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Abstract— Trunk rehabilitation exercises such as those
for remediating core stability can help improve the seated
balance of patients with weakness or loss of proprioception
caused by diseases such as stroke, and aid the recovery
of other functions such as gait. However, there has
not yet been any reported method for automatically
determining the parameters that define exercise difficulty
on a trunk rehabilitation robot (TRR) based on data
such as the patient’s demographic information, balancing
ability, and training sequence, etc. We have proposed a
machine learning (ML)-based difficulty adjustment method
to determine an appropriate virtual damping gain (Dvirtual)
of the controller for the TRR’s unstable training mode.
Training data for the proposed system is obtained from
37 healthy young adults, and the trained ML model thus
obtained is tested through experiments with a separate
population of 25 healthy young adults. The leave-one-out
cross validation results (37 subjects) from the training
group for validation of the designed ML model showed
80.90% average accuracy (R2 score) for using the given
information to predict the desired difficulty levels, which
are represented by the level of balance performance
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quantified as Mean Velocity Displacement (MVD) of the
center of pressure. Statistical analysis (Repeated measures
analysis of variance) of subject performance also showed
that ground truth difficulty levels from the training data
and predicted difficulty levels did not differ significantly
under any of the three exercise modes used in this study
(Hard, Medium, and Easy), and the standard deviations
were reduced by 16.39, 41.39, and 25.68%, respectively.
Moreover, the Planar Deviation (PD) of the center of
pressure, which was not the target parameter here, also
showed results similar to the MVD, which indicates that
the predicted Dvirtual affected the difficulty level of balance
performance. Therefore, the proposed ML model-based
difficulty adjustment method has potential for use with
people who have varied balancing abilities.

Index Terms— Machine learning, difficulty level adjust-
ment, balance rehabilitation, rehabilitation robotics, seated
balance.

I. INTRODUCTION

TRUNK rehabilitation exercises, such as those for
remediating core stability, can help improve the seated

balance of patients with weakness or loss of proprioception
caused by diseases such as stroke and aid the recovery of other
functions such as gait [1], [2]. Therefore, trunk rehabilitation
exercises are extensively prescribed during stroke recovery [3].

However, since such rehabilitation exercises require exten-
sive therapist input, they can benefit greatly from the use of
robotic devices that can reduce the therapists’ workload [4].
Furthermore, rehabilitation robots have the advantages of
providing quantitative data acquisition and training [4], [5].
Thus, a number of trunk rehabilitation robots (TRR) have
been developed for the evaluation and rehabilitation of seated
balance [6], [7], [8], [9]. It has also been reported that,
as compared to conventional rehabilitation protocols, the
use of robotically generated unstable seating conditions for
the training of chronic stroke survivors resulted in greater
improvements in their proprioceptive and postural control, and
reactive balance [8], [9]. Inspired by these benefits, we have
developed a TRR that can be used to provide core stability and
strength training to patients with seated balance deficiencies
caused by factors such as stroke [10].

In previous TRR studies with healthy young people,
its unstable seat mode was used with the fixed control
parameter under various biofeedback conditions (virtual
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damping gain) [10], [11]. The results of these studies showed
large standard deviations (SD) of the balance outcomes. This
indicates that although the control parameter was the same,
different participants experienced different amounts of balance
difficulty due to their different balancing abilities. Such
difficulty differences may become amplified in the elderly or
the patient populations due to the higher variability in their
balancing abilities [12].

Selecting an appropriate difficulty level is essential for
maximizing therapy engagement and preventing frustration
[13], [14]. Furthermore, an inappropriately high level of
difficulty may reduce balance so much that it can increase
the fear of falling, fall risk, and mobility limitations that can
result in reduced independence in performing the activities of
daily living [15]. Conversely, increasing the level of robotic
assistance in case of poor performance/participation can lead
to slacking, where patients gradually become passive and
start relying on the robotic assistance [16]. Therefore, it is
imperative to provide training on an appropriate level of
difficulty for each patient undergoing trunk rehabilitation
training. The trial-and-error method to determine the difficulty
level is time-consuming and can cause tiredness and reduction
in the patient’s concentration levels, which may affect the
outcomes of the difficulty adjustment process. Additionally,
in clinical rehabilitation practice, selecting the exercise
difficulty level and adapting it over the therapeutic course is a
challenging task that is often left to the therapists’ subjective
perception of a patient’s abilities [16].

