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Multi-Stage Audio-Visual Fusion for Dysarthric
Speech Recognition With Pre-Trained Models

Chongchong Yu , Xiaosu Su , and Zhaopeng Qian

Abstract— Dysarthric speech recognition helps
speakers with dysarthria to enjoy better communication.
However, collecting dysarthric speech is difficult. The
machine learning models cannot be trained sufficiently
using dysarthric speech. To further improve the accuracy
of dysarthric speech recognition, we proposed a Multi-
stage AV-HuBERT (MAV-HuBERT) framework by fusing
the visual information and acoustic information of the
dysarthric speech. During the first stage, we proposed
to use convolutional neural networks model to encode
the motor information by incorporating all facial speech
function areas. This operation is different from the
traditional approach solely based on the movement of
lip in audio-visual fusion framework. During the second
stage, we proposed to use the AV-HuBERT framework to
pre-train the recognition architecture of fusing audio and
visual information of the dysarthric speech. The knowledge
gained by the pre-trained model is applied to address the
overfitting problem of the model. The experiments based on
UASpeech are designed to evaluate our proposed method.
Compared with the results of the baseline method, the best
word error rate (WER) of our proposed method was reduced
by 13.5% on moderate dysarthric speech. In addition, for
the mild dysarthric speech, our proposed method shows
the best result that the WER of our proposed method
arrives at 6.05%. Even for the extremely severe dysarthric
speech, the WER of our proposed method achieves at
63.98%, which reduces by 2.72% and 4.02% compared
with the WERs of wav2vec and HuBERT, respectively. The
proposed method can effectively further reduce the WER
of the dysarthric speech.

Index Terms— Dysarthric speech recognition, pre-
training and fine-tuning, multi-stage audio-visual fusion.

I. INTRODUCTION

DYSARTHRIA is a neurological and muscular disorder
which results in paralysis, weakened contractility and

imprecise or uncoordinated movement of muscles. Speech sub-
systems including respiration, phonation, resonance, prosody
and articulation are thus affected [1]. Dysarthria results in inac-
curate pronunciation, slow speech and low voice and intelligi-
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bility. This disorder hampers dysarthric speakers’ communica-
tion with other people, making it inefficient and inconvenient.
Automatic speech recognition (ASR) makes communication
of dysarthric speakers much more efficient [2]. Related studies
thus abound. For better accuracy, researchers try to improve
the acoustic model [3], acoustic feature extraction [4] or
language/lexical model [5]. As collecting dysarthric speech
is difficult, only limited resources are available. The machine
learning models are insufficiently trained. With few speak-
ers available for data collection, models are highly speaker-
dependent.

To tackle the insufficient training of models, researchers
have tried data enhancement. As shown in previous litera-
tures [6], [7], [8], researchers have used normal speech to
generate dysarthric speech. As the generated speech is similar
to dysarthric speech both acoustically and perceptually, the
approach makes up for the lack of dysarthric data. However,
the approach cannot sufficiently improve models’ generaliza-
tion and as the rules are highly dependent on field knowledge,
models cannot apply among multiple datasets. For the heavy
reliance on individual speakers, LHUC (learning hidden unit
contributions) [9], [10] proposed in 2014 and 2016 centers
on speaker adaptation. One key breakthrough is for models
to learn speaker-specific hidden unit contributions to improve
the recognition of different speakers. Recently, audio-visual
speech recognition (AVSR) has been proposed. According
to the McGurk effect [11], people’s speech perception is
influenced by visual information. AVSR incorporates visual
information and thus improves the accuracy of ASR [12], [13],
[14]. The speech articulated is the coordinated result of vocal
organs with most obvious contribution from the tongue, lip,
teeth and nose [15]. The motor data of these organs have also
been used in the automatic recognition of dysarthric speech
[16], achieving satisfactory results. However, it is costly to
use sensors to collect such data. We propose instead to collect
facial signals with cameras and use the information collected
for visual fusion.

