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Abstract— The epileptic seizure prediction (ESP) method
aims to timely forecast the occurrence of seizures, which
is crucial to improving patients’ quality of life. Many deep
learning-based methods have been developed to tackle
this issue and achieve significant progress in recent years.
However, the “black-box” nature of deep learning models
makes the clinician mistrust the prediction results, severely
limiting its clinical application. For this purpose, in this
study, we propose a self-interpretable deep learning model
for patient-specific epileptic seizure prediction: Multi-Scale
Prototypical Part Network (MSPPNet). This model attempts
to measure the similarity between the inputs and proto-
types (learned during training) as evidence to make final
predictions, which could provide a transparent reasoning
process and decision basis (e.g., significant prototypes for
inputs and corresponding similarity score). Furthermore,
we assign different sizes to the prototypes in latent space
to capture the multi-scale features of EEG signals. To the
best of our knowledge, this is the first study that devel-
ops a self-interpretable deep learning model for seizure
prediction, other than the existing post hoc interpretation
studies. Our proposed model is evaluated on two public
epileptic EEG datasets (CHB-MIT: 16 patients with a total
of 85 seizures, Kaggle: 5 dogs with a total of 42 seizures),
with a sensitivity of 93.8% and a false prediction rate of
0.054/h in the CHB-MIT dataset and a sensitivity of 88.6%
and a false prediction rate of 0.146/h in the Kaggle dataset,
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achieving the current state-of-the-art performance with self-
interpretable evidence.

Index Terms— Deep learning, interpretability, signal pro-
cessing, seizure prediction, electroencephalography.

I. INTRODUCTION

EPILEPSY, one of the most common neurological diseases
globally, affects 50 million people worldwide. The risk

of premature death among people with epilepsy is up to three
times higher than in the general population [1]. With the rapid
growth of modern medicine in recent years, about 70 percent
of epileptic patients could be seizure-free after proper diag-
nosis and treatment. However, unfortunately, 30 percent of
patients still suffer from refractory epilepsy (i.e., medicines
cannot control the seizures) [1], [2]. Hence, the study of
epileptic seizure prediction (ESP) is crucial, which can sig-
nificantly improve the quality of life of patients with epilepsy.

Electroencephalography (EEG) is a practical approach to
recording electrical activity in the brain, which contributes
to epilepsy diagnosis [3], [4], [5]. For the past few years,
numerous studies have shown that EEG signals can be used
for ESP [6], [7], [8], [9]. In general, researchers divide the
longstanding EEG signals of epileptic patients into four states:
preictal (the period before the seizure onset), interictal (the
period between seizures), ictal (the period of seizure), and
postictal (the period after seizures) [10]. Therefore, we can
convert the ESP problem into a binary classification problem
distinguishing preictal and interictal states. Many sophisticated
approaches have been constructed following this pattern to
solve this challenging problem.

Feature extraction and classification are two critical steps of
conventional EEG-based ESP methods. Generally, researchers
construct and select features manually based on experience or
observations. Then a classifier is applied for decision making.
For instance, Chisci et al. adopted the coefficient of the
auto-regressive model as the feature of EEG signals. A support
vector machine (SVM) is designed for subsequent classifi-
cation [11]. Bedeeuzzaman et al. established a time domain
feature set from EEG signals and classified these features
by a linear classifier [12]. Zhang and Parhi applied spectral
analysis to feature extraction of EEG signals. Then a novel
feature selection approach is adopted, and an SVM classifier
is used for classification [13]. Usman et al. pre-processed
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EEG signals with empirical mode decomposition and then
extracted time and frequency domain features to train the
SVM model [14]. These studies laid a solid foundation for
developing more sophisticated EEG-based ESP methods.

Recently, deep learning (DL) methods have achieved
impressive performance in the EEG-based ESP field.
Truong et al. used a Convolutional Neural Network (CNN)
to classify the time-frequency features obtained by the Short
Time Fourier Transform (STFT) on EEG signals [15]. Jana and
Mukherjee presented an effective ESP approach using a CNN
classifier with minimizing the channels of EEG signals [16].
Usman et al. proposed a DL-based ensemble learning approach
to reduce the false positive rate of seizure prediction [17].
Rasheed et al. generated synthesized EEG samples by a
deep convolutional generative adversarial network to solve
the problem of scarcity of good-quality EEG data [18].
Zhao et al. developed an end-to-end adder network with
supervised contrastive learning by considering the high com-
putational complexity of deep learning methods [7]. Compared
to traditional methods for ESP, DL-based methods could
significantly improve the prediction performance.