Research on adaptive control of rehabilitation robots
has focused on minimizing the tracking error or the
supporting force provided by assist-as-needed (AAN) systems
[5], [17], [18], [19], [20]. Variable control gains of adaptive
or fuzzy controllers are tuned in real-time to determine the
exact amount of supporting force or torque, in order to
increase the training efficiency or overcome uncertainties in
the human-robot interaction model. However, due to complex
control logic, it takes time for the adaptive value to converge
progressively for each user [16].

Andrade et al. suggested an evolutionary algorithm (AE)
based dynamic difficulty adjustment (DDA) for games that
adjusted the moving distance or speed of the game character
using the AE integrated with the user model, in order to
obtain the desired score in the game [21]. Sekhavat suggested
a Multiple-Periodic Reinforcement Learning (MPRL) method
that makes it possible to evaluate different objectives of
difficulty adjustment during separate periods of an arm
movement tracking game [22]. These works considered the
individual variability in the deficits and behavior of patients in
order to optimize the impact of rehabilitation. However, since
their focus was on the immersion aspect of the game interface
rather than the rehabilitation robot or movement performance,
they seem more suited to simple rehabilitation movements and
long-term rehabilitation training.

Shirzad explored the usefulness of using participants’ motor
performance (visual distortion) and physiological signals (skin
conductance rate and temperature, etc.) during a typical
reaching task using the upper-arm with 24 healthy people
for prediction of their desirable difficulties, however their

system evaluation was limited to the validation of training
data (hold-out cross validation) [23]. Yan et al. suggested
an assistive force training control strategy and corresponding
participation model based on the support vector machine for
seated and reclining training with a lower limb rehabilitation
robot [24]. They divided the difficulty into three stages (over-
challenge, challenge, less challenge) and carried out system
evaluation with a group of participant (ten for training, two
for verification). Metzger et al. clinically applied long-term
rehabilitation training through difficulty adjustment to six
stroke patients using an upper-limb rehabilitation robot [16].
They were able to maintain the participants’ performance
within 70% of the target level, demonstrating the effectiveness
of their proposed training method. This work confirmed the
importance of setting the initial difficulty level. However,
until now, there has been no research done to find a method
that automatically determines the initial difficulty setting of
a trunk rehabilitation robot from data such as the patient’s
demographic information, balance performance (Reference
information), training sequence, etc. which is similar to the
clinical training environment.

Therefore, in this work, we have proposed a machine
learning (ML) based difficulty adjustment method that
determines the appropriate virtual damping gain (Dvir tual) of
the controller for the TRR’s unstable training mode. This work
was done to evaluate our hypotheses that, firstly, there will be
no significant difference in the balance performance measure,
Mean Velocity Displacement (MVD) of the user’s Center
of Pressure (COP), results obtained from the training and
evaluation experiments with the developed model, however,
the standard deviation will be reduced. Secondly, when
the error is defined based on the average MVD value of
37 participants, the mean error value for the evaluation
experiment results will be significantly less than the training
experiment results. This would mean that our proposed ML
model, that takes into account the participant’s demographic
information, balance ability, etc., can accurately predict the
Dvir tual parameter in order to obtain test values close to the
desired MVD. Achieving the desired MVD value is of interest
to us because mean COP velocity is a reliable measure for
assessing postural steadiness [25], [26], which is a goal of
balance rehabilitation.

II. METHOD

A. Trunk Rehabilitation Robot (TRR)
Fig. 1 (a) shows the experimental setup with the TRR used

in this study. The TRR can move with 4 degrees of freedom;
Pitch, Roll, Yaw and Heave using servomotors. The roll and
pitch movements correspond to the Mediolateral (M) and
Anteroposterior (A) movements of the body, and are used to
challenge the users balance. The seat has load-cells to measure
the user’s COP position, which is shown by a point on the
visual display provided through a 27-inch LED monitor placed
in front of the user at eye level.

Seat movements are controlled by a software running in
LabVIEW (National Instrument, USA) that, in the unstable
seat mode, takes in the user’s COP position and moves the
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Fig. 1. The experimental setup showing (a) the TRR with seat-
connected footrest (seat axes are P: Pitch, R: Roll and Y: Yaw) and
(b) visual display shown to the participants.

