10−3) or the schemes with KF (CNN
with KF, CNN-LSTM with KF, and AKFS) (F2 ,8 = 27.731,
p < 10−3). Without KF, the attention-based CNN had higher
accuracy than the CNN (p = 0.001) and the CNN-LSTM (p =

0.033). With KF, the AKFS model had significantly higher
accuracy than the CNN with KF (p = 0.001) and the CNN-
LSTM with KF (p = 0.049). However, there was no significant
difference in accuracy between the schemes with CNN and
CNN-LSTM with or without KF (CNN, CNN with KF, CNN-
LSTM, and CNN-LSTM with KF) (p > 0.05).

A simple effect analysis showed that post-processing strat-
egy had a significant effect on the accuracy of the schemes
with CNN (CNN and CNN with KF) (F1,9 = 138.857,
p < 10−3), the schemes with CNN-LSTM (CNN-LSTM and
CNN-LSTM with KF) (F1,9 = 110.152, p < 10−3) and
the schemes with attention-based CNN (attention-based CNN
and AKFS) (F1,9 = 113.778, p < 10−3). The schemes with
KF (CNN with KF, CNN-LSTM with KF, and AKFS) had
significantly higher accuracy than the schemes without KF
(CNN, CNN-LSTM, and attention-based CNN) (p < 10−3).

TABLE I
R2 OF CNN, CNN-LSTM, ATTENTION-BASED CNN, CNN WITH KF,

CNN-LSTM WITHKF, AND AKFS IN THE OF INTRA-SESSION

LONG-TIME USE SCENARIO

Fig. 7. Confusion matrices of different human decoding schemes in
the inter-subject scenario: (A) CNN, (B) CNN-LSTM, (C) attention-based
CNN, (D) CNN with KF, (E) CNN-LSTM with KF, and (F) AKFS.

Fig. 8. Confusion matrices of different human decoding schemes in
the inter-subject with fine-tuning strategy scenario. (A) CNN, (B) CNN-
LSTM, (C) attention-based CNN, (D) CNN with KF, (E) CNN-LSTM with
KF, and (F) AKFS.

C. Results on Inter-Subject

The inter-subject confusion matrices of the six schemes are
depicted in Fig. 7.

Each small square represents the decoding accuracy (R2

value) obtained by training (row) and testing (column) based
on the first session data from different subjects. The ANOVA
analysis showed that the decoding model had an insignificant
influence on the accuracy of the decoding schemes (F2,43 =

1.461, p = 0.243). However, the post-processing strategy had a
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Fig. 9. Average decoding accuracy (R2) and response time (RT) of
different human decoding schemes with fine-tuning strategy in the two
different training strategies.

significant influence on the accuracy of the decoding schemes
(F1,44 = 1042.700, p < 10−3). A significant interaction
between the decoding model and post-processing strategy
was observed (F2,43 = 5.309, p = 0.009). A simple effect
analysis indicated that the decoding model had an insignificant
influence on the accuracy of the schemes with KF (CNN
with KF, CNN-LSTM with KF, and AKFS) (F2,43 = 1.865,
p = 0.167) or the schemes without KF (CNN, CNN-LSTM,
and attention-based CNN) (F2,43 = 1.131, p = 0.332) and
post-processing strategy had a significant influence on the
accuracy of the CNN models (CNN, and CNN with KF)
(F1,44 = 531.145, p < 10−3), the CNN-LSTM models (CNN-
LSTM, and CNN-LSTM with KF) (F1,44 = 702.746, p <

10−3) and the attention-based CNN models (attention-based
CNN, and AKFS) (F1, 44 = 963.357, p < 10−3). The CNN
with KF model, the CNN-LSTM with KF model, and AKFS
had significantly higher accuracy than the schemes (CNN,
CNN-LSTM, and attention-base CNN) without KF (p <

10−3).
As previous results show (R2lower than 0.11), the accuracy

of decoding new subject data using the model trained on the
data of a single subject is very low. Therefore, we analyzed
the results of the schemes trained with multiple-subject data
to determine whether the proposed scheme can learn common
features from multiple-subject data and thereby enhance the
decoding accuracy of the model for new-subject data.

The results of the schemes trained on multiple subjects are
presented in Table III.