Compared with traditional fusion approaches, our approach
offers more and effective visual information. However, data
scarcity still leads to low generalization of the models trained.
In this aspect, transfer learning is the most applied and most
effective solution [17], [18]. Hernandez et al. [19] proposed
to use the pre-trained models by self-supervised learning to
address the overfitting problem of the model due to the limited
samples. The pre-trained audio-visual fusion models based
on self-supervised learning put forward in recent years, for
instance AV-HuBERT [20], substantially improve the accuracy
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of lip reading and acoustic fusion. In this case, we propose a
novel framework Multi-stage AV-HuBERT (MAV-HuBERT) to
further improve the accuracy of dysarthric speech recognition.

In summary, our main contributions in this paper are as
follows: 1) we propose the MAV-HuBERT framework to
further improve the accuracy of dysarthric speech recognition;
2) in the MAV-HuBERT framework, two fusion stages includ-
ing the visual information fusion and the audio-visual fusion
are as follows: During the first stage the convolutional neural
networks (CNN) is used to encode the facial speech function
areas and during the second stage the AV-HuBERT is used
to get the pre-trained model for fusing the acoustic and visual
information; 3) the increment of data and ablation experiments
are designed to evaluate the performance of our proposed
framework.

II. RELATED WORKS

This section introduces the history of how to improve the
accuracy of dysarthric speech recognition. We also introduce
the audio-visual fusion models and self-supervised pre-training
models.

A. ASR for Dysarthric Speech
Difficulties abound when ASR is applied to recognize

dysarthric speech. Researchers have explored improvements
among which the improvements based on acoustic feature
extraction, the acoustic model or the language/lexical model
are most common. For improvements based on acoustic fea-
ture extraction, Yalmaz et al. [4] proposed to use articu-
latory and bottleneck features to reduce the acoustic space
difference due to speakers’ different articulatory capabili-
ties. Through convolutional restricted Boltzmann machine,
Takashima et al. [21] tackled the local overfitting prob-
lem when a CNN with bottleneck is used get the pre-
trained model. For improvement based on the acoustic model,
Shahamiri et al. [3] proposed an artificial neural network
of multi-view learning to reduce speech variation among
dysarthric speakers. Bhat et al. [22] used multi-window spec-
tral estimation and speaker self-adaptation to improve the
accuracy of dysarthric speech recognition. Kim et al. used
the Kullback-Leibler (KL) divergence between hidden Markov
models [23] and convolutional recursive long short-term mem-
ory neural network [24] to recognize dysarthric speech. For
improvements based on the language/lexical model, Takashima
et al. [25] proposed an end-to-end speech recognition frame-
work based on Listen, Attend and Spell [26]. The framework
[25] includes an English and a Japanese model. Experiments
show that using multiple databases for speech recognition as in
this framework has its advantages [25]. Improvements based
on language feature extraction, the acoustic model and the
language/lexical model are not separated but complementary
in making dysarthric speech recognition more accurate.

B. AVSR for Dysarthric Speech
Thanks to the bimodal nature of language perception and

the successful application of AVSR in recognizing normal
speech [27], [28], the researchers can take advantage of the

visual information to improve the recognition of dysarthric
speech. Also, dysarthric speakers themselves can have a better
understanding of their articulatory difficulties and take targeted
remedial trainings. Compared with traditional ASR with only
audio information, AVSR has better robustness and accuracy.
Liu [29] proposed an AVSR framework in dealing with the
disorder speech recognition based on the Bayesian gated neu-
ral network which better fuses the audio and visual modalities
than its baseline model (deep neural networks-based ASR).
Salama et al. [30] explored using discrete cosine transform
(DCT) to model the mouth area as the visual feature and
applying the visual feature to recognize dysarthric speech.
Miyamoto et al. [31] proposed a novel framework for dealing
with the dysarthric speech. In this framework [31], the multiple
acoustic frames are used as an acoustic feature to solve the
problem that the degradation of speech recognition is caused
by strain on speech-related muscles. In addition, an active
appearance model is used to solve the problem for people with
articulation disorders resulting from athetoid cerebral palsy.
Insufficient audiovisual data is the bottleneck of applying
AVSR to dysarthric speech. Researchers have thus developed
an approach for cross-field generation of visual features [32].
LRS2, the lip-reading dataset, was used to build the audio-
visual inversion system, generating visual features based on
UASpeech’s audio data. In this respect, Liu et al. [12] resorted
to cross-field generation of visual features to effectively reduce
the word error rate (WER).