However, existing deep learning models are often viewed
as a “black box” due to their opaque reasoning process [19],
[20]. The absence of interpretability for these models makes
clinicians mistrust and question the prediction results, severely
limiting its application to seizure prediction [21]. Several stud-
ies have noted this issue, caused by the “black box” nature of
deep learning models. For example, Ozcan and Erturk applied
an occlusion test approach to get the heat map for inputs of the
CNN model, representing how important the patches from the
input are in classification [22]. Dissanayake et al. employed the
SHapley Additive exPlanations (SHAP) method to discuss how
significant each channel contributes to the model’s classifica-
tion results [23]. Li et al. visualized feature maps learned from
the neural network by a deconvolution scheme approach to
explore the spatio-temporal-spectral dependencies for seizure
prediction [24]. Jemal et al. visualized the learned filters in
the first layer to interpret them as band-pass frequency filters
and applied the layer-wise relevance propagation method to
understand the decision process of their model [25].

Nevertheless, all these methods above focus on post hoc
interpretation (i.e., the application of interpretation methods
after model training) [26]. The post hoc explanation method is
susceptible to signal noise interference, resulting in insufficient
accuracy and reliability of the interpretation itself, which
cannot deal with the “black box” problem fundamentally [27].
Unlike post hoc interpretation methods, intrinsically inter-
pretable models have a transparent reasoning process, and the
explanation obtained is more accurate and reliable. Hence,
in this work, we propose an intrinsically interpretable deep
learning model for epileptic seizure prediction.

Our work is inspired by prototypical part network (ProtoP-
Net), which was initially developed in the field of computer
vision [28] and defines the prototype as the feature correspond-
ing to a patch of a single fixed size learned from training
samples. However, it is difficult to capture the multi-scale
features with a patch of a single fixed-size, while EEG
signals carry information among multiple time scales [29].

For example, spike wave and sharp wave are two classic wave-
forms related to epileptic EEG signals. The spike wave has a
duration of 20 –70 ms, and the sharp wave has a duration of
70 – 200 ms [28]. Consequently, different waveforms in EEG
signals may occur on different time scales. Depending on the
single fixed-size of the patch, the prototypes cannot sufficiently
capture the multi-scale features of EEG signals, leading to
poor prediction performance. To address this issue, we pro-
posed the Multi-Scale Prototypical Part Network (MSPPNet)
for epileptic seizure prediction. Specifically, our model learns
several prototypes at different scales during training and mea-
sures the similarity between the inputs and these prototypes as
evidence to make final predictions. We evaluate our method on
two public epileptic EEG datasets: the CHB-MIT database and
the American Epilepsy Society Seizure Prediction Challenge
(Kaggle) database. Despite strong constraints to make the
network interpretable, MSPPNet achieves the current state-of-
the-art prediction performance.

The main contributions in this work are as follows:
• To the best of our knowledge, we propose the first

self-interpretable deep learning model for epileptic
seizure prediction.

• Considering that EEG signals carry multi-scale infor-
mation, we assign different sizes to the prototypes in
latent space to improve the prediction performance and
interpretability.

• We show that our model can achieve the current state-
of-the-art performance with self-interpretable evidence
on the CHB-MIT database and the American Epilepsy
Society Seizure Prediction Challenge (Kaggle) database.

The rest paper is composed as follows. Section II describes
the materials we used and our proposed methods. Section III
presents the experimental results and comparison in this study.
Section III-C further discusses our approach. Finally, we pro-
vide the conclusion for our work in Section IV.

