
1796 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Improving AR-SSVEP Recognition Accuracy
Under High Ambient Brightness Through

Iterative Learning
Rui Zhang , Lijun Cao, Zongxin Xu , Yangsong Zhang, Lipeng Zhang , Yuxia Hu,

Mingming Chen , and Dezhong Yao

Abstract— Augmented reality-based brain-computer
interface (AR-BCI) system is one of the important ways to
promote BCI technology outside of the laboratory due to its
portability and mobility, but its performance in real-world
scenarios has not been fully studied. In the current study,
we first investigated the effect of ambient brightness on
AR-BCI performance. 5 different light intensities were set
as experimental conditions to simulate typical brightness
in real scenes, while the same steady-state visual evoked
potentials (SSVEP) stimulus was displayed in the AR
glass. The data analysis results showed that SSVEP can
be evoked under all 5 light intensities, but the response
intensity became weaker when the brightness increased.
The recognition accuracies of AR-SSVEP were negatively
correlated to light intensity, the highest accuracies were
89.35% with FBCCA and 83.33% with CCA under 0 lux
light intensity, while they decreased to 62.53% and 49.24%
under 1200 lux. To solve the accuracy loss problem in
high ambient brightness, we further designed a SSVEP
recognition algorithm with iterative learning capability,
named ensemble online adaptive CCA (eOACCA). The
main strategy is to provide initial filters for high-intensity
data by iteratively learning low-light-intensity AR-SSVEP
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data. The experimental results showed that the eOACCA
algorithm had significant advantages under higher
light intensities (>600 lux). Compared with FBCCA, the
accuracy of eOACCA under 1200 lux was increased by
13.91%. In conclusion, the current study contributed to the
in-depth understanding of the performance variations of
AR-BCI under different lighting conditions, and was helpful
in promoting the AR-BCI application in complex lighting
environments.

Index Terms— Brain–computer interface (BCI), steady-
state visual evoked potentials (SSVEP), light intensity, aug-
mented reality (AR), iterative learning.

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) is a new type of
technology that enables humans or other animals to

directly connect the brain with the external environment with-
out the aid of peripheral nerves and muscles, enabling the brain
to directly control external equipment [1]. It builds a new way
of communication between the brain and external devices [2].
The human cerebral cortex is widely distributed with multiple
networks with different resonant frequencies. When subjected
to a repeated stimulus with a constant external frequency,
the network corresponding to the stimulus frequency or har-
monic will be synchronized, so that steady-state visual evoked
potentials (SSVEP) are generated in the brain scalp [3], [4].
The SSVEP of different frequencies can be evoked by stimuli
of different frequencies, and BCI can directly output brain
intent by decoding SSVEP. Compared with other types of BCI,
SSVEP-BCI has the advantages of high accuracy, high signal-
to-noise ratio (SNR), high information transfer rate (ITR),
and less subject training, which makes it one of the most
commonly used BCI control systems [5], [6].

In the traditional SSVEP-BCI system, most of the flicker
stimuli of SSVEP are presented on the computer screen (CS)
[7]. Due to the relatively fixed position and large size of
the device, users can only sit or stand in a specific room
to complete interactive tasks, and it greatly limits the scope
of application of the system. During the experiment, the
subjects need to shift their attention back and forth between the
stimulus screen and the normal visual field, which increases
the experimental burden of the subjects [8].
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In recent years, with the continuous development of aug-
mented reality (AR) technology, AR glass has gradually
entered our lives. It integrates the key components of AR
technology on glasses, and this greatly improves portabil-
ity and practicability. AR glass uses projection technology
to superimpose virtual things in people’s real vision field,
thus virtual things and the real external environment can be
observed simultaneously [9]. According to the way that AR
superimposes virtual images on the real environment, it can
be divided into video see-through AR (VST-AR), optical see-
through AR (OST-AR), and projection AR [10]. Compared
with the two other types, OST-AR utilizes the principle of
reflection of light to directly fuse virtual information into the
real environment through optical elements fixed in front of the
user’s eyes, thereby providing a more realistic AR experience.
As early as the 1990s, Caudell et al. realized the first OST-AR
glass device [11]. Due to the manufacturing cost at that time,
it has not been widely studied. In 2015, Microsoft released an
OST-AR glass, Hololens, which brought AR glass back into
the public’s attention.

At present, BCI technology faces two important challenges
in practical application: the non-portable EEG acquisition and
stimulus presentation equipment, and the unnatural BC inter-
action mode [12]. Coupled with the development of wireless
EEG signals acquisition equipment, AR may become the best
way to bring the BCI system out of the laboratory into the
real environment. In the SSVEP-BCI system based on AR
technology, the stimulus interface of SSVEP can be projected
in the real environment by AR glass, getting rid of various
limitations of CS display. It achieves the purpose of being
portable and wearable [13], making users more natural and
comfortable interacting with the outside world. The application
of AR technology could greatly expand the research field of
the SSVEP-BCI system and broaden its application scenarios.

However, many studies have confirmed that the performance
of AR-SSVEP system was significantly different from that of
traditional CS-SSVEP system. Ke et al. designed an 8-target
SSVEP-BCI system with AR glass, and compared the perfor-
mance differences between AR-BCI and CS-BCI. The results
showed that the accuracy of AR-BCI was lower than that of
CS-BCI [14]. Zhao et al. designed visual stimulus paradigms
with different layouts, compared the signals characteristics
of AR-SSVEP and CS-SSVEP in a shielded room in the
laboratory, and found that the performance of AR-SSVEP
can be affected by the stimulus layouts, while CS-SSVEP
not [15]. Our previous study tested the performance of
AR-SSVEP and CS-SSVEP under different numbers of stim-
uli. The results indicated a significant difference in recog-
nition performance between the two stimulus presentation
methods, and the increase in stimulus number will cause
a decrease in the recognition accuracy of AR-SSVEP [16].
Besides, Ravi et al. also confirmed that dynamic background
would reduce the performance of AR-SSVEP under laboratory
conditions [17]. Zhang et al. completed a robotic control
system based on dynamic stimulus and also found that the
classification accuracy was negatively correlated to the moving
speed of the target [18]. These studies indicated that the

robustness of AR-SSVEP is not as strong as that of traditional
CS-SSVEP, and it is easily affected by various factors.