C. Pre-Trained Models Based on
Self-Supervised Learning

Normal speech recognition requires thousands of hours of
audio data for the training. In this case, the scarcity of audio
data for dysarthric speech leads to insufficient training of
model. Self-supervised learning can effectively address the
lack of annotated data. Through self-supervised learning, the
network is pre-trained on large-scale unmarked corpus and
then applied to downstream tasks. This scenario is espe-
cially successful in natural language processing [15], [33]
and is also a dynamic research field of computer vision [34],
[35]. The wav2vec 2.0 put forward by Baevski et al. [36]
proves that speech recognition is feasible with limited anno-
tated data. HuBERT proposed by Hsu et al. [37] is a self-
supervised speech representation learning approach, which
utilizes an offline clustering step to provide aligned target
labels for a BERT-like prediction loss. In the task of dysarthric
speech recognition, Hernandez et al. [19] tried to improve
the accuracy through pre-training on dysarthric datasets. They
used wav2vec, HuBERT and the cross-lingual data to train
the acoustic model and designed the experiments based on
UASpeech (English), PC-GITA (Spanish) [38] and EasyCall
corpus (Italian) [39]. The experimental results [19] show that
the pre-trained model based on large-scale unmarked data can
effectively reduce the WER.

III. METHODS

We designed a multi-stage fusion framework (MAV-
HuBERT, shown in Fig. 1) to take advantage of the audio
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Fig. 1. Fusion Framework; Cn: Audio-visual clusters; X: mask.

and visual information of the dysarthric speech. During the
first stage, the motor visual information of different facial
speech function areas are fused; during the second stage, the
pre-trained framework fusing the audio and visual information
is applied to obtain the knowledge of audio-visual information
of the speech.

In Fig. 1, the pre-training and fine-tuning stage are shown
on the left and right respectively. During pre-training, the
inputs are the audio and visual information and the visual
information is obtained by the fusion of facial speech function
areas. The acoustic and visual features are extracted separately.
After that, the audio-visual fusion information is encoded by
the fusion framework of MAV-HuBERT. Finally, the fusion
features are decoded by Transformer. In addition, masking of
input is used to improve the contextual presentation perfor-
mance of the model. By masking the intermediate information,
the model can capture the semantic association relationships

between consecutive frames of actions during pre-training.
During the fine-tuning, the inputs are the audio and visual
information (fused by facial speech functional areas).

A. Fusion of Visual Articulatory Information
The fusion framework is shown in Fig. 2. The images are

divided from videos at the frequency rate of 25 Hz per frame.
And we undertake a frame-by-frame visual fusion. In this
paper, we choose 5 areas of the lip (mouth), lower jaw, left
and right cheeks and nose as the facial speech function areas
for visual fusion, as shown in Fig. 3.

The face detector of Dlib toolkit is used to extract the
images of facial speech function areas. Dlib incorporates
a framework based on gradient boosting to learn learning
an ensemble of regression trees. It extracts the regressed
facial coordinates from input images, achieving super-real
performance of high-quality prediction [41]. The CNN-based
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Fig. 2. Visual fusion framework of facial functional areas’ movement. I1, · · · , I5 stand for source images and IF stands for fused images.