II. MATERIALS AND METHODS

A. Data Description
This work uses two public epileptic EEG datasets, the

CHB-MIT [30], [31] and the Kaggle [32]. In the CHB-MIT
dataset, long-term scalp (sEEG) EEG signals of 23 pediatric
subjects with refractory epilepsy were recorded. These sEEG
signals were collected at a sampling rate of 256 Hz. The
electrodes were placed according to the 10-20 international
system, using a bipolar montage. To guarantee the consistency
of our approach, according to [28], we select 18 channels
common to each patient in this study, including FP1-F7, F7-
T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4,
F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-
CZ, and CZ-PZ. In the Kaggle dataset, long-term intracranial
EEG (iEEG) signals of 5 dogs and two patients were recorded.
The iEEG signals from dog-1 to dog-4 were collected from
16 electrodes at 400 Hz, and 15 electrodes were used for
dog-5. The iEEG signals from two patients were collected
at a sampling rate of 5000 Hz, with 15 depth electrodes for
patient-1 and 24 subdural electrodes for patient-2.

Before introducing our method, we define some related
parameters which play a significant role in seizure prediction.



GAO et al.: SELF-INTERPRETABLE DEEP LEARNING MODEL FOR SEIZURE PREDICTION USING A MSPPNet 1849

Fig. 1. The architecture of our proposed MSPPNet. Our model comprises three parts: a regular CNN module f, a multi-scale prototype layer gp ,
and a fully connected layer h. The detailed structure of the CNN module is shown in Figure 2.

For the CHB-MIT dataset, we choose the value of these
parameters according to [28]. Specifically, we select a preictal
period of 30 minutes before the seizure, which is a commonly
accepted choice for sEEG in the literature [15], [22], [28],
[33], [34]. The intervention time for patients is defined as
1 minute period between the preictal and the seizure onset.
The interictal period is defined as at least 1 hour before the
seizure onset and at least 1 hour after the seizure. For cases
with two consecutive seizures, if the interval period is less than
15 minutes, we consider them a single seizure due to a lack
of preictal data. To avoid the overfitting problem, we select
patients with no less than three seizures and interictal duration
greater than three hours. In this situation, 16 subjects with a
total of 85 seizures are used in this study. Finally, we divide
the consecutive EEG signals into 4-second windows with a 2-
second overlapping for subsequent classification. For the Kag-
gle dataset, we define these parameters following [7]. To be
specific, the preictal period is defined as 1 hour before the
seizure onset. This was defined by the sponsor of the Kaggle
contest, so all researchers using the Kaggle data set for seizure
prediction used this setting. The intervention period is defined
as 5 minutes. We defined the minimum distance between the
seizure and the interictal period as 4 hours. The minimum
interval between seizures is also defined as 15 minutes. As for
the subject selection, we excluded two human subjects due
to the significant difference in sampling rate of the iEEG.
Specifically, the iEEG sampling rate of dogs was 400 Hz,
while that of human subjects was 5000 Hz. A higher iEEG
sampling rate leads to an increase in data dimensionality,
which can pose difficulties for neural networks in processing,

particularly for end-to-end models [35]. Hence, five dogs with
a total of 42 seizures are used for our experiments. The
consecutive EEG signals are divided into 4-second windows
without overlapping. The selected subject information from
two datasets is presented in Table I and Table II.

B. MSPPNet
Figure 1 presents the overall architecture of our proposed

model, MSPPNet. To provide intuitive interpretability, we use
the raw EEG data without pre-processing as the model’s
input. A conventional CNN module is designed for feature
extraction of EEG signals. Then we developed a multi-scale
prototype layer to learn several prototypes at different scales
from training samples and measure the similarity between
the inputs and these prototypes as evidence to make final
predictions. Intuitively, our model provides explanations in the
form of “this looks like that” (i.e., this is a preictal sample
because this part of the EEG signals looks like that prototypical
part of a preictal training sample). The detailed architecture
of MSPPNet is described in Section II-B.1, and the training
algorithm is depicted in Section II-B.2. In Section II-B.3,
we introduce the reasoning process for our model and present
some examples.

1) MSPPNet Architecture: Our model comprises three parts:
a regular CNN module f , a multi-scale prototype layer gp, and
a fully connected layer h.

a) The regular CNN module f: Given an input EEG sam-
ple x , the CNN module f extracts discriminative features
z = f (x) for the subsequent layer. We denote the shape
of z as C ∗ H ∗ W , where C is the number of channels in
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Fig. 2. The sturcture of the CNN module.