Currently, the algorithms used to recognize AR-SSVEP
is mainly derived from the commonly used algorithms in
CS-SSVEP. Canonical correlation analysis (CCA) algorithm
calculates the correlation between the experimental EEG and
the template signals, and then output the identified target
according to the correlation coefficients [19]. Filter bank based
CCA (FBCCA) further divides EEG signals into multiple sub-
bands, so that the information at the harmonics of the EEG
signals can be effectively used to improve the recognition
accuracy [20]. Task related component analysis (TRCA) finds
an optimal weight coefficients to maximize the reproducibility
of SSVEPs across multiple trials, leading to significantly
enhanced SNR of SSVEPs [21]. The EEG data processed by
these algorithms are often collected under fixed conditions,
and they do not need to consider the impact of environmental
factors for CS-SSVEP. However, when using AR devices
as SSVEP stimulus presentation devices, especially outside
the laboratory, the collected EEG data is faced with the
interference of various environmental factors, which requires
the algorithms for processing AR-SSVEP data to be adaptable
to the environment. Several online adaptation schemes have
been proposed to adjust the spatial filter [22], data length [23],
stimulus size [24], or SSVEP template [25] for improving
the CS-SSVEP recognition performance. So far, such online
adaptation schemes have not been tested in AR-SSVEP exper-
iment, and there is also a lack of online learning strategies
for SSVEP characteristic changes caused by environmental
factors.

With the extensive study of AR-BCI technology, researchers
are eager to apply it in non-laboratory conditions and provide
a better user experience. However, one of the key factors in
non-laboratory conditions is the ambient brightness variations,
and it is mostly set to be dark to avoid the influence on the
AR-BCI experiment. Furthermore, besides the display system
of the AR glass [26], the ambient brightness also affects human
vision [27]. To the best of our knowledge, the effect of ambient
brightness on AR-BCI and its influencing mechanism have not
been studied, and there is also a lack of effective solutions
to improve the performance robustness of AR-BCI under
different light intensities, which greatly limits the application
and development of AR-BCI.

In the current work, the ambient brightness was considered
as the main factor, and five light intensities were set according
to the typical application scenarios of AR-BCI. We investi-
gated how ambient brightness affects AR-BCI performance
at first. Then, inspired by online adaptive CCA (OACCA)
[22], this paper further proposed a new algorithm framework
which named ensemble OACCA (eOACCA) to adapt to the
influence of environmental factors on the signal characteristics
of AR-SSVEP. eOACCA not only learns the information
of different targets under the same light intensity, but also
learns the information of data under other light intensities,
so that the spatial filters obtained at low light intensities
can be used to enhance the spatial filters at high light
intensities.
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Fig. 1. Schematic diagram of optical waveguide principle. DOEs
are diffractive optical elements. The virtual image passes through the
convex lens into the glass substrate, the image is transmitted in the glass
substrate by total reflection, and finally enters the human eyes. Note that
external light can also enter the human eyes through the glasses.

II. MATERIALS AND METHODS

A. Experimental Paradigm and Data Acquisition
1) Stimulus Presentation and EEG Acquisition Equipment:

The Hololens1 developed by Microsoft Corporation of the
United States was used as the stimulus presentation device.
The Hololens1 was an OST AR glass, which used digital
light processing (DLP) projection technology to display virtual
things. The key technology of Hololens 1 was the optical
waveguide, as shown in Figure 1.

HoloLens1 provides users with a larger field of view through
a 3-layer waveguide [28]. The total reflection of the optical
waveguide ensured high definition and high contrast of image.
This characteristic of the optical waveguide had a great advan-
tage in optimizing the layout and beautifying the appearance of
the headset. With the transmission channel of the waveguide,
the display screen and imaging system could be moved away
from the glasses to the top or side of the forehead. It greatly
reduced the obstruction of the optical system to the outside
world, and it also made the weight distribution of AR glass
more ergonomic, improving the wearing experience of users.

The SynAmps2 amplifier produced by NeuroScan of the
United States was used as EEG signals acquisition equipment.
A total of 64 electrodes were selected to record.

EEG signals and placed according to the international
standard 10-20 system. All electrodes were referenced to the
Cz electrode, and the impedance was kept below 10 k�

during recording. The sampling frequency of EEG signals
was 1000 Hz.

2) Stimulus Paradigm and Lighting Environment Design:
The visual flickering stimuli were presented to subjects by
HoloLens 1 AR glass. The screen resolution of AR glass was
1280∗720 pixels, and the refresh rate was 60 Hz. The visual
stimuli were constructed using sampled sinusoidal coding [29],
[30], and the stimulus layout and stimulus frequency were
shown in Figure 2.

In this experiment, according to the brightness in several
typical scenarios, experimental environments with differ-
ent light intensities were set. Generally, the light intensi-
ties requirement of common learning places is 300 lux,
and the brightness of international sports venues is about
1000 lux-1400 lux, the light requirement for the examination
rooms in hospitals is generally 300-500 lux [31], the light of
room in the sunny day is about 100-1000 lux, and at night
is about 0.2 lux. According to the range of light intensity

Fig. 2. Spatial and frequency layout of SSVEP stimulus. The lengths
unit is pixels. There are no numbers on the stimulus during the
experiment.