Fig. 3. Indicator of six muscle positions. LLS: levator labii superioris; OOS: orbicularis oris superior; OOI: orbicularis oris inferior; DLI: depressor
labii inferioris; DAO: depressor anguli oris; M: mentalis.

architecture is used to fuse the different facial speech function
areas, where the convolutional layers are defined as (1),

Yi = Fk⊙Fk−1· · · ⊙F2 ⊙ F1 (I) = ⊙i=1...kFi (I) (1)

In our visual fusion framework, the convolutional layer
operates as Yi = Fi (Xi), where Xi and Yi represent respec-
tively the image features of the input facial speech function
area and the output fusion image features of the ith layer.
⊙ denotes an element-wise multiplication operator. I is the
source image. Fi represents the convolution operation of
the ith convolutional layer (i = 1 . . .k). This CNN includes
3 × 3 and 1 × 1 convolutional kernels with the step length
of 1. As the network does not use a fully-connected layer,
the input images can be of any size. Apart from the last
convolutional layer which is activated by tanh function, all
other layers are activated by ReLU function. Our visual fusion
framework constitutes of several modules including feature
input, feature fusion and fusion encoding.

The feature input module includes 5 branches defined
as I1,I2, · · · ,I5. Oj, j = 1, 2, · · · , 5 is the output of the
convolutional layer calculated by (2). Each branch has

3 convolutional layers to deal with the different features of
input images.

Oj = ⊙i=1,2,3Conv
(
Ij
)
, j = 1, · · · , 5 (2)

Conv means the convolutional layer of CNN; ⊙i=1,2,3 denotes
the outputs of three convolutional layers are calculated by
element-wise multiplication operator; and the outputs of
5 branches are cascaded to obtain the fusion feature c1 as
shown in (3).

c1 = cascade (O1, O2, O3, O4, O5) (3)

Here cascade means the cascaded operation by cascaded
structure. The fusion encoding operation here includes 8 con-
volutional layers as shown in Fig. 2, where the c2 and c3 are
the intermediate features. The outputs of the first convolutional
layer (used to calculate the c1) and ⊙i=1,2,3Conv (c1) are
cascaded to calculate c2 as shown in (4). The outputs Oj
and ⊙i=4,5Conv (c2) are cascaded to calculate c3 as shown
in (5). At last, we obtain the fused visual features IF as shown
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in (6).

c2 = cascade
(
⊙i=1,2,3Conv (c1) , Conv (I1) , · · · , Conv (I5)

)
(4)

c3 = cascade
(
⊙i=4,5Conv (c2) , O1, O2, O3, O4, O5

)
(5)

IF = ⊙i=6,7,8Conv (c3) (6)

Here, IF serves as the fusion encoding vector.

B. Audio-Visual Fusion for Dysarthric Speech
In this paper, we aligned acoustic and visual features at the

frame level. We extract 26-dimensional features of logarithm
filter-bank energies (LFEs) as the acoustic features from the
original waveform and extract images from videos. Four
frames of consecutive acoustic features are integrated into one
frame as the input.

To deal with the audio modality, a linear projection layer is
used as the audio encoding module. Setting an audio sequence
A1:T, we undertake the operation G(At), t ∈ {1, 2, . . . , V} and
cluster audio features into a discrete unit sequence za

1:T =

K − Means(G(At)), where G(At) is the LFEs. V represents
the codebook size. For the video modality, after extracting
facial images, the ResNet of hidden units are used to fur-
ther deal with the fused visual features. Setting the fused
visual feature sequence as I1:T, we undertake the operation
G(It), t ∈ {1, 2, . . . , V} and cluster visual features into a dis-
crete unit sequence zi

1:T = K − Means(G(It)), where G is
the histogram of oriented gradients (HOG) of the fused visual
features. The standard ResNet-18 is used as the encoder for
dealing with the fused visual features.

The acoustic feature A and the visual fusion feature I are
fused by a fusion layer based on the multi-layer Transformer-
Encoder as shown in Fig. 1. The audio-visual fusion F is
calculated as in (7).