TABLE I
EXPERIMENTAL PROTOCOLS

seat accordingly based on commands from an admittance
controller [27]. The COP data is also stored for later
balance performance evaluations. In the controller used, inertia
is calculated based on the distance and direction of the
COP position from the origin, in order to determine the
movement angle and direction. The seat movement speed is
calculated based on the virtual damping gain (Dvir tual), which
determines the seat’s motion sensitivity. In addition, to avoid
overshoot or fluctuating movement of the seat during balance
training, we have excluded the virtual stiffness term [27].
As shown in Fig 1 (b), the user must maintain their COP
within the 50 × 50 (mm) target square centered at (0, 0)
position. This target size was set based on the range of
projection of the center of mass of an average person for a
maximum trunk tilt of ±5◦ [28].

B. Participants (Training Data Set Experiment)
We carried out an experiment with 37 healthy people (21

male and 16 female) to obtain the training data set for
the ML model (Age: 22.8 ± 3.5 years, Height: 168.7 ±

7.6 cm, Weight: 63.3 ± 10.9 kg). This study was approved
by the Institutional Review Board at Gwangju Institute of
Science and Technology, Gwangju, South Korea (20220216-
HR-65-04-04) and was performed in accordance with the
Declaration of Helsinki. None of the participants suffered from
any neurological, musculoskeletal, or vestibular disorders. All
subjects gave written informed consent before participation.

C. Protocol (Training Data Set Experiment)
All participants of the training data set collection experiment

performed seated balancing tasks under four Dvir tual (5000,

TABLE II
ALL PARAMETERS FOR MACHINE LEARNING

10000, 15000, 20000 Ns/mm) of the unstable seat mode
(see Table I), presented in pseudo-random order. In order
to determine the appropriate damping values for this study,
we carried out preliminary experiments with subjects not
included in the main study. These experiments revealed that
for damping gain values of less than 5,000 Ns/mm, the system
becomes too sensitive for the subject to use confidently, so we
kept this as the lowest gain value. Similarly, we found that for
damping gain values greater than 20,000 Ns/mm, the system
becomes too insensitive, so we kept this as the highest gain
value. To allow ease of testing, we divided the range defined
by these two gain values into equal parts to obtain the 4 test
values used in our experiment. In order to obtain reliable test
data, we carried out two trials under each of the four gain
conditions (total 8 trials) with a break of 1 min between trials.
The order in which conditions were presented to each subject
was randomized using an online randomization tool [29].
During all trials, participants were asked to sit with their arms
crossed across their chest and try to keep their COP inside the
target region mentioned earlier. Before each trial, the system
was calibrated to make the subject’s balanced COP position
coincide with the origin.

Each trial lasted 70 sec and data from the middle 60 sec
was used for analysis. The seat movement was limited
to a maximum speed of 15 deg/sec and a maximum tilt
of 15 deg. The COP data during all trials were recorded
at 100 Hz and used for analysis. Furthermore, as shown in
Fig. 1 (a), all subjects wore an IMU (Inertial Measurement
Unit) (Noraxon, USA) at the lower thoracic level to record
their trunk accelerations at 100 Hz, which were also analyzed
after the experiments. The total size of one participant’s row
data for the trainning data set was 48,000 rows (6,000 rows
per trial) × 34 columns.

D. Machine Learning Models
Fig. 2 shows, with input and output, the training and testing

process of the ML model that was designed considering
the testing environment. To adjust the initial difficulty level,
a new participant performs only two trials, which serve as
the reference for evaluating their balance ability (see Fig. 2).
Then, the virtual damping gain suitable for the participant is
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Fig. 2. The process of training and testing the ML model with inputs and outputs. In this study, the desired MVD values under hard, medium and
easy modes were defined based on the results of the training data set experiment under 5000, 10000 and 15000 (Dvirtual).

predicted based on their demographic information, reference
results, and desired balance performance value. The value
of Dvir tual = 10,000 is used to obtain the reference results
because in the training data set collected from 37 participants,
out of the 4 conditions tested, the standard deviation of the
outcome measure was the highest at this value, meaning that
this value had the widest data distribution.

All the parameters obtained from the subject, TRR and
IMU are shown in Table II. The data set was divided into
participant’s demographic information, COP from the TRR,
Angle of seat from the TRR, and trunk acceleration from
the IMU. In the participants’ demographic information, it was
thought that the height and weight would affect the balance
performance due to the height of the center of mass, and the
trial order predicted that the learning effect of adapting to the
unstable mode would occur while performing the experiment.
In addition, the COP and angle of seat data are related
to balance performance. The Mean Velocity Displacement
(MVD) (1) and Planar Deviation (PD) (2) of COP movements,
and the RMS (Root Mean Square) of M and A directed trunk
accelerations are all commonly used parameters for evaluating
postural stability, and their higher values mean higher levels
of postural instability [10], [11]. Linear accelerations of the
lower thorax to check participants’ activity, measured by
the IMU with respect to the earth frame of reference, were
acquired using the MyoMotion software (MR 3.16, Noraxon,
USA). Trunk accelerations can be correlated with trunk muscle
activity as higher trunk accelerations have been reported to be
accompanied by greater trunk muscle activations [30].