Fig. 3. Schematic diagram of the experimental environment with
different light intensities.

variation in these scenes, we set the light intensity to 0 lux,
300 lux, 600 lux, 900 lux and 1200 lux in the experimental
design. And three 800 W incandescent lamps were used as
the light source, and a small shielded room was chosen for
the experiment. The experimental environment was shown
in Figure 3.

In order to ensure the uniformity of illumination in the
experimental environment, three incandescent lamps were
placed in the shielded room with an interval of about 1.2 m.
We adopted the method of filling the light behind the experi-
menter’s back to ensure that the subjects could carry out the
experiment safely and normally, and the light source was set
at about 2.5 m from the subjects’ back. When the subject
performed AR-SSVEP experiments using the AR glass, the
light intensity was measured at about 30 cm in front of
the subjects’ eyes, which was the direction of light entered the
human eyes. The light intensity measurement equipment was
Victor VC1010C digital illuminometer, its measurement range
was 0-20000 lux and the resolution was 0.1 lux. To ensure the
measurement accuracy, the allowable error of light intensity
was ±10 lux during the experiment.

3) Experiment and Data Collection: Twenty subjects with
normal or corrected-to-normal vision (8 females and 12 males,
aged 21-25 years) were recruited for this experiment, and all
signed an informed consent form before the experiment. Two
male subjects were excluded because the impedance could
not be reduced below 10 k�. To avoid the adaptation factor,
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we divided the subjects equally into two groups, one group
used an increasing sequence of light intensities during the
experiment, starting from 0 lux and ending with 1200 lux. The
other group used a decreasing sequence of light intensities,
starting from 1200 lux and ending with 0 lux. For each light
intensity, subjects were asked to perform 8 trials, and each trial
contained the 9 stimulus which described in Figure 2. At the
beginning of each stimulus, the AR glass would give a target
cue of 0.5 s, and then all the stimulus targets would start
to flicker for 3 s, followed by a 2-s rest time. The subjects
were required to move their gaze to the designated target
stimulus during the cue time, and try not to blink during the
flickering period. In each trial, subjects were required to gaze
at the 9 targets in sequence according to the cue. We extra-
cted EEG data during target flickering for the following
analysis.

B. Data Processing and Analysis
The EEG data on the Oz channel of the occipital region was

used for frequency domain analysis. First, the 3 s EEG data
during the flickering time were segmented, then they were
transferred from the time domain to the frequency domain
by fast Fourier transform (FFT) to obtain the spectrogram.
The SNR was calculated using the spectral value of the target
frequency and the average spectral value of the left and right
2 Hz [16].

Two typical algorithms, canonical correlation analysis
(CCA) [19] and filter bank based CCA (FBCCA) [20], were
selected to recognize SSVEP. The ITR was used to evaluate
the communication rate of the BCI system [32].

C. Design of the eOACCA Algorithm
In order to make the recognition algorithm of SSVEP adapt

to the change of light intensity, we proposed a new optimiza-
tion algorithm, ensemble online adaptive CCA (eOACCA).
The algorithm was based on OACCA [22], but provided an
initial parameter for the iterative learning of prototype spa-
tial filters (PSF) and online multi-stimulus CCA(OMSCCA)
with the help of data under other light conditions. Thus,
it could learn not only the features of different target data,
but also the features of data under different light condi-
tions to further optimize and correct the filters. In addition,
we also used the first-target optimization strategy for the
target data to obtain a relatively accurate filter model at
the beginning of filter learning. During the data process-
ing, the idea of sub-band filtering was used to improve its
accuracy.

1) Prototype Spatial Filters: Lao et al. [33] found a task-
relevant common filter from different target data, which can
effectively improve the recognition accuracy of SSVEP. After
CCA calculation, each target would generate a recognition
result k̂[t] and corresponding filter u[t]

k̂[t] , where k̂[t] is the label
classified by CCA algorithm, t represents the t-th target. For
convenience, let ũ[t]

= u[t]
k̂[t]/||u

[t]
k̂[t] ||, then a common filter u0

was obtained from them. In [22], Wong et al. improved PSF
into online learning mode, and they found a filter u[t+1]

0 from
ũ[t] of the previous target such that u[t+1]

0 had the maximum

similarity to ũ[t]. As shown in equation (1)

u[t+1]

0 = argmaxu

uT
t∑

m=1
ũ[m] (

ũ[m])Tu

uT · u

= argmaxu
uTS[t]u
uT · u

(1)

As S[t]
=

∑t
m=1 ũ[m](ũ[m])T , each target recognition would

adjust the next one u[t+1]
0 to achieve the goal of continuous

optimization and learning.
The eOACCA algorithm we proposed not only used S[t]

to calculate the filter u[t+1]
0 , but also used the parameter

S generated by data under other lighting conditions. Thus
formula (1) can be rewritten as formula (2):

u[t+1]

0 = argmaxu
uT(S + S[t])u

uTu
(2)

where S + S[t]
=

∑n−1
i=1

∑t
m=1 um

0i +
∑t

m=1 ũm
n (ũm

n )T , n was
the index of different lighting conditions, and m was the index
of the target.