F =
{
f1, f2, . . . ,fnt+ni

}
= TEM (concate (A, I)) (7)

TEM means the Transformer-Encoder for fusing data; and
concate denotes the channel-wise concatenation. The output
of audio-visual fusion framework is the posterior probability
of each input frame calculated by connectionist temporal
classification (CTC) algorithm. The whole stack is pre-trained
with CTC loss.

C. Pre-Training and Fine-Tuning
MAV-HuBERT is proposed to pre-train model in two major

steps: audio-visual feature clustering and masked feature
prediction. In the task of masked prediction, acoustic and
image frames are used simultaneously to model and distill
the correlation between the two modalities.

During the audio-visual clustering stage, the two modalities
generating fusion cluster assignments are pre-trained, which
serve as the target label for the next iteration of masked
prediction. During the masking prediction stage by substitu-
tion, random segments of the same video are selected as the
segments in the masked video stream.

We set the output probability as p1:T and target cluster
assignment as z1:T. During pre-training stage, the loss L of

MAV-HuBERT is calculated by (8)

L = −

∑
t∈Ma∪Mv

log pt (zt)−α
∑

t/∈Ma∪Mv

log pt (zt) (8)

Here Ma and Mv represent the masked frames of audio and
video streams, respectively; α is a hyper-parameter to weigh
the contribution of unmasked regions in the overall objective.

During the fine-tuning stage, the pre-trained model needs
to be fine-tuned in the task of dysarthric speech recognition.
It is assumed that the feature sequence output of our pre-
trained model is e1:T, and the ground-truth transcription is
w =w1, w2, . . . ,ws. For CTC, a projection layer is used to
map the input sequence onto the output probability pt, which
is calculated as in (9).

pt= Softmax
(

Wftet + bft
)

(9)

Wft
∈ Rd×(U+1) denotes weights matrix of this layer; bft

∈

RU+1 denotes the bias vector of this layer; U is the output
vocabulary size (+1 means plus one blank symbol). The model
trained with CTC loss Lctc is calculated as in (10).

Lctc = − log
∑

π∈B−1(w)

p (π |e1:T ) (10)

Here B maps an alignment sequence from π to w. It’s assumed
that the output probability per frame is y and yt

πt
represents

the probability of the output πt at the moment t. The output
sequence probability is calculated as in (11).

p (π | e1:T ) =

T∏
t=1

yt
πt

(11)

Finally, we use a 4-gram language model, whose perplexity
on the test set is 110.5, for the decoding. The text materials for
training the language model are used from the LRS3 dataset.
In particular, the beam width is tuned among {5, 10, 20, 50,
100, 150}, the language model weight, among {0, 1, 2, 4, 8}
and word insertion penalty, among {±4, ±2, ±1, 0}.

IV. EXPERIMENT

A. Data Preparation

We draw our data from UASpeech [42], an English dataset
supported by the University of Illinois. UASpeech included
102.7 hours of records from 29 speakers pronouncing indi-
vidual words. Each speaker pronounces 765 words which are
divided into 3 blocks.

The phonetic intelligibility score (ranging from 2% to 95%)
of UASpeech is calculated based on the average performance
in the listening test. Dysarthric speakers are thus divided
into 4 intelligibility groups: 0-25%, 25-50%, 50-75%, and
75-100%. The 4 groups correspond to extremely severe,
severe, moderate and mild dysarthria. Table I shows the
intelligibility score of all available speakers in UASpeech.
In addition, we use block 1 and block 3 as the training data
and block 2 from UASpeech as the test data.
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TABLE I
INTELLIGIBILITY SCORE AND DYSARTHRIA SEVERENESS OF

UASPEECH SPEAKERS

TABLE II
CLASSIFICATION OF VOWEL PHONES IN THE TEST SET

TABLE III
CLASSIFICATION OF CONSONANT PHONES IN THE TEST SET

B. Experiment Setup
We use word error rate (WER) to assess the experiment of

dysarthric speech recognition. WER is an important metric
for the performance of speech recognition and reveals the
error rate of predicted texts as compared with the transcripts.
Therefore, lower WER means better performance. WER is
based on Levenshtein distance and calculated on the level of
words instead of phonemes. WER is calculated as in (12).
In addition, the Kaldi toolkit is used in our experiments.