TABLE I
SUBJECT INFORMATION OF THE CHB-MIT DATASET

TABLE II
SUBJECT INFORMATION OF THE KAGGLE DATASET

CNN, and we set C to 64 in this study. In this case, for the
CHB-MIT dataset with input size 1 ∗ 18 ∗ 1024, the shape
of z is 64 ∗ 18 ∗ 64. For the Kaggle dataset with input size
1∗16∗1600 (or 1∗15∗1600), the shape of z is 64∗16∗100 (or
64 ∗ 15 ∗ 100). The detailed structure of the CNN is presented
in Figure 2.

b) The multi-scale prototype layer gp: In the multi-scale
prototype layer, our model learns m prototype at each scale
for preictal. The number of scales is set to 3 according
to work in [28]. Hence, the prototypes at scale s can be
indicated as Ps

=

{
ps

j

}m

j=1
, where s = 1, 2, 3. The shape

of each prototype ps
j is C ∗ H s

∗ W s with H s
≤ H and

W s
≤ W . It is worth mentioning that in ProtoPNet, all

prototypes have the same shape [36]. However, capturing
the multi-scale features with a patch of a single shape is
difficult, while EEG signals carry information among multiple
scales [28]. To address this issue, we assign different shapes to
the prototypes in latent space so that the multi-scale features
can be extracted. Expressly, we set W 1

= 1, W 2
= 2 and

W 3
= 4 for three scales and set H1

= H2
= H3

= 1.
Every prototype presents some prototypical activation pattern
in a patch of the convolutional output, which corresponds to
some prototypical EEG segment in the original pixel space.
Hence, each prototype ps

j can be understood as the latent
representation of some prototypical part of some preictal EEG
samples in our model.

As an intuitive illustration, each prototype ps
j in Figure 1

corresponds to a specific waveform in raw EEG signals at
different scales. For a given output of CNN module z = f (x),
the j-th prototype at s-th scale gps

j
in the multi-scale prototype

layer calculates the squared L2 distances ds
j between ps

j and all
patches of z, and converts distances ds

j to similarity scores. The
outcome is a similarity map whose value denotes how strong
a prototypical part appears in the EEG sample. This similarity
map keeps the spatial relation of the convolutional output and
can identify which portion of the input EEG sample is most
like the learned prototype. Then a global max-pooling layer
is applied to the similarity map to obtain a single similarity
score reflecting how strongly a prototypical part appears in
some segment of the input EEG sample. Mathematically, the
process by which a prototype ps

j converts z = f (x) to a single
similarity score can be described as follows:

gps
j
= max

z′∈patches(z)

 1

1 + exp
(∥∥∥z′ − ps

j

∥∥∥2

2

)


According to the formula above, we can find that the function
gps

j
is decreasing monotonically with regard to L2 distance∥∥∥z′

− ps
j

∥∥∥
2

(while z′ is the latent patch closet to ps
j ), and the

upper bound is 0.5.
In Figure 1, the similarity score between the first prototype

at the first scale p1
1 and the most activated segment of the input

preictal EEG sample is 0.4942. In the same way, the similarity
score between the first prototype at the second scale p2

1 and
the most activated segment of the input is 0.4947. Since we
set the number of prototypes in each scale m = 20, there is a
total of 60 prototypes in our model, and the output shape of
the multi-scale prototype layer is 60 ∗ 1.

c) The fully connected layer h: Finally, a fully connected
layer h without adding bias is applied to the output of
the multi-scale prototype layer to obtain the final prediction
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results. The purpose of this layer without adding bias is
to make the model have a transparent reasoning process
during decision-making. In Figure 1, the 60 similar scores pass
through the fully connected layer h and a sigmoid activation
function, resulting in a probability of 0.9894 that the input
EEG sample is preictal.

2) Training Process: The training process of our MSPPNet
consists of two stages: (1) Adam optimization for all layers;
(2) projection of prototypes. In this study, we set the number
of training epochs to 60. When the epoch is greater than or
equal to 10 and divisible by 5, we perform a projection of
prototypes; In other cases, we perform Adam optimization for
all layers.

a) Adam optimization for all layers: In this stage, we opti-
mize the weights of all layers by the Adam optimizer to
learn a latent space, where the most significant segments
for identifying the input as preictal are clustered around
semantically similar prototypes of preictal. To this end, the
weights of all layers (i.e., the CNN module’s weights wconv ,
multi-scale prototype layer’s weights P , and the last fully
connected layer’s weights wh) are jointly optimized using the
Adam optimizer. Let Dt = [X, Y ] = {(xi , yi )}

n
i=1 denote the

EEG training set. We can formula the optimization problem
as follows:

min
P,wconv,wh

La =
1
n

n∑
i=1

BC E Loss
(
h ◦ gp ◦ f (xi ) , yi

)
−µ1 ∗ Clst + µ2 ∗ ∥wh∥1

where Clst is defined as:

Clst =
1
n

n∑
i=1

max
j,s

max
z∈patches( f (xi ))

yi

1 + exp
(∥∥∥z − ps

j

∥∥∥2

2

)
The binary cross entropy loss (BCELoss) reduces misclassifi-
cation on the training set, and the maximization of the cluster
cost (Clst) encourages each preictal training sample to have
some latent patch that is close to at least one prototype, while
the L2 regularization on the weights of the last layer makes the
contribution of prototypes to the prediction probabilities sparse
and facilitates the search and visualization for significant
prototypes. In this work, we set the coefficient of the cluster
cost µ1 = 0.8, and the coefficient of the L1 regularization
µ2 = 10−4.

b) Projection of prototypes: In our MSPPNet, each proto-
type is conceptually equivalent to some fragment of a preictal
training sample since we project each prototype ps

j for preictal
onto the nearest latent training patch. Specifically, we will
replace each prototype ps

j with the nearest training patch
from learned features z for every five epochs. Mathematically,
we make the following update for the prototype ps

j :

ps
j ⇐ arg min

z∈Z

∥∥∥z − ps
j

∥∥∥2

2
,

where Z =
{
z′

: z′
∈ patches ( f (xi )) ∀i s.t. yi = 1}.

By doing so, each prototype corresponds to a patch of the
feature map of a training sample, and hence, corresponds to a
local region of an EEG training sample. It is worth noting
that convolutional neural networks (CNNs) have a crucial

property in that there is a spatial correspondence between the
feature maps and the original input sample. In other words,
every element of a feature map maps to a local region of
the input sample. Therefore, each prototype corresponds to a
local region of a raw EEG signal that represents a specific
waveform pattern. It is worth noting that the prediction result
will not change for samples in which the model prediction is
correct and with some confidence before the projection if the
“projection process” does not move the prototypes too much
(guaranteed by the maximization of Clst loss). The proof of
this statement can be found in [36].

3) Reasoning Process for Our Model: Figure 3 presents the
reasoning process of our proposed MSPPNet in making a
classification decision on a preictal test sample (from the
CHB-MIT dataset) at the top of the figure. For a given test
sample x , MSPPNet measures the similarity between the latent
features z = f (x) and the learned prototypes as evidence
to make a final prediction. Since each prototype of trained
MSPPNet represents some patch of the convolutional output,
and this patch corresponds to a segment of raw preictal EEG
signals, we can visualize the prototype by presenting this
corresponding segment of training preictal EEG samples. For
example, in Figure 3, our model attempts to obtain evidence
for preictal by comparing its latent features with each proto-
type at different scales (shown in column “Prototype”). This
comparison results in a similarity score for each prototype
used for subsequent classification. The EEG waveforms in the
second column shows the fragments of the test EEG sample,
which corresponds to the most significantly activated patch by
the prototype. The fourth column shows where the prototypes
come from. Finally, a total of 60 similarity scores are weighted
and summed together to provide a prediction probability of
0.9894 for this test sample belonging to the preictal class.
More examples about the reasoning process of our model is
presented in the Supplementary Material.

According to these examples, we can see that our model can
learn highly effective prototypes for preictal and can capture
similar EEG fragments to these prototypes in test samples.
This further shows that our proposed model has a transparent
reasoning process, which could provide a decision basis for
seizure prediction.

C. Postprocess
In this study, we perform post-processing according to [28].

Specifically, a 60-second causal moving average filter is
applied to the output of our model, and the prediction alarm
threshold is set to 0.5 for all patients. Besides, a refractory
period is determined to be 30 mins to avoid consecutive
prediction alarms from occurring for a short period.

D. Comparative Methods
To the best of our knowledge, we are the first study that

develops a self-interpretable deep learning model for epileptic
seizure prediction. In order to evaluate the effectiveness of
our model, we compare our model with several state-of-the-
art non-interpretable methods.