2) Multi-Stimulus CCA: Wong et al. proposed an MSCCA
algorithm [34], which aimed to learn a common spatial filter
(wx or wy) from the subject’s multi-stimulus SSVEP template.
Then they changed the original batch learning mode to an
online learning mode, forming an online MSCCA(OMSCCA)
in the OACCA algorithm. Therefore, for the t-th test, the filter
can be calculated by formula (3)

{
w[t+1]

x , w[t+1]
y

}
= max

u,v

uT
t∑

m=1

(
X[m]

)T Yk̂[m]v√
uT

t∑
m=1

(
X[m]

)T Yk̂[m]u · vTv

= max
u,v

uTC [t]
XY v√

uTC [t]
X X u · vTv

(3)

w
[t+1]
x and w

[t+1]
y were the OMSCCA spatial filters. They

were computed for the next trial. C [t]
X X or C [t]

XY was the sum of
covariance matrices of multiple trials, and it can be updated
whenever a new k̂[t] was obtained by CCA.

C [t]
X X = C [t−1]

X X + (X [t])T X [t]

C [t]
XY = C [t−1]

XY + (X [t])TYk̂[t] (4)

In our proposed eOACCA, the calculation of OMSCCA
spatial filters also used data under other lighting conditions,
so that the covariance matrix can contain enhanced informa-
tion. As shown in formula (5):

C t
X X = Cbe f

X X + (X [t])T X [t]
= Cbe f

X X + C [t]
X X

C t
XY = Cbe f

XY + (X [t])TYk̂[t] = Cbe f
XY + C [t]

XY (5)

where Cbe f
X X , Cbe f

XY were the sum of covariance matrices gener-
ated by data under other lighting conditions. Formula (3) can
be rewritten as:{

w[t+1]
x , w[t+1]

y

}
= max

u,v

uT
(

Cbe f
XY + C [t]

XY

)
v√

uT
(

Cbe f
X X + C [t]

X X

)
u · vTv

(6)
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Fig. 4. Amplitude histograms at the nine stimulus frequencies. The unit
was µV, and 3 harmonics were drawn in the figure.

Finally, we obtained three correlation coefficients:

ρ
[t]
1k = CC A(X[t], Yk)

ρ
[t]
2k = CC A(X[t]u[t]

0 , Yk)

ρ
[t]
3k = corr(X[t]w[t]

x , Ykw
[t]
y ) (7)

where corr(a, b) computed the correlation coefficient between
two vectors a and b, CCA(A, B) calculated the correlation
between two matrices A and B. Then we summed up these
three coefficients as ρ

[t]
k = ρ

[t]
1k + ρ

[t]
2k + ρ

[t]
3k , and ρ

[t]
k was the

final coefficients of eOACCA.

III. RESULTS

1) Amplitude and SNR of AR-SSVEP: Figure 4 showed the
histogram of the AR-SSVEP response amplitudes under the
5 different light intensities. It can be observed that with
the increase of the light intensity, the peak values of the
target frequencies on the base frequency generally showed a
downward trend, and this trend was more obvious at lower
light intensities (≤600 lux). The overall downward trend was
relatively small on the second harmonic, and no obvious
change trend on the third harmonic. Besides, the AR-SSVEP
responses were higher for the stimulus located in the center
of the display interface than the other stimulus.

From Figure 5, it can be found that the average SNR grad-
ually decreased with the increase of light intensity under the
low light intensities (≤600 lux), and the downward trend was
hardly observed under the high light intensities (>600 lux).
Statistical analysis was then performed using paired t-test, and
the results showed that the SNR under 0 lux light intensity was
significantly higher than that under 600 lux (p < 0.01), 900 lux
(p < 0.01) and 1200 lux (p < 0.01). The SNR under 300 lux
was significantly higher than those under 600 lux (p < 0.01),
900 lux (p < 0.01) and 1200 lux (p < 0.05), and no significant
difference was found between the other comparisons.

2) Target Recognition Accuracy and ITR: The AR-SSVEP
recognition accuracies also showed a downward trend with
the increase in light intensity, as shown in Figure 6. The
highest accuracies of the two algorithms appeared in 0 lux

Fig. 5. SNRs under different light intensities. Each dot denoted the SNR
of one of the 18 subjects (∗: p < 0.05; ∗∗: p < 0.01).

Fig. 6. Average accuracies of CCA and FBCCA under 5 light intensities.

light intensity, which was 89.35% of FBCCA and 83.33%
of CCA respectively, and the lowest values appeared under
1200 lux light intensity, which was 62.53% of FBCCA and
49.24% of CCA respectively. In addition, with the increase of
light intensity, the standard deviation of the accuracies became
bigger, indicating that the subjects could not recognize the
stimulus stably. Table I listed the accuracies of all subjects by
using the FBCCA algorithm. The statistical test showed that
there are significant accuracy differences (p < 0.01) between
all the light intensities except for 0 lux and 300 lux (p > 0.05),
and when the light intensity interval was bigger (≥600 lux),
the difference is more significant (p < 0.001).

Since several subjects reported that the fixation process
was affected by the spatial location of the flickering stimulus,
we then calculated the recognition accuracies of the 9 targets.
As shown in Figure 7, the accuracies of each target decreased
with the increase in light intensity. When the light intensity
was 0 lux, the accuracy of target 6 was up to 99.3%, and the
accuracy of target 5 achieved the highest in the other light
intensities, which were 98.58%, 97.18%, 91.61%, 84.62%,
respectively. In particular, the accuracies of target 1 (8 Hz)
and target 7(13.4 Hz) were lower than the other targets under
all light intensities. With the increase of light intensities, the
error rates increased sharply, and the minimum accuracies of
the two targets were 5.59% at 1200 lux and 42.66% at 900 lux,
respectively.

We further calculated the ITR under different light inten-
sities, and the results were shown in Figure 8. The ITR
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TABLE I
THE ACCURACIES ACHIEVED BY FBCCA OF 5 LIGHT INTENSITIES(%)

Fig. 7. Radar plot of single target recognition accuracy.