MV D(cm/s)

=

∑ √
((C O PM L (i)−C O PM L (i−1))2+(C O PAP (i)−C O PAP (i−1))2)

ti −ti−1

n
(1)

P D(cm)

=

√
σ 2C O PM L + σ 2C O PAP (2)

Using the correlation analysis between data variables and
the trial-and-error method, we found the most important
variables for ML training using the following strategies. All
demographic data, except age, was used as part of the training
input data to calculate the desired Dvir tual . The age was
excluded to avoid overfitting to a specific age group as the
subject group that we were able to recruit had a very small
age range (SD was only ± 3.5 years). Since the sensor data
contains a large number of variables, we selected only the
representative variables to avoid unnecessary input use. Fig 3
illustrates each sensor variable’s relation and their clusters.
4 distinct variable clusters were found: IMU sensor values,
RMS_A (COP), seat sensing, and COP sensing. However,
while validating the training dataset, IMU sensor data and
RMS of A directional movement (COP) decreased the ML
model’s accuracy. So, we excluded the first two clusters
(IMU, RMS_A (COP)) from the input data and picked the
representative variables from only the 2 remaining clusters.
Thus, MVD (COP) and MVD (Seat) were set as input data
from each cluster. RMS M velocity was chosen as additional
input data to include at least one velocity data in the model.
Finally, the desired MVD (COP) is used as the last input data
for the ML model.

Additionally, the reference for this was the best performance
obtained when the MVD values calculated for the 1st and 2nd
trials (done with Dvir tual = 10,000) were input separately as
measures of balance performance. The final input data set thus
obtained is as follows:

- Demographic information: Gender, Height, Weight, Mean
of Trial orders

- Reference result (Dvir tual :10,000): 10,000 (Dvir tual ), Trial
order at 1st trial, MVD at 1st trial (COP), RMS M velocity at
1st trial (COP), MVD at 1st trial (angle of seat), Trial order
at 2nd trial, MVD at 2nd trial (COP), RMS M velocity at 2nd
trial (COP ), MVD at 2nd trial (angle of seat).

- Balance performance: MVD (COP)
Thus, the total size of the trainning data set is

148 rows × 14 columns.
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Fig. 3. Sensory data relation and cluster. Each number on the heatmap
denotes the relation of each data variable. Grey lines denote organized
clusters. Green separation lines denote separated input clusters.

TABLE III
THE HYPER-PARAMETERS AND ACCURACY

OF ML REGRESSION MODELS

E. ML Model Selection and Validation
The performance of the various ML regression models was

evaluated using the data of four participants from the end of the
training data set whose trial order and first trial condition did
not match. The hyper parameters of each model were found
using the greed search method [31]. In this study, we tested
a total of seven ML models for training difficulty adjustment:
simple linear models and the linear models applying lasso and
ridge to prevent overfitting [32], decision tree regressor model
(which is a classification model that divides the independent
variable space while sequentially applying various rules) [33],
k-neighbors regressor model (which is a method of predicting
a value through the nearest k samples in the vicinity) [34],
and RandomForest [35] and XGBregressor [36] models (which
are ensemble techniques that combine multiple Decision
Trees). Among these, k-neighbors regressor, RandomForest
and XGBregressor showed the best performance (R2 score
accuracy), which was compared by dividing the data of one

participant by the verification data 37 times and taking the
average (Leave-one-out cross validation (LOOVC); K-fold
cross validation, K = 37 (# of samples)) [37] (see Table III for
accuracy values and hyper parameters). XGBregressor showed
the highest mean accuracy of 80.90%. The LOOVC is one of
the most used approaches for reducing the differences between
training and test accuracy and creating a more generalized
model [38]. Shirzad showed 78% predictive accuracy of
performance features with hold-out cross validation within the
same 24 subjects’ data for a study of healthy subjects with
upper extremity training [23]. On the other hand, since the
validation result through LOOVC is 80.90% when we divide
it by subject, this validation result was considered to show that
the developed method is sufficiently accurate. This is further
supported by the results of the training data set experiment,
where the errors in MVD were 18.64, 48.99, 44.22, and
51.67 % under the four Dvir tual conditions, respectively (See
table IV and eq. (3)).