CNN with Short-time Fourier transform (STFT)
method [15] analyzed the time-frequency characteristic of
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Fig. 3. The reasoning process of our model in deciding the class of a EEG sample (top).

EEG signals by the STFT approach, and the spectral images
were used as input for the CNN model.

3D-CNN with Manual Features [22] developed a model
by considering the location of the electrodes in EEG signals.
A 3D CNN was applied to classify the extracted features with
an image-based method.

CNN with Common Spatial Pattern Methods [33] applied
a common spatial pattern approach to EEG signals to design
spatial filters and obtain the discriminative features. Then a
CNN was performed on these features to make final predic-
tions.

GCN with Active Preictal Interval Learning Scheme
[24] developed a spatio-temporal-spectral hierarchical graph
convolutional network (GCN) to capture preictal biomarkers
for predicting seizures. Besides, a semi-supervised active pre-
ictal interval learning method is employed to find the optimal
patient-specific preictal interval.

Multi-scale CNN with Dilated Convolution [28] proposed
a multi-scale CNN with dilated convolution model for end-
to-end classification by considering that EEG signals carry
information on multiple scales.

Adder Network with Supervised Contrastive Learn-
ing [7] proposed an end-to-end adder network and supervised
contrastive learning to solve the problem of high complexity
of deep learning networks.

Deep Learning with Semi-supervised Transfer Learn-
ing [10] designed four deep learning models for end-to-end
seizure prediction, and a semi-supervised transfer learning
method is used to improve performance.

CNN with two different dimensional kernels [37] adopts
one- and two-dimensional kernels for end-to-end seizure pre-
diction.

Among the above comparative methods,the first six methods
are used for comparison in the CHB-MIT database, and the last
three methods are used for comparison in the Kaggle database.

III. RESULTS AND DISCUSSION

This section first describes the details of our experiments
and the evaluation metrics. Then we present the experimental
results on both datasets and the performance improvement
of the multi-scale prototype layer compared to the existing
single-scale prototype layer. Furthermore, the performance
comparisons of our model with several state-of-the-art meth-
ods are presented. Finally, we provide analysis and discussion
for our methods.

A. Experimental Settings and Evaluation Metrics
In this work, we use the leave-one-out cross validation

(LOOCV) strategy to evaluate the effectiveness of our model
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TABLE III
PREDICTION PERFORMANCE OF OUR PROPOSED MODEL AND THE SINGLE-SCALE PROTOPNET METHOD ON BOTH DATASETS

according to work in [28], and the “one” indicates one seizure.
For example, given an epileptic patient with a total of N
seizures, there would be N corresponding preictal period.
We then randomly separate this patient’s interictal data into
N equal parts and combine them with N preictal periods to be
N pairs. As the LOOCV strategy shows, we take one of the
pairs as the test set and the remaining N-1 pairs as the training
set in each round. Therefore, our model is trained and tested N
times for this patient. During training, our model is performed
in Python 3.7.11 environment and Pytorch 1.11.0.

For evaluation metrics, we adopt four parameters to measure
the performance of our model: the sensitivity (Sens, correctly
predicted seizures as a proportion of total seizures), false
prediction rate (Fpr, the number of false alarms per hour),
AUC (area under the ROC Curve), and p-value.

As stated in [22], we calculate the p-value to measure the
significance of our proposed model’s improvement over the
chance level. To do so, we assume that the interval between
two successive alarms follows an exponentially distributed
Poisson process, and we calculate the probability of at least
one alarm rising randomly in an interval of 1t . This probabil-
ity is independent of t and is approximately equal to λw1t ,
where λw is the Poisson rate parameter.

In this context, the sensitivity of the chance predictor, Snc,
is defined as follows:

Snc = 1 − exp
(
−λwτw +

(
1 − e−λwτw0

))
where the detection interval τw0 denotes the seizure prediction
horizon (SPH), while τw represents the sum of SPH and
the seizure occurrence period (SOP). The difference between

observed and chance sensitivity depend on ρw is a strong
measure of predictability [38]. For a seizure prediction method
with sensitivity Sn and proportion of time-in-warning ρw, the
sensitivity improvement-over-chance metric is given as below:

Sn − Snc = Sn − 1 + exp
(
−λwτw +

(
1 − e−λwτw0

))
where

λw = −
1
τw

ln (1 − ρw)

To calculate the significance of an improvement over chance,
we assume that our proposed prediction method correctly
identifies n out of N seizures for an individual subject. The
one-sided p-values are calculated as follows:

p = 1 −

n−1∑
i=0

(
N
i

)
Si

nc (1 − Snc)
N−i , for

n
N

≥ Snc

In this case, the corresponding hypotheses can be described
as follows:

H0 : median ((Sn − Snc) for algorithm) = 0
H1 : median ((Sn − Snc) for algorithm) ̸= 0

When we calculate the p-value, the significant level p is set
to 0.05.