Fig. 8. ITRs of the 5 light density conditions. The abscissa was the
length of EEG data used to recognize the target.

curve showed an upward trend at first, and then decreased
after reaching the maximum value. The maximum value on
0 lux light intensity achieved 67.11 bits/min when the window
length is 1300 ms. Among the 5 light intensities, both the ITR
curve and the highest value showed a decreasing trend with
the increase of light intensity.

A. Parameter Selection in eOACCA
In the eOACCA, two parameters affect the recognition

accuracy of SSVEP, one is which target should be selected

Fig. 9. The accuracies of 1200 lux with the first target optimization. The
bars are the average of the four lighting conditions.

as the starting point of iterative learning? And the other is
how to select data from other lighting conditions for auxiliary
enhancement?

1) The Selection of the First Target: Since the OACCA
method learned and iterated filters from the previous target
recognition results, the accuracy of the previous target played
a key role in the later data recognition. We recognized the EEG
data at 1200 lux using all 9 targets separately at different light
intensities, and the accuracy results were shown in Figure 9.

When using target 2, target 3 and target 5 as the starting
point, the accuracies were higher than 72.48% of OACCA, and
the accuracies were conversely lower than OACCA when using
target 1. The average results among 0 lux, 300 lux, 600 lux
and 900 lux further showed that the achieved accuracies were
higher than OACCA when using all 9 targets as the starting
point except target 1, and the target 5 which located in the
center of the stimulus interface achieved the highest accuracy
of 73.35%.

2) The Selection of Ancillary Lighting Condition Data: In
OACCA, at the initial stage of calculation, both S[0] of PSF
and C [0]

XY , C [0]

XY of OMSCCA were set to 0 [22], which would
make the filter learning time and the learning efficiency lower,
and also affect the accuracy of target recognition at the early
stage. Therefore, we provided initial values for S[0] and C [0]

X X ,
C [0]

X X so that the learning and iteration of OACCA algorithm
could achieve stable results faster. In this paper, we saved the
S and Cbe f

X X , Cbe f
XY after iterative learning of data under other

4 lighting conditions in OACCA, and then used them as S[0]

and C [0]
X X , C [0]

XY of data under 1200 lux. According to 3.3.1,
target 5 was used to optimize the first target.

As shown in Figure 10, the parameters obtained under all
four auxiliary lighting conditions can improve the accuracy of
1200 lux data, and the obtained accuracies were 1.38%, 2.38%,
2.39% and 2.62% higher than that of OACCA. Among these
four lighting conditions, the 900 lux, which was closest to the
1200 lux, achieved the highest accuracy.

Combined with the idea of iterative optimization, we fur-
ther improved the iterative learning process of the eOACCA
algorithm. We tried to iterate by using the data under 0 lux
to provide the initial parameters for the 300 lux data, then
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Fig. 10. The accuracies of 1200lux optimized with 0 lux, 300 lux, 600 lux
and 900 lux data and the accuracy of OACCA algorithm.

Fig. 11. The iterative learning process of the eOACCA algorithm.

using S and CX X , CXY generated from the 300 lux as the
initial parameters for the 600 lux data, and continue to iterate
until 1200 lux. As shown in Figure 11, when calculating the
accuracy of data under 1200 lux, besides the information of
data under 900 lux, the data information under 0 lux, 300 lux
and 600 lux were also used in eOACCA.

B. The Recognition Performance of eOACCA
To verify the recognition performance of the eOACCA

algorithm, we calculated the classification accuracy of data
under the five lighting conditions by FBCCA, OACCA and
eOACCA. Figure 12 showed that the accuracies of eOACCA
were significantly higher than FBCCA and OACCA under
strong light intensity (>600 lux), and the advantages were
more obvious when the data length was short. Particularly,
eOACCA significantly improved the accuracy under 1200 lux
light intensity.

On the other hand, we analyzed the confusion matrices of
FBCCA, OACCA and eOACCA under 600 lux, 900 lux and
1200 lux conditions. As shown in Figure 13, the accuracies
of most of the targets had been improved after applying
eOACCA, especially under high light intensity. Remarkably,
the accuracies of target 1 were increased by 41.39%, 49.22%
and 47.88% under the three high light intensities compared
with FBCCA, and eOACCA had obvious improvements under
900 lux and 1200 lux compared with OACCA. The above
results verified that the iterative learning process of eOACCA
was effective when the light intensity changed drastically.
Besides, the confusion matrix indicated that targets 1 and 7 are
easily misclassified. Targets 1 and 7 were located at the upper

Fig. 12. Classification accuracies of FBCCA, OACCA and eOACCA
under the five lighting conditions.

Fig. 13. Confusion matrix of the AR-SSVEP target recognition results
under different light density conditions. The abscissa is the true label of
the stimulus, the ordinate is the target recognition result.

Fig. 14. ITR comparisons of the FBCCA, OACCA and eOACCA.

left and upper right of AR glass, and the light intensity seemed
to have a greater impact on these two positions.

Finally, the ITRs of eOACCA were calculated, and com-
pared with FBCCA and OACCA, as shown in Figure 14.
The ITRs of eOACCA were higher than that of FBCCA and
OACCA under all 5 light intensities when the light intensity
was the same. The maximum ITRs achieved by eOACCA
were 77.35 bits/min (1s, 0 lux), 74.99 bits/min (1s, 300 lux),
60.59 bits/min (0.8s, 600 lux), 49.39 bits/min (0.9s, 900 lux),
and 43.47 bits/min (1.1s, 1200 lux), respectively.
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IV. DISCUSSION

Ambient brightness is a key factor affecting the devel-
opment of AR-BCI in non-laboratory environments. In this
study, the performance of AR-BCI was tested under various
light intensities. It was discovered that when light intensity
increased, the SSVEP response amplitude steadily weakened,
which further reduced the recognition accuracy and ITR of
AR-BCI. Since the light intensity is typically unstable, and
the brightness is usually not as low as 0 or 300 lux in the BCI
application environment outside the laboratory, it is necessary
to investigate the causes of why the light intensity has a
significant impact on the performance of AR-BCI and how
to increase the recognition accuracy of AR-SSVEP under the
high light intensity environments.