WER =
S + D + I

N
=

S + D + I
S + D + C

(12)

S stands for the number of substitutions, D for the number of
deletions, I for the number of insertions, C for the number of
correct words and N for the number of words in the reference.

C. Vowels and Consonants
The test set includes 39 phones (15 vowels and 24 conso-

nants). Table II illustrates the vowel phones and Table III, the
consonant phones.

V. RESULTS

We designed the comparative, data increment, multi-stage
fusion and speaker dependency experiment to evaluate the
performance of our proposed method. In particular, the data
increment experiment is used to explore the performance of
our proposed method under limited amount of training data;
the speaker dependency experiment is used to evaluate whether
our proposed method can overcome speaker restriction. During
our testing stage, the mild, moderate, severe, and extremely
severe dysarthric speech are used, respectively.

A. Experiment of AVSR With Pre-Trained Models for
Dysarthric Speech

For dysarthric speech recognition, we use MAV-HuBERT
to pre-train models on the UASpeech dataset. The results are
shown as in Table IV. Wav2vec 2.0 and HuBERT serve as
the baseline systems. We use data mixed from LRS3 [43] and
UASpeech in the pre-training of MAV-HuBERT with a mixing
ratio of 8:1. Then we use UASpeech data for fine-tuning. The
audio-visual speech recognition method refers to the audio-
visual fusion part in MAV-HuBERT.

Results of Table IV show that the MAV-HuBERT pre-
trained by the mixed training data from the LRS3 and
UASpeech achieves the best results of dysarthric speech recog-
nition. The best WERs of our proposed method are 6.05%
(mild dysarthric speech), 22.8% (moderate dysarthric speech),
30.77% (severe dysarthric speech) and 63.98% (extremely
dysarthric speech), respectively. Compared with the results of
only using audio modality, the WERs of our proposed method
for mild, moderate, severe and extremely severe dysarthric
speech all exhibited a reduction. For instance, compared with
the results of wav2vec (audio-only), the WERs of our proposed
method were reduced by 0.65%, 13.5%, 2.53% and 2.72%.
Similarly, compared with the results of HuBERT, the WERs
of our proposed method reduced by 0.15%, 0.6%, 5.23% and
4.02%.

B. Experiment With Increment Data
To evaluate how the performance of our proposed method

is influenced by the data amount, we used the training data
with different amount (30 hours of LRS3, 433 hours of LRS3,
mixed data from LRS3 and UASpeech (10:1), mixed data from
LRS3 and UASpeech (8:1)) in our experiment. Then we use
UASpeech data for fine-tuning. Our experiment is designed
based on the audio, visual and audio-visual modalities.

Wav2Vec 2.0 and HuBERT only use audio modality
of dysarthric speech for pre-training. When using normal
speech for pre-training, AV-HuBERT has a worse performance
than the baseline. When adding dysarthric speech to the
pre-training, AV-HuBERT sees its WER drop substantially.
AV-HuBERT has a better performance using data from LRS3:
UASpeech=8:1 than from LRS3: UASpeech=10:1. In the
audio-visual fusion condition, compared to the results using
a data rate of 10:1, the WERs on mild, moderate, severe,
and extremely severe dysarthric speech using a data rate
of 8:1 were reduced by 1.09%, 2.24%, 1.75%, and 2.67%,
respectively.