B. Results and Comparison
In Table III, we show the seizure prediction performance

of our model for both two datasets: CHB-MIT and Kag-
gle. To further evaluate the effectiveness of our proposed
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TABLE IV
COMPARISON TO RECENT EPILEPTIZ SEIZURE PREDICTION METHODS ON BOTH DATASETS

multi-scale prototype layer, we also present the performance
comparison of multi-scale ProtoPNet with single-scale Pro-
toPNet in Table III. Our MSPPNet achieves an average sen-
sitivity of 93.8%, an average false prediction rate of 0.054/h,
an average AUC of 0.840 on 16 patients in the CHB-MIT
dataset, and an average sensitivity of 88.6%, an average false
prediction rate of 0.146/h, and an average AUC of 0.764 in the
Kaggle dataset. Besides, 14 out of 16 patients have a p-value
less than 0.001 in the CHB-MIT dataset, and all subjects have
a p-value less than 0.001 in the Kaggle dataset (significant
level p is set to 0.05).

Compared with single-scale ProtoPNet, our model improves
the prediction performance significantly, according to Table III
above. Specifically, our model significantly increases the sensi-
tivity, reduces the false prediction rate, and increases the AUC
value on both datasets. This demonstrates the effectiveness of
our proposed multi-scale prototype layer for epileptic seizure
prediction.

Furthermore, we compare the performance of our model
with several state-of-the-art non-interpretable methods, and
the comparison results are listed in Table IV. To make a fair
comparison, for each study to be compared, we use their
performance obtained when they select the common subjects
with us since different studies on the CHB-MIT dataset used
different subjects. For example, in the first row of Table IV,
Truong et al. study have 13 common subjects with us. On these
13 patients, they achieve an average Sens of 80.2% and an
average Fpr of 0.182/h, and we achieve an average Sens

of 93.3% and an average Fpr of 0.052/h. The performance
of [10], [37] on the Kaggle dataset is derived from [7]. Besides,
given that it is unfair to compare the Fpr if the interictal
distance are different, we also perform the experiments on
the CHB-MIT dataset at an interictal distance of 240 minutes.
Hence, the performance in Table IV is compared when the
preictal length and interictal distance are equal (except Li et al.
2021 [24], because their preictal length and interictal distance
are adaptively inferred). According to Table IV, we can see
that our proposed model can achieve comparable performance
to the state-of-the-art non-interpretable methods.

C. Analysis and Discussion
The experimental results above show that our proposed

model can provide both excellent interpretability and predic-
tion performance. Nevertheless, some details of our model are
worth discussing for further development. For example, the
number of prototypes m for each scale in our model is pre-
defined; how much does m affect the performance? To address
this problem, we try different m in the model to consider
the contribution of the number of prototypes. Specifically,
we conducted experiments on the CHB-MIT dataset with
m values ranging from 10 to 25, and the results are shown
in Figure 4.

As the correct prediction of epileptic seizures is of utmost
importance for epileptic patients, we prioritized the Sens
metric when selecting the m value. As shown in the Figure 4
above, the Sens metric achieves its highest value (93.8%) when
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Fig. 4. Prediction performance with different number of prototypes on
the CHB-MIT database.

m is at 20, 21, and 22. Therefore, we restricted the range of
m values to between 20 and 22. For the Fpr, we found that
the lowest value (0.054/h) was obtained when m was equal to
20 within this range. Furthermore, we observed that the AUC
value was highest when m was equal to 20. Hence, we choose
the number of prototypes at each scale, m, to be 20.