As far as we know, eye tracking technology is currently
one of the important human-computer interaction methods
in AR devices. It is reported that eye trackers also suffer
from ambient brightness [35], on the one hand, rapid changes
in light conditions directly reduce data quality [36], on the
other hand, light conditions can indirectly introduce pupil-size
artifacts by affecting the pupil shape [37]. Although the results
of this work showed that the recognition performance of
AR-SSVEP is also affected by light conditions, the research
on AR-SSVEP has just started. If the recognition performance
problem of AR-SSVEP in complex light environments is
solved in the future, then SSVEP-BCI is expected to become
an important means of human-computer interaction in AR
devices.

A. The Effect of Stimulus Contrast
Contrast refers to the intensity of ambient contrast between

the target flicker and the environment. Visual evoked potential
(VEP) changes mainly originated from the response of the
visual pathway to object edges in the visual cortex [38].
The sharpness of the object’s edge was closely related to the
contrast. High contrast could make the outline and details of
the object clear, and the edge was more prominent. Many
studies have shown that VEP exhibits a linear relationship with
the logarithm of stimulus contrast [39], [40]. In the classical
CS-SSVEP experiments, the stimulus paradigm was usually
designed with a pure black or white background [41], [42],
thus the contrast between the stimulus and the background
was great and almost unaffected by ambient light. However,
in the AR-SSVEP experiment, the stimulus was displayed
by AR glass, the background of the stimulus was the real
external environment, and the contrast between stimulus and
background would be affected by the brightness of the exter-
nal environment. During the experiment, as the light inten-
sity grew, the total brightness of the background increased.
Because the brightness of the stimulus remained constant,
it greatly reduced the contrast between the stimulus and the
background. Finally, the average response amplitude of the
SSVEP was weakened.

The brightness of the flickering stimulus was another key
factor, and it referred to the brightness provided by the optical
system to the virtual image. A brighter flickering stimulus
resulted in a significantly stronger SSVEP response [43].

Sufficient brightness can ensure the stimulus to own a good
contrast, when there is a significant brightness difference
between the stimulus and the background, the Mach effect will
occur [44], which causes people to perceive the boundary of
the stimulus brighter. However, the maximum brightness of the
HoloLens1 AR glass used in this experiment was only 320 nits.
According to the contrast calculation method described in [45],
the obtained contrast of the stimulus were 3.76:1 and 3.07:1
at the light intensities of 900 lux and 1200 lux, while they did
not reach the 5:1 ratio required for image readability specified
in the paper [46].

The color of the stimulus also affected the contrast.
On traditional CS-SSVEP, the contrast of the stimulus was
hardly affected by ambient brightness, researchers were simply
required to consider the signal quality and not the contrast
when choosing colors. Related studies have shown that the
red color could produce better SSVEP in the low-frequency
band [47]. In the experiment, high-saturation (purity) red was
used, this color was very bright and could create a striking
contrast with its surroundings under lower light intensities.
However, the individuals could view the outside environment
while gazing at the stimulus since AR glass was used as
the stimulus presentation device. Due to the possibility of
ambient light directly passing through the virtual stimulus,
the red saturation maybe decreased and the stimulus became
blurry. It was known that cone cells were used primarily by the
human visual system to collect external information in bright
environments [48], and they were more sensitive to color.
Thus, the visual signal produced by the stimulus on the retina
could be weakened by a stimulus with insignificant colors,
which lowered the quality of the SSVEP signal. In addition,
the survey results of the subjects’ subjective feelings also
showed that the contrast between the red stimulus and the
environment gradually decreased with the increase of the light
intensity.

Lower contrast may affect the allocation of attentional
resources when subjects perform the experimental task. The
amplitude of SSVEP increased with the amount of attention
resources devoted to the target stimulus [49], [50]. It had been
confirmed that the accuracy under the condition of concentrat-
ing attention was higher than that of distracting attention [51].
As the light intensity increased, the contrast of the stimulus
displayed by the AR glass was continuously reduced, making
it difficult for individuals to devote more attention resources
to the target stimulus. Therefore, the response of SSVEP was
weakened and the recognition accuracy was reduced.

B. The Effect of Stimulus Layout on Performance
In Figure 13, it could be seen that the recognition accuracies

of target 1 and 7 were significantly reduced, while the other
targets were less affected, and this phenomenon might be
related to the stimulus layout on the AR glass and the structure
of the human eyes. On the one hand, it was reported that the
brightness of the top left and top right areas were lower than
the other areas when virtual objects displayed in Hololens1
AR glass. It made the brightness of targets 1 and 7 lower
than the other targets, thus the subject’s sight was easily
attracted by the stimulus located at the center under strong
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light intensity. As shown in Figure 13, target 1 and 7 were
frequently misclassified as target 2, 4 and 5.

On the other hand, the visual cells in the human eyes were
not uniformly distributed on the retina, and the macula located
in the center of the retina contained more visual cells and
had stronger ability to receive external visual stimuli. As a
result, objects located in the center of the visual field could be
seen more clearly by the human eyes [52]. In this experiment,
as the brightness of the subject’s visual field increased, the
subject’s pupil would gradually shrank to reduce the amount
of light entering the eyes [53], and the macula would primarily
be responsible for capturing visual information. However, the
location of target 1 and target 7 were not in the center of
the visual field, and the subjects were unable to change the
projection position of the stimulus in the retina by moving
their heads, which made the subjects have trouble focusing
on the target stimulus clearly. Additionally, human eyes had
a viewing angle of around 50◦ upwards and 70◦ downwards
[54], making it more natural and comfortable for people to
view the object below than the object above. This explained
why there was little variation in the recognition accuracy of
targets 3 and 9.