III. EVALUATION EXPERIMENT

A. Participants (Evaluation Data Set Experiment)
To evaluate the trained ML model, we carried out an

experiment with 25 healthy people (13 male and 12 female)
who had no prior experience with the TRR (Age: 25.3 ±

5.6 years, Height: 166.8 ± 9.2 cm, Weight: 62.7 ± 12.9 kg).
This study was approved by the same Institutional Review
Board as the training data set experiment, and was performed
in accordance with the Declaration of Helsinki. None of the
participants suffered from any neurological, musculoskeletal,
or vestibular disorders. All subjects gave written informed
consent before participation.

B. Protocol (Evaluation Data Set Experiment)
The purpose of the evaluation experiment was to compare

the balance results obtained using the Dvir tual predicted by the
trained ML model with the balance results obtained from the
training data set experiment, in order to confirm that there is
no difference in the desired MVD and that the SD is reduced.

Based on the training data set experiment with 37 people,
for this experiment, we defined 233.15, 118.54 and 60.09 cm/s,
as the desired MVD values for the Hard, Medium, and Easy
modes, since they were the resultant values obtained with
Dvir tual of 5000, 10000, and 15000 Ns/cm, respectively. Then,
as shown in Fig 2, for each new participant, two trials with
Dvir tual = 10000 (Try mode) are first performed. Then, using
the gathered data, the ML model outputs Dvir tual values
corresponding to the Hard, Medium and Easy modes of the
desired MVD. Finally, these conditions are presented to the
subject in random order and two trials are done under each
condition.

Thus, all participants performed trials under four conditions
(Try (10,000), Hard, Medium, and Easy mode), as shown
in Table I. Other experimental details were the same as the
training data set experiment. The participants were not aware
of the experimental condition during the experiment. After the
experiment, they were asked to rate the conditions presented
to them as Hard, Medium, and Easy in order to determine
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their perception of the three difficulty levels and see how
it compared with the average MVD value based predictions
made by the ML model.

C. Data Processing and Analysis
The synchronized COP and trunk acceleration data recorded

during all the trials are used to determine the participants’
level of balance performance [10]. Data recorded after the
first and before the last 5 seconds of each trial were used
for analysis. Mean values of the data collected during the two
trials under each condition were used for further analysis. The
Mean Velocity Displacement (MVD), the Planar Deviation,
RMS of the COP in M and A directions, and RMS of trunk
accelerations in M and A directions were calculated using
MATLAB (Mathworks, USA).

We first performed a paired t-test to observe the difference
between the two groups (training and evaluation) with respect
to the participants’ demographic information. Then, to evaluate
the effect of ML prediction (Dvir tual) on balance performance
(MVD), results obtained from the two groups under different
test conditions were statistically analyzed using a one-way
repeated measures analysis of variance (one-way RMANOVA)
carried out using SPSS 20 (IBM Corp., USA). Since the
average values of 37 participants’ MVD results for Dvir tual
values of 5,000, 10,000, and 15,000 were defined as Hard,
Medium and Easy modes of the desired MVD, the average
outcome values of 37 and 25 participants were compared
for each of these three conditions. Additionally, the absolute
value of the difference between each participant’s MVD result
and the desired MVD value was defined as the error, and
compared under the Hard, Medium, and Easy conditions,
respectively.

Error(%) =
|Desired MV D − MV D|

Desired MV D
× 100 (3)

(Desired MV D = 233.15(Hard), 118.54(Medium), 60.09
(Easy)mm/s).

The coefficient of variation (CV), which is the normalized
standard deviation divided by mean was calculated to evaluate
how much the standard deviation of the evaluation results is
reduced compared to the standard deviation of the training
results.

Q-Q plot evaluation tool was utilized to observe the
distribution of all data, which was found to be within the
acceptable range of normal distribution. Bonferroni correction
method was used for conducting post hoc tests.

IV. RESULT

The result outcomes of subjects under all conditions are
presented in Table III. Fig 4 shows the results of one subject’s
test. Fig 5 and 6 show the results of one-way RMANOVA for
the MVD and the error under all conditions for the Fixed Gain
(FG) (training) and Predicted Gain (PG) (evaluation) groups.
In addition, Fig 7 shows the results of one-way RMANOVA
of the PD and the error under all condition for the FG and PG
groups.