1918 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE IV
EXPERIMENT RESULTS FOR AVSR OF DYSARTHRIC SPEECH

TABLE V
RESULTS OF THE DATA INCREMENT EXPERIMENT

TABLE VI
EXPERIMENT RESULTS OF FUSING FACIAL FUNCTIONAL AREAS

Results of Table V show that the increment amount of
training data can effectively improve the performance of our
proposed method. When the amount of UASpeech increased,
the WER of our proposed method decreased significantly.
However, if our proposed method is pre-trained only using
LRS3 dataset, the WER of our proposed method would
increase when the amount of training data increases.

C. Experiment on Multi-Stage Fusion Model
The experimental results of motor visual information of

facial speech function areas are shown in Table VI. The visual
inputs are the visual fusion and lip movement, respectively.
Both inputs are processed in pre-training and fine -tuning
based on MAV-HuBERT. The pre-training data is the mixed
data from LRS3 and UASpeech (8:1).

By comparing the methods using visual fusion information
and lip information, we find that fusing facial speech function

areas effectively reduces WER. In the video-only modality, the
WER of using visual information is 5.84%, 1.74% and 6.46%
lower than that of using lip information for mild, moderate
and severe dysarthric speech. However, the WER of using
visual fusion information is 0.78% higher than that of using lip
information for extremely severe dysarthric speech. Speakers
with extremely severe dysarthria often suffer major diseases
and they move their heads excessively when speaking. All
this makes it extremely difficult to capture their facial speech
function areas. With audio-visual fusion, the WER of using
visual fusion information is 2.03%, 3.2%, 0.05% and 0.78%
lower than that of using lip information for mild, moderate,
severe and extremely severe dysarthric speech, respectively.
Results of Table VI show that the visual fusion operation can
effectively improve the performance of AVSR in dealing with
the dysarthric speech.

D. Experiment on Speaker Dependency
for Dysarthric Speech

The experiment on speaker dependency is to evaluate
whether our proposed method can get rid of the restriction
of speaker. During the testing stage, one of the speakers (F05)
with mild dysarthria was chosen. Speech of speaker F05 was
not used to pre-train (or train) the MAV-HuBERT. We only
used speech of speaker F05 to test our proposed method. The
results can be found in Table VII.
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TABLE VII
EXPERIMENT ON SPEAKER DEPENDENCY FOR DYSARTHRIC

SPEECH RECOGNITION

Fig. 4. Vowel confusion matrix for mild dysarthric speech recognition.

Fig. 5. Consonant confusion matrix for mild dysarthric speech
recognition.

Results of Table VII show that the WERs between F05’s
speech and mild dysarthric speech have no significant dif-
ference. The experimental results illustrate that our proposed
method enjoys the speaker independent characteristic for the
mildly dysarthric speech.

E. Confusion Matrix Analysis of Pronunciations for
Dysarthric Speech

We also analyzed the recognition results of confused pro-
nunciations. The results are shown in Fig. 4 and Fig. 5.

Fig. 4 shows the vowel confusion matrix. The recognition
of vowels is better than that of consonants, with that of

AE-/æ/, EY-/eI/, AA-/a/ and OW-/o℧/ being the best. Fig. 5
shows the consonant confusion matrix. The lateral L-/l/ and
fricative Z-/z/ are recognized with high accuracy, while stops
and fricatives are more easily confused, particularly the frica-
tive SH-/

∫
/, which has the highest confusion rate. When the

fricative /
∫

/ is pronounced, the tip of the tongue is upturned
and is close to the front of the hard palate. The complicated
actions of pronunciation are very hard for the speakers with
dysarthria. Therefore, the fricative /

∫
/ has the lowest accuracy

among all pronunciations.

VI. DISCUSSION

To further improve the accuracy of dysarthric speech recog-
nition, we designed a novel framework MAV-HuBERT. MAV-
HuBERT is designed based on self-supervised pre-training
technology. Our proposed method can recognize the text
content from audio-visual files in real time. The experimental
results show that our proposed method significantly reduced
WER compared to the baseline methods.