In addition, electrophysiological studies have shown that
distinct EEG patterns emerge when the spatial position infor-
mation of flickering stimuli in the visual field is mapped
from retina to the visual cortex, it has been proved that
such retinal mapping phenomenon can be used to design
spatially-coded SSVEP-BCIs, and higher recognition accuracy
has been achieved by classifying the distinct topographies of
the spatially-coded SSVEP responses [55], [56]. We only used
frequency information in the AR-SSVEP recognition in this
work. It is speculated that the recognition accuracy of the
targets at the corners can be improved if adding the spatial
distribution information of elicited VEPs.

C. The Iterative Learning Process of eOACCA
According to the classification results shown in

Section III-A, the eOACCA proposed in this work
outperformed OACCA and FBCCA in terms of accuracy,
especially for the data obtained in high-light conditions.
The main idea of eOACCA was to use the data collected
under favorable conditions to improve and optimize the data
collected under unfavorable situations. Such scheme could
be used not only for OACCA but also for other algorithms
to improve the recognition performance of SSVEP collected
in a variable environment. In the future online AR-BCI
application, it is only necessary to add an additional light
sensor to obtain the information of the external light intensity
in real-time, then the iterative learning idea of the eOACCA
algorithm can be applied to learn the filter parameters under
low light intensity and optimize the filter parameters under
strong light intensity in real-time.

In eOACCA, the first target optimization strategy similar as
OACCA was used, but the starting point selection method for
optimization was different. eOACCA fixedly selected target
5 under neighboring light intensities as the starting point
for optimizing target light intensities, while OACCA started
with random targets. For CS-SSVEP, there was not much

difference in the recognition accuracy of different targets,
therefore employing a random target as a starting point is not
problematic. However, Figure 9 illustrated that the location
of the target has a substantial impact on the recognition
performance of AR-SSVEP, thus it is necessary to fix the
starting point. In thecurrent study, target 5 was selected as
the starting point because it achieved the highest recognition
accuracy out of all 9 targets.

In addition, we performed data integration by superimposing
filter parameters obtained from data under several lighting
conditions, which was inspired by eTRCA [21], and then used
them to calculate a new filter. Ideally, filters of different targets
should be similar to each other, because the mixing coefficients
from SSVEP source signals to scalp recordings could be
considered similar within the used frequency range [57], [58].
Therefore, it was possible to integrate filters learned from
other conditions to optimize the target condition. In eOACCA,
the filter parameters under high light intensity were iteratively
learned from the data under low light intensity, since the calcu-
lated target filter had been calibrated many times by data from
favorable conditions, it could extract the characteristics of the
target data more accurately. The classification results shown
in Figure 12 proved that such filter ensemble mechanism was
effective.

D. Potential Approaches to Improve the AR-BCI
Performance in Strong Light Environments

An important obstacle for AR-BCI to go out of the labora-
tory is the inaccurate recognition of AR-SSVEP in the outdoor
strong light environment. Since the brightness provided by AR
glass is very weak compared with strong outdoor light, it may
not be able to see the information displayed on the AR glass
clearly under strong light, resulting in a failure to induce a
strong SSVEP response. The human eye is more sensitive to
images with high contrast. For the problem of reduced contrast
between the flickering stimulus and the background caused by
the increase in ambient brightness, we may be able to solve it
by reducing the saturation of the virtual objects displayed on
AR glass, for example, changing the color of the stimulus to
black after the ambient brightness become strong. In addition,
Xu et al.’s work inspired us that using the aVEPs evoked by
lateral visual stimuli is a possible way to solve the problem of
decreased recognition accuracy of AR-SSVEP in strong light
environment [59].

According to the characteristics of AR-SSVEP, developing
highly robust recognition algorithms is another important
future research direction. The iterative learning optimization
strategy proposed in this paper is just an attempt and provide
ideas for subsequent improvements. The recognition algo-
rithms of SSVEP mainly rely on CCA, which completes
the recognition by calculating the correlation between the
original data and the reference signal. Within this framework,
using effective signal processing tools, such as empirical
mode decomposition [60], empirical wavelet transform [61],
variational mode decomposition [62], independent component
analysis, et al., to preprocess the raw signals firstly, removing
artifacts as much as possible, then applying CCA for recogni-
tion based on the SSVEP components that were extracted after
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preprocessing, may help to improve the recognition accuracy
of AR-SSVEP. Using the learned spatial filters to precisely
extract SSVEP components from EEG is another option to
increase the accuracy of SSVEP recognition, such as [34],
[63]. Thus, designing more effective spatial filters is another
potential way to improve the AR-SSVEP recognition accuracy
under strong light.

In addition, the negative impact of strong light on
AR-SSVEP can be improved by adding some physical protec-
tion. For instance, a photochromic glasses lens can be installed
on the outside of the lens of AR glass, which can automatically
reduce the light transmittance under strong external light,
and increase the light transmittance when the light intensity
drops. In this way, the light entering the human eyes can
be reduced in a strong light environment, and the response
strength of AR-SSVEP can be improved, and at the same time,
the human eye’s perception of the external environment will
not be affected in a low light environment.