The t-tests revealed that there was no significant difference
between the FG and PG groups with respect to the participants’

Fig. 4. Results of one subject’s test. The bars show the SD. Values
mentioned in brackets beside the Hard, Medium and Easy labels are
the Dvirtual values predicted by the ML model.

Fig. 5. Results of the one-way RMANOVA of MVD comparing the FG
and PG groups. The bars show the SD. There is no significant difference
between the two groups under each difficulty condition.

Fig. 6. Results of the one-way RMANOVA of the error in MVD
comparing FG and PG groups. The bars show the SD. ∗

= p < 0.05 and
∗∗

= p < 0.01.

Fig. 7. Results of the one-way RMANOVA of the PD and the error
in PD comparing the FG and PG groups. The bars show the standard
deviation. ∗

= p < 0.05 and ∗∗
= p < 0.01.

demographic information. As shown in Fig 5, RMANOVA of
MVD under each condition revealed no significant differences
between the FG and PG groups. In addition, CV of SD
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TABLE IV
OUTCOMES OF THE TRAINING AND EVALUATION EXPERIMENTS

Fig. 8. Confusion matrix of the actual difficulty levels (y-axis) and the
test participants’ perceived difficulty levels (x-axis). Each block denotes
the participants’ response percentage for each condition.

under each condition of the PG group was lesser than that
of the FG group, with the difference being 16.39%, 41.39%
and 25.68%, under the Hard, Medium and Easy conditions,
respectively. This indicates that the Dvir tual value predicted
by the trained machine learning model (for the desired MVD)
resulted in lesser distribution of the resultant MVD than that
with the fixed gain approach. In addition, as shown in Fig 6,
RMANOVA results of the calculated error in MVD showed
that significantly lower values were obtained with the ML
model under the Medium and Easy modes (FG vs PG under
Medium mode: F(1, 24) = 11.812, p < .01, η2

p = .330, FG vs
PG under Easy mode: F(1, 24) = 6.281, p < .05, η2

p = .207).
Therefore, according to the hypotheses of this study, it can
be said that the ML model accurately predicted the Dvir tual
values in order to obtain the desired balance performance
under the Medium and Easy modes.

The PD, which was not the value of interest here, also
showed results similar to the MVD results (See Fig 7). The
PD value indicates how far away from the origin the COP
movement had spread. It is also an indicator of balance
performance, like MVD. There was no significant difference in
PD between the FG and PG groups under each condition, and
CV of SD under each condition was reduced in the PG group
as compared to the FG group (H: 14.79%, M: 41.33%, and E:
42.22%). Furthermore, RMANOVA results of the calculated
error in PD also showed significantly lower values under the
Medium and Easy modes (FG vs PG under Medium trial: F(1,
24) = 6.434, p < .05, η2

p = .211, FG vs PG under Easy trial:
F(1, 24) = 5.045, p < .05, η2

p =.174).

Fig. 9. Result of the machine learning model feature importance
analysis. Each area denotes the extent of each variable’s influence on
the machine learning model’s output.

In order to investigate whether or not the generated difficulty
levels were able to provide perceivable differences in difficulty,
we conducted a post-experiment survey from each participant.
In this survey, each participant was asked to provide a
difficulty ranking for the three randomized trial conditions
(easy, medium, hard; blinded). As shown in Fig 8, the overall
distinction accuracy was 78%, which is similar to our ML
model’s R2 accuracy score. The distinction accuracy for each
condition was 88%, 69% and 77% for easy, medium, and hard,
respectively. Additionally, analysis of the trained ML model
according to feature importance revealed that the desired
difficulty level and reference test results (Try mode) were
the most important information needed for machine learning
prediction (see Fig. 9).

V. DISCUSSION

This study proposed a ML based method for initial difficulty
adjustment of the unstable training mode of TRR. The ML
model was trained using data from 37 participants, and a test
to evalute the Dvir tual values predicted by the ML model was
performed with 25 new participants.

Greater improvements in proprioceptive control, reactive
balance and postural control of chronic stroke patients have
been reported with rehabilitation training using robotically
generated unstable conditions, as compared to conventional
rehabilitation protocols [8], [9]. Difficulty adjustment is
an important part of rehabilitation training. Maintaining a
challenging level of difficulty is a very important factor
in motivating training and increasing training effectiveness
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[13], [14]. In clinical studies on difficulty adjustment, it has
been reported that the initial difficulty adjustment plays an
important part in increasing the training effect [16]. Moreover,
if the difficulty level during balance training is set too high,
it can cause the balance to reduce so much that it increases the
fear of falling, fall risk and mobility limitations [15]. However,
studies on automatic adjustment of the initial difficulty in
robotic seated balance rehabilitation training had not been
reported prior to this work.