An ANOVA analysis showed that the post-processing strat-
egy had a significant influence on the accuracy (F1, 9 =

102.265, p < 10−3). However, the decoding model had no
significant influence on the accuracy (F2, 8 = 1.405, p = 0.3).
There was no significant interaction between the decoding
model and post-processing strategy (F2,8 = 0.576, p = 0.584).
The schemes with KF (CNN with KF, CNN-LSTM with KF,
and AKFS) had significantly higher accuracy than the schemes
without KF (CNN, CNN-LSTM, and attention-based CNN)
(p < 10−3).

TABLE II
R2OF CNN, CNN-LSTM,ATTENTION-BASED CNN, CNN WITH KF,
CNN-LSTM WITHKF, AND AKFS TRAINED ON MULTIPLE SUBJECTS

UNDER THE INTRA-SESSION SCENARIO

TABLE III
R2OF CNN, CNN-LSTM, ATTENTION-BASED CNN, CNN WITH KF,

28 CNN-LSTM WITH KF, AND AKFS TRAINED ON MULTIPLE

SUBJECTS UNDER 29 THE INTER-SUBJECT SCENARIO

D. Results on Inter-Subject With a Fine-Tuning Strategy

The confusion matrices of the six inter-subject schemes with
a fine-tuning strategy are depicted in Fig. 8. Each small square
represents the accuracy (R2 value) obtained by training (row)
and testing (column). The results showed that both the decod-
ing model (F2,43 = 6.157, p = 0.004) and post-processing
strategy (F2,43 = 808.327, p < 10−3) had a significant
influence on the accuracy. A significant interaction between
the decoding model and post-processing strategy was observed
(F2, 43 = 3.637, p = 0.035).

A simple effect analysis showed that the decoding model
had a significant influence on the accuracy of the schemes
with KF (CNN with KF, CNN-LSTM with KF, and AKFS)
(F2, 43 = 6.320, p = 0.004) or the schemes without KF (CNN,
CNN-LSTM, and attention-based CNN) (F2,43 = 6.009, p =

0.005). Without KF, both the CNN-LSTM model (p = 0.005)
and the attention-based CNN (p = 0.03) had significantly
higher accuracy than the CNN. However, there was no sig-
nificant difference in accuracy between the CNN-LSTM and
the attention-based CNN (p = 0.216). With KF, both the
CNN-LSTM with KF (p = 0.004) and the AKFS (p =

0.029) achieved higher accuracy than the CNN. There was
no significant difference in accuracy between the CNN-LSTM
with KF and the AKFS model (p = 0.278).
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TABLE IV
R2OF CNN, CNN-LSTM,ATTENTION-BASED CNN, CNN WITH KF,
CNN-LSTM WITHKF, AND AKFS TRAINED ON MULTIPLE SUBJECTS

UNDER THE INTER-SUBJECTWITH A FINE-TUNING STRATEGY

SCENARIO

A simple effect analysis showed that the post-processing
strategy had a significant effect on the accuracy of the CNN
models (CNN, and CNN with KF) (F1,44 = 362.192, p <

10−3), CNN-LSTM models (CNN-LSTM, and CNN-LSTM
with KF) (F1,44 = 853.719, p < 10−3), and attention-based
CNN models (attention-based CNN, and AKFS) (F1, 44 =

943.348, p < 10−3). The CNN with KF, CNN-LSTM with KF,
and AKFS had significantly higher accuracy than the schemes
without KF (CNN, CNN-LSTM, and attention-based CNN)
(p < 10−3).

The results of the schemes trained on multiple subjects with
a fine-tuning strategy are presented in Table IV. An ANOVA
analysis showed that the post-processing strategy had a sig-
nificant influence on the accuracy of the decoding schemes
(F1,9 = 59.220, p <10−3). However, the decoding model
had no significant influence on the accuracy of the decoding
schemes (F2,8 = 0.232, p = 0.798). There was a significant
interaction between the decoding model and post-processing
strategy (F2,8 = 7.178, p = 0.016).

A simple effect analysis showed that the decoding model
had an insignificant influence on the accuracy of the schemes
with KF (F2,8 = 0.008, p = 0.993) or without KF (F2, 8 =

0.841, p = 0.466) and the post-processing strategy had a
significant influence on the accuracy of the CNN models
(CNN, and CNN with KF) (F1, 9 = 63.334, p < 10−3), the
CNN-LSTM models (CNN-LSTM, and CNN-LSTM with KF)
(F1,9 = 65.010, p < 10−3) and the attention-based CNN
models (attention-based CNN and AKFS) (F1, 9 = 44.511,
p < 10−3). The CNN with KF, CNN-LSTM with KF, and
AKFS had a significant accuracy compared with the schemes
without KF (CNN, CNN-LSTM, and attention-based CNN)
(p < 10−3).