Besides, to further evaluate whether our proposed model can
predict seizures in time, another indicator in terms of average
prediction time (APT) is calculated, formulated by the average
interval between the time of the alarm and the onset of the
corresponding seizure. An effective seizure prediction model
should have enough APT to give patients sufficient time to
take preventive measures. The prediction time of our model
for each patient in the CHB-MIT database is presented in
Figure 5. Since we set the preictal length to 30 minutes, the
false alarm longer than 30 minutes is not shown in Figure 5.

In Figure 5, each point on the left represents a patient’s
prediction time for a seizure. The distribution of prediction
time for all seizures is shown on the right. We can see that
all successful seizure prediction times in subjects 7, 17, 19,
and 21 are greater than 20 minutes. In particular, for subjects

Fig. 5. The prediction time of our model for each patient in the CHB-
MIT database.

17 and 19, all successful seizure prediction times are greater
than 25 minutes. According to the right picture, more than half
of all seizures could be predicted at least 25 minutes before
their onset. The APT of our model is 23.5 minutes, which
could give patients sufficient time to take preventive measures.

Furthermore, given the critical importance of computational
efficiency in online seizure prediction, we carefully measured
the computation time of our proposed MSPPNet model. Dur-
ing training, our model consists of two stages. In the “Adam
optimization for all layers” stage, our model takes about
80 milliseconds on the CHB-MIT database and 110 millisec-
onds on the Kaggle database to process a batch of samples
(i.e., one gradient update, including 256 4-second EEG sam-
ples). For a specific subject, there are about 50000 training
samples in the CHB-MIT dataset (e.g., patient-1) and about
16000 training samples in the Kaggle dataset (e.g., dog-1).
Thus, it takes about 16 seconds on the CHB-MIT dataset and
7 seconds on the Kaggle dataset for our model to train an
epoch. In the “Projection of prototypes” stage, our model takes
about 1 second for 10000 training samples on the CHB-MIT
dataset and 3 seconds for 10000 training samples on the
Kaggle dataset. In our study, we set the number of training
epochs to 60, and we perform a projection of prototypes when
the epoch is greater than or equal to 10 and divisible by
5; otherwise, we perform Adam optimization for all layers.
Therefore, the total training time on one subject is about 839 s
on the CHB-MIT database and 409 s on the Kaggle database
(using one single RTX 3080 GPU).

During the testing phase, we evaluated one hour of EEG
data with our proposed MSPPNet model, which takes about
0.26 seconds on the CHB-MIT database and 0.19 seconds on
the Kaggle database. These results suggest that our current
model is fast enough for real-time prediction in the clinical
setting.

In recent years, most deep learning-based seizure prediction
studies focus on improving the prediction performance, while
the deep learning model is often treated as a “black box”.
Recent work indicates that the absence of an explanation for
the deep learning model seriously limits the clinical accep-
tance of EEG-based seizure prediction [21]. Hence, building
an intrinsically interpretable deep learning model is crucial
for developing seizure prediction. To this end, we construct
MSPPNet with built-in interpretability. On the other hand,
as far as we know, EEG biomarkers for preictal are scarce,
which is the second reason hindering seizure prediction devel-
opment. The EEG biomarkers for preictal are challenging to
capture due to the complex spatial-temporal dynamics in the
epileptic brain [24]. In our proposed MSPPNet, we can capture
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several prototypes at multiple scales during training, which
correspond to some fragments of raw EEG signals and can
be viewed as potential biomarkers. Experimental results also
show the efficiency of these potential biomarkers. Our study
provides a novel way to search the bio-markers for preictal.
In our future studies, we will think about how to make better
use of these prototypes, and we believe that the effective
potential biomarkers will further improve seizure prediction
performance.

IV. CONCLUSION

In this study, we propose a self-interpretable deep learning
model for patient-specific epileptic seizure prediction, which
could provide both a transparent reasoning process and excel-
lent prediction performance. Our model is evaluated on two
public epileptic EEG datasets: CHB-MIT and Kaggle. After
the LOOCV strategy, we obtain an average sensitivity of
93.8%, an average false prediction rate of 0.054/h in the CHB-
MIT database, an average sensitivity of 88.6%, and an average
false prediction rate of 0.146/h in the Kaggle dataset. The
experimental results show that our model can achieve the
current state-of-the-art performance with self-interpretable evi-
dence. This work provides a promising solution for EEG-based
epileptic seizure prediction.
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