In this study, the trained ML model predicted the appropriate
system control parameter so that the participants could achieve
the desired MVD performance. It was observed that participant
performance outcomes with the predicted virtual damping gain
had more similarity in difficulty levels, and had lower CVs of
SD than those with the fixed gain value. Moreover, the average
error rate of MVD under Hard, Medium, and Easy mode
decreased from 37.28 ± 26.33% to 24.11 ± 19.25%. Shirzad
showed 78% predictive accuracy of performance features with
hold-out cross validation within the same 24 subjects’ data
in their study on prediction of desired difficulties of healthy
subjects performing an upper-arm reaching task [30]. Bao et al.
trained an ML model to learn the mapping between the
trunk sway data from a single IMU and a physical therapist’s
assessment of balance performance [39]. They showed that the
model achieved an accuracy of 82% during evaluation with a
leave-one-participant-out scheme (not with various physical
therapists). In the current study, the average of validation
result through LOOVC (37 subjects) is shown to be 80.90%
when divided by subject. Furthermore, Yan et al. suggested
an assistive force training control strategy and corresponding
task difficulty based on the support vector machine for
seated and reclining training on a lower limb rehabilitation
robot [24]. They reported 80% accuracy of task difficulty with
two participants’ evaluation (through survey). Our evaluation
accuracy result with 25 participants was 78% and the accuracy
based on the error rate of MVD was 76%.

However, as shown in Fig 6, the error in MVD was
significantly reduced only under the Medium and Easy
conditions and not the Hard condition. It is believed that this
may be because the 37 participants felt similar difficulty under
the hard condition (5,000, error = 18.64 ± 15.72%). It may
also be because the Dvir tual value corresponding to the Hard
condition (5,000) was at the lower end of the range tested for
training data set collection. Since our ML algorithm has been
used to map the participants’ conditions, including balancing
ability, to difficulty levels, it may have limitations in predicting
values in specific areas where there is a lack of data [40].
Thus, it is expecxted that the accuracy can be improved by
increasing the range of Dvir tual used for data collection to
include values lower than 5,000. Along the same lines, if we
collect training data from more participants using a greater
variety of difficulties, then the machine learning algorithm
is expected to adjust the difficulty levels more accurately.
An interesting observation is that the PD values, which were
not the target values, showed results similar to the MVD.
Since both MVD and PD are balance parameters representing
the degree of difficulty [10], [41], these results show that

the proposed method actually adjusts the overall balancing
difficulty instead of just predicting the MVD.

Another important feature of this work is that the difficulty
level adjustment is done based on only the participant’s
demographic information and 140 seconds (2 trials) of
reference training results. Choi et al. showed that on average
30 trials with the ADAPT system (an end-effector presenting
different real-life objects to manipulate against various
resistance levels with fast adapting difficulty modulation
algorithms) were needed for chronic stroke patients to reach
a challenging difficulty level [13], [16]. Metzger et al.
determined the initial assessment-based difficulty selection and
the cognitive processing of perceived sensory information in
as low as 20 trials per exercise and therapy session [42].
Compared to these works, the proposed ML model based
method is much quicker in finding the desired level of
difficulty.

The evaluation results show that our ML model has been
successful in reflecting the desired difficulty levels through the
predicted virtual damping gains while using only a relatively
limited set of input data. As shown in Fig 9, the desired
MVD value was the most important variable for machine
learning. After that, the reference test result was significant for
predicting the proper virtual damping gain. However, the first
reference test result (1st trial of try mode) had greater influence
on the model’s predictions. Interestingly, the experiment order
had greater influence than the second reference test result
(2nd trial of try mode). This shows that for the ML model,
the participants’ learning effect due to the order of trials
used in the experiment is more important than the second
reference test result. However, since the 4 trial conditions
used while acquiring the training data can only be presented
in 24 distinct orders, the 37 person subject group had an
order repetition of only 1.5 times. We believe that a greater
number of participants, resulting in a greater amount of trial
order repetition, are needed to fully learn the time-dependent
learning effect of the randomized experimental sequence.
Therefore, we expect that if the training data is gathered
from a larger subject population, the ML model can achieve
more accurate prediction results. Each person’s response to a
rehabilitation protocol is different since the learning behavior
of each person is different. Therefore, in future studies, it is
necessary to find the minimum number of persons required to
be included in the training dataset in order to fully represent
the learning effect. In addition, since the experiments in this
study were performed with healthy young participants, the
effect of age on the ML model was small. However, in the
case of stroke patients, age is expected to have a greater effect
on model training because the stroke patient population may
have a wide age variation. Therefore, it seems that it should
be included in the training set parameters.