E. Comparison of the Accuracy and Response Time
Between the Model Trained by A Single Subject and the
Model Trained by Multiple Subjects

We also analyzed the differences between the two train-
ing strategies (the schemes trained on a single subject with
a fine-tuning strategy and the schemes trained on multiple

subjects with a fine-tuning strategy) in the inter-subject sce-
narios to determine whether the model trained on multiple
subjects can learn the generalization features of sEMG signals
of different subjects. The average decoding accuracy (R2) and
average response time (RT) of the different schemes in the
two different training strategies are shown in Fig. 9.

A repeated measure analysis of variance (ANOVA) with
factors including the three decoding models (CNN, CNN-
LSTM, and attention-based CNN), two post-processing strate-
gies (with KF and without KF), and two training strategies
(the schemes trained on a single subject with a fine-tuning
strategy and the schemes trained on multiple subjects with
a fine-tuning strategy). An ANOVA analysis showed that the
training strategy had a significant influence on the accuracy
of the decoding schemes (F1, 9 = 16.025, p = 0.003). There
was a significant interaction between training strategies and
the post-processing strategy (F1,9 = 42.09, p < 10−3).

A simple effect analysis indicated that the training strategy
had a significant influence on the accuracy of the schemes with
KF (CNN with KF, CNN-LSTM with KF and AKFS) (F1, 9 =

17.702, p = 0.002) or without KF (CNN, CNN-LSTM, and
attention-based CNN) (F1,9 = 14.236, p = 0.004). Under the
schemes with KF (CNN with KF, CNN-LSTM with KF and
AKFS) and the schemes without KF (CNN, CNN-LSTM, and
attention-based CNN), the schemes trained on a single subject
with a fine-tuning strategy had a significantly lower accuracy
compared with the schemes trained on multiple subjects with
a fine-tuning strategy (p < 0.05).

By comparing the response time results, we found that
there was no significant difference between the response time
in schemes using single-subject data for training and that
in schemes using multiple-subject data for training (p =

0.260). The response time of the schemes with KF (CNN
with KF, CNN-LSTM with KF, and AKFS) is significantly
higher than that of the schemes without KF (CNN, CNN-
LSTM, and attention-based CNN) (p < 0.001). The response
time of the schemes with CNN-LSTM (CNN-LSTM and
CNN-LSTM with KF) (p < 0.001) and the schemes with
attention-based CNN (attention-based CNN and AKFS) (p <

0.001) is significantly higher than that of the schemes with
CNN (CNN and CNN with KF). Increasing the attention
mechanism to CNN-LSTM significantly reduces the response
time of the model (p < 0.001). The response time of all frames
should be less than 1 ms.

IV. DISCUSSION

In this study, we proposed a human movement decoding
scheme using an attention-based CNN model and a KF
to improve the decoding accuracy of a traditional CNN
model. An attention-based CNN model was adopted to further
improve the spatial information and the temporal information
extraction ability of CNN models by capturing the important
information between various time series of sEMG signals.
A KF was adopted to improve the decoding accuracy of
the CNN model by adding prior knowledge of the system.
Furthermore, a fine-tuning strategy was adopted to solve the
problem of insufficient data due to the short training time for
a new subject. To evaluate the effectiveness of the proposed
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scheme, we compared the decoding accuracy of the proposed
scheme with that of five combined schemes of decoding
models and post-processing strategies (CNN, CNN-LSTM,
attention-based CNN, CNN with KF, and CNN-LSTM with
KF schemes) in four scenarios (intra-session, intra-session
long-time use, inter-subject and inter-subject with a fine-tuning
strategy).

The attention-based CNN significantly improved the decod-
ing accuracy of CNN models in the intra-session, inter-session
long-time use, and inter-subject with fine-tuning strategy sce-
narios. As reported in previous studies, the hybrid CNN-
LSTM model has been extensively used in human movement
decoding and achieved satisfactory performance [25], [26]
by capturing the temporal and spatial information of sEMG
signals. To further improve the ability of the model to use
temporal information and improve the decoding accuracy of
the model in human upper limb movements, we applied the
attention mechanism to CNN-LSTM. Attention-based CNN
can extract effective information in the time domain to improve
the utilization of the CNN-LSTM time domain information.
The attention mechanism can also reduce information redun-
dancy and reduce model calculation time. Thus, the proposed
attention-based CNN achieved a higher decoding accuracy
than CNN and a lower response time than CNN-LSTM.