In the comparative experiment, In the comparative experi-
ment, our proposed method achieved the best WER reduction
of 13.5% for moderate dysarthric speech compared with the
baseline method. Additionally, our proposed method achieved
the best result of 6.05% WER for mild dysarthric speech.
Even for the extremely severe dysarthric speech, the WER of
our proposed arrives at 63.98%, which reduces by 2.72% and
4.02% compared with the WERs of wav2vec and HuBERT,
respectively. Furthermore, we note that the results of baseline
methods (wav2vec and HuBERT) only using audio modality
are not stable. For example, the WERs of HuBERT were lower
than that of wav2vec for mild and moderate dysarthric speech,
while for severe and extremely severe dysarthric speech, the
opposite was true. Moreover, the experimental results show
that the multistage fusion performs better than the fusion of
only lip visual information and acoustic information.

The results of data increment show that when the
pre-training data is from LRS3, the accuracy is low. LRS3
is a dataset of normal speech, which is significantly different
from the dysarthric speech, such as that from UASpeech. The
difference results in the extremely large variation of data space.
Therefore, the pre-trained model only using normal speech
can hardly be effectively dealing with the dysarthric speech.
However, adding dysarthric data during pre-training stage can
improve accuracy substantially. The more dysarthric data are
used during pre-training stage, the better performance of model
would be.

The results of visual fusion experiment show that compared
with only using lip information, using visual information of
facial speech function areas can effectively improve the accu-
racy of dysarthric speech recognition. Although for extremely
severe dysarthric speech, only using lip information has better
accuracy than using the visual fusion information based on
the single visual modality, the problem has been addressed by
our proposed method based on audio-visual modalities. This
is because the speakers with severe dysarthria (suffering from
severe diseases like Parkinson disease or cerebral palsy) have
excessive movements of the faces and heads when speaking.
In this case, the extracted images cannot accurately reflect the
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GLOSSARY OF TERMS

movement of facial muscles, leading to worse quality of visual
data. However, audio-visual fusion operation can effectively
address this problem.

The results of speaker-dependency experiment show that our
proposed method can get rid of the restriction of speaker in
dealing with the mildly dysarthric speech. However, if the
speakers suffer from severe dysarthria, the generalization
ability of our proposed method would be at discount. This
is because the differences among the speakers with severe
dysarthria are very huge. The acoustic and visual spaces would
be too large to be modeled.

After analyzing the confusion matrix for consonants, the
results indicate that stops and fricatives exhibit a higher con-
fusion rate compared to other consonants. In particular, SH-/

∫
/

has the highest confusion rate. This is likely due to the precise
control of tongue, teeth, and lip movements required for the
pronunciation of stops and fricatives, as well as the impact of
airflow from the lungs on the vocal tract. However, individuals
with dysarthria cannot precisely control their tongue, lip,
and teeth movements, resulting in greater confusion for stops
and fricatives compared to other consonants. In addition, the
experiments of our research in this paper are carried out
by graphics processing unit (GPU) servers. Pre-training our
proposed model requires more than 24 GB of GPU memory.
In the future, we will continue to investigate methods to reduce
resource consumption and enable offline deployment of the
model. Our goal is to ensure that individuals with dysarthria
are able to conveniently utilize the model on their mobile
devices.

VII. CONCLUSION

To make up for the insufficient training due to scarce
dysarthric data, we designed a MAV-HuBERT fusion structure.
During the first stage, we fused the motor visual information
of facial speech function areas. During the second stage,
we proposed to use the pre-training framework to further fuse

audio and visual information. We explored the effectiveness
of MAV-HuBERT in task of dysarthric speech recognition.
The experimental results show that our proposed method can
effectively improve the accuracy of dysarthric speech recog-
nition. Our proposed method has a significance of effectively
incorporating the audio and visual information to recognize
the dysarthric speech.

APPENDIX

See Table VIII.
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