Clinical studies with stroke patients require more demo-
graphic information [43]. This includes parameters commonly
used in clinical rehabilitation training, such as date of
onset, Modified Barthel Index Score (MBI), Mini-Mental
State Examination Score (MMSE), cause of stroke, Side of
Hemiplegia, etc., which can be grouped and quantified as an
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integer. Therefore, we believe that there is a possibility that
the proposed method can be applied to stroke patient studies,
and we intend to conduct such studies in future studies.

The purpose of this study was not to find desireable values
of MVD for each participant, rather it was to provide the
same three initial difficulty conditions to each participant.
In order to confirm that the desired MVD based difficulty
settings were appropriate percieved by the participants, they
were blinded to the three experimental conditions and asked
to rate them after the experiment. Their responses show
that our model successfully provided individually percievable
difficulty levels. The participants successfully guessed each
test’s difficulty level with 78% accuracy. This shows that the
proposed method is able to provide a real feeling of discrete
difficulty levels to the subject. However, when looking at each
level separately, the participants showed lower classification
accuracy for the medium and hard difficulty levels. This
may be because the desired MVD value under the medium
condition (118.54 mm/s) was defined as an intermediate
value between Hard (233.15 mm/s) and Easy modes (60.09
mm/s), which may be confusing for the participants as
the differences between the actual difficulty levels may
be not linear. Futhermore, the reduced perception of both
the Hard and Medium levels suggests that there may be
other factors involved that influence difficulty perception and
subject performance. Özkul showed that combined feedback
adjustment (CFA), which combined the performance score and
mean skin conductance to determine the difficulty level, was
able to keep the subjects more active, focused and excited,
when compared to only score or physiological feedback
adjustments [44]. Therefore, we believe that in order to reliably
use the proposed method to determine the appropriate actual
and perceived difficulty levels in future clinical studies, it is
necessary to include physiological factors in the ML training.

Additionally, the overall effect of difficulty level adjustment
may be improved by using the proposed method to adjust the
difficulty level periodically over the course of a trial instead of
determining a single difficulty value that is used throughout the
entire trial. Furthermore, the input-output relationship defined
in this study can be applied to other methodologies, such as
dynamic difficulty adjustment (DDA) [21], [45] or Recurrent
Neural Networks (RNN). Thus, in future research, we plan to
compare the performance of the single prediction application
of the proposed ML model presented in this work with a
recurring prediction application of this model. We also plan
to compare the proposed method with other methods, such
as Recurrent Neural Network (RNN), to find the method best
suited to difficulty level adjustment in the given scenario.

VI. CONCLUSION

In this study, we proposed a ML based method for adjusting
the initial TRR based balance training difficulty. The ML
model was trained using data collected from 37 participants,
and the method’s performance was evaluated with 25 new
participants. The evaluation showed that the proposed method
was able to generate clearly distinguishable difficulty levels
that posed similar levels of difficulty for each participant, thus
reducing inter-subject variability in performance outcomes.

This was achieved by utilizing only 2 reference training trials
(140 sec), the participants’ demographic information, and
the sequence of training trials. This study also revealed the
necessity for using a wider range and variety of difficulty
levels for collecting the training data and using a larger subject
population for training in order to sufficiently include the
learning effect.

Since the proposed method, including its input and output
data sets and the structure of the ML model, has been
optimized for our current subject population, i.e. healthy young
subjects, it may not be optimized for use with a patient
population. However, this was a necessary step because,
due to issues such as quantity and quality of sensor data,
the application of ML based systems to patient populations
requires rigorous computational modelling to achieve proper
estimation of the required parameters and the desired
results [46]. Therefore, before applying our proposed method
to a patient population, we have defined the ML model’s
input and output, found its optimal hyperparameters, and tested
it with a new healthy subject population. Now, in order to
apply it to an elderly or patient population, we believe that
it is necessary to include physiological information and the
users’ perception of the difficulty levels to appropriately define
the difficulty levels. Furthermore, to increase the accuracy
of the ML model for these populations, it is necessary to
include demographic information representing the disease
characteristics of the population in the training data set, which
will be done in future works.
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