Consistent with a previous study on human movement
classification [31], the attention mechanism can also improve
the performance of the CNN model in human continuous
movement decoding. However, previous studies ignored the
factors influencing sEMG pattern recognition in real life,
such as user changes. In this study, we further extended
the attention-based CNN model to the inter-subject scenario.
However, its performance was unsatisfactory. This may be a
result of the different data distributions of different subjects in
the same movement because the data of different subjects have
different mean values and variances. Even when we developed
an HVS to unify the movement range and normalize the sEMG
signals of different subjects, the exercise habits of different
subjects still differed.

The models trained with multiple subjects achieved sig-
nificantly higher performance than those trained with a sin-
gle subject under the inter-subject scenario. This is because
the deep learning method can extract generalization features
from multiple subjects and adapt the difference between the
distribution of the training and test sets under the inter-
subject scenario. However, although the model trained with
multiple subjects’ data showed improved performance in the
inter-subject scenario, the performance of its implementation
is still unsatisfactory. There is still a gap between the data
distribution of multiple subjects and that of a new sub-
ject. Therefore, it was necessary to propose a fine-tuning
strategy to improve the decoding accuracy of a specific
subject.

The fine-tuning strategy can reduce the gap between the
data distribution of different datasets. After fine-tuning with a
small amount of data on a new subject, the CNN, CNN-LSTM,
and attention-based models achieved higher performance
than the models without fine-tuning. Furthermore, both the
CNN-LSTM and attention-based CNN models outperformed

the CNN model under the inter-subject with fine-tuning strat-
egy scenario. After fine-tuning, all deep learning models can
adjust parameters to adapt to the data distribution of the new
subject through a small amount of data. Because CNN-LSTM
and attention-based CNN can better extract the temporal
information and spatial information of the sEMG signal, these
two models can achieve a smoother prediction trajectory after
fine-tuning compared with the CNN model.

We also evaluated the model trained with multiple-subject
data in the context of inter-subject fine-tuning to deter-
mine whether the model can learn multiple generalization
features to improve the fine-tuning performance. With the
increase in training subjects, the gap between the three models
became smaller after fine-tuning. Previous studies reported
that mixture models can achieve better performance than
single-structure models [25], [26]. However, we arrived at a
different conclusion in the condition of the model trained on
multiple subjects.

Because the CNN model uses data from multiple subjects
to obtain generalized initialization parameters, using a small
amount of data from the target subjects to fine-tune the
model can result in a similar performance to that of the
fine-tuned CNN-LSTM and fine-tuned attention-based CNN
models. Furthermore, because the model gets more generalized
initial parameters from multiple subjects’ data, the decoding
performance of the model trained with multiple subjects’
data is higher than that of the model trained with data
from a single subject. The initialization strategy of model
parameters has more influence than the difference of model
structure.

The proposed KF significantly improved the decoding accu-
racy of the schemes. Inspired by the post-processing strate-
gies of discrete movement classification based on sEMG,
we proposed a post-processing strategy based on KF for
continuous movement decoding. In contrast to Bao et al. [36],
who focused only on a single subject or a single DoF,
we tested not only the effectiveness of KF decoding multiple
DoFs for a single subject, but also the effectiveness of KF
in decoding multiple DoFs between different subjects. The
results indicated that KF significantly improves the decoding
accuracy of the schemes in intra-session, intra-session long-
time use, and inter-subject with a fine-tuning strategy. Thus,
adding prior knowledge to the decoding scheme improves the
decoding accuracy of the decoding scheme for inter-subject
with multiple DoFs.

V. CONCLUSION

In this study, we proposed a decoding scheme that employs
an attention-based CNN model to improve efficiency by using
the temporal and spatial information of sEMG signals. In addi-
tion, it uses a KF to increase its prior knowledge and thereby
improve its decoding accuracy in human movement decoding.
The proposed scheme achieved good performance for a single
subject under the scenarios of intra-session and intra-session
long-time use, and the model could be easily transferred to a
new subject through a fine-tuning strategy. Nevertheless, in this
study, there was no significant difference in decoding accuracy
under the scenario of inter-subject with a fine-tuning strategy
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between models trained on multiple subjects due to different
data distributions. Therefore, in future work, we will use the
domain adaption method to further reduce the data distribution
difference between different subjects and further improve the
decoding accuracy of the AKFS using the fine-tuning strategy.
We will also apply this scheme to an upper limb exoskeleton
with multiple DoFs to achieve simultaneous and proportional
control.
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