V. CONCLUSION

The development of BCI technology has reached the critical
stage of going out of the laboratory. AR technology can
provide a huge impetus for the application of BCI, but it
still faces some problems when combing with BCI. Current
work analyzed the recognition performance variations of the
AR-SSVEP under different light intensities. The findings
demonstrated that when light intensity increases, the response
intensity of AR-SSVEP gradually decreases, and the recog-
nition accuracy exhibits a similar declining trend, too. In the
experiment, the selection of lighting conditions could cover the
illumination conditions of most scenes, thus the results have
guiding significance for the application of AR-BCI in actual
scenes. We further proposed an iterative learning optimization
strategy to improve the performance of AR-SSVEP under
strong light. Experimental results showed that the proposed
eOACCA outperforms FBCCA and OACCA, indicating that
our proposed optimization strategy was feasible.

To the best of our knowledge, this is the first study dis-
cussing the light intensity effect on AR-BCI. Our work pro-
vides theoretical guidance and technical support for AR-BCI
to go out of the laboratory by studying the phenomenon and
causes of AR-BCI performance variations under various light
intensities, and proposing an improved recognition algorithm.
The optimization strategy proposed in this paper is also valu-
able for the improvement of SSVEP recognition algorithms
under other unstable situations.

REFERENCES

[1] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and
T. Vaughan, “Brain–computer interfaces for communication and con-
trol,” Clin. Neurophys., vol. 113, no. 6, pp. 767–791, 2002.

[2] D. Yao et al., “Correction to: Bacomics: A comprehensive cross area
originating in the studies of various brain–apparatus conversations,”
Cognit. Neurodyn., vol. 14, pp. 425–442, Aug. 2022.

[3] R. B. Silberstein, “Steady state visually evoked potential, brain reso-
nances and cognitive processes,” Int. J. Psychophysiol., vol. 35, no. 1,
p. 5, Feb. 2000.

[4] G. Zhang et al., “Computational exploration of dynamic mechanisms
of steady state visual evoked potentials at the whole brain level,”
NeuroImage, vol. 237, Aug. 2021, Art. no. 118166.

[5] S. Gao, Y. Wang, X. Gao, and B. Hong, “Visual and auditory
brain–computer interfaces,” IEEE Trans. Biomed. Eng., vol. 61, no. 5,
pp. 1436–1447, May 2014.

[6] Y. Zhang et al., “Hierarchical feature fusion framework for frequency
recognition in SSVEP-based BCIs,” Neural Netw., vol. 119, pp. 1–9,
Nov. 2019.

[7] Y. Zhang, P. Xu, T. Liu, J. Hu, R. Zhang, and D. Yao, “Multiple fre-
quencies sequential coding for SSVEP-based brain-computer interface,”
PLoS ONE, vol. 7, no. 3, Mar. 2012, Art. no. e29519.

[8] Y. Wang, K. Li, X. Zhang, J. Wang, and R. Wei, “Research on the
application of augmented reality in SSVEP-BCI,” in Proc. 6th Int. Conf.
Comput. Artif. Intell., Apr. 2020, pp. 505–509.

[9] R. Furlan, “The future of augmented reality: Hololens–Microsoft’s AR
headset shines despite rough edges,” IEEE Spectr., vol. 53, no. 6, p. 21,
Jun. 2016.

[10] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput.
Graph. Appl., vol. 21, no. 6, pp. 34–47, Nov. 2001.

[11] T. P. Caudell and D. W. Mizell, “Augmented reality: An appli-
cation of heads-up display technology to manual manufacturing
processes,” in Proc. 25th Hawaii Int. Conf. Syst. Sci., 1992,
pp. 1–4.

[12] M. Xu, F. He, T.-P. Jung, X. Gu, and D. Ming, “Current chal-
lenges for the practical application of electroencephalography-based
brain–computer interfaces,” Engineering, vol. 7, no. 12, pp. 1710–1712,
Dec. 2021.

[13] H. Si-Mohammed et al., “Towards BCI-based interfaces for augmented
reality: Feasibility, design and evaluation,” IEEE Trans. Vis. Comput.
Graph., vol. 26, no. 3, pp. 1608–1621, Mar. 2020.

[14] Y. Ke, P. Liu, X. An, X. Song, and D. Ming, “An online SSVEP-BCI
system in an optical see-through augmented reality environment,”
J. Neural Eng., vol. 17, no. 1, Feb. 2020, Art. no. 016066.

[15] X. Zhao, C. Liu, Z. Xu, L. Zhang, and R. Zhang, “SSVEP
stimulus layout effect on accuracy of brain-computer interfaces in
augmented reality glasses,” IEEE Access, vol. 8, pp. 5990–5998,
2020.

[16] R. Zhang et al., “The effect of stimulus number on the recognition
accuracy and information transfer rate of SSVEP–BCI in augmented
reality,” J. Neural Eng., vol. 19, no. 3, Jun. 2022, Art. no. 036010.

[17] A. Ravi, J. Lu, S. Pearce, and N. Jiang, “Enhanced system robustness
of asynchronous BCI in augmented reality using steady-state motion
visual evoked potential,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30,
pp. 85–95, 2022.

[18] D. Zhang et al., “Machine-vision fused brain machine interface based on
dynamic augmented reality visual stimulation,” J. Neural Eng., vol. 18,
no. 5, Oct. 2021, Art. no. 056061.

[19] Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based
on canonical correlation analysis for SSVEP-based BCIs,” IEEE Trans.
Biomed. Eng., vol. 53, no. 12, pp. 2610–2614, Dec. 2006.

[20] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter bank canon-
ical correlation analysis for implementing a high-speed SSVEP-based
brain–computer interface,” J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046008.

[21] M. Nakanishi, Y. Wang, X. Chen, Y. Wang, X. Gao, and T.-P. Jung,
“Enhancing detection of SSVEPs for a high-speed brain speller using
task-related component analysis,” IEEE Trans. Biomed. Eng., vol. 65,
no. 1, pp. 104–112, Jan. 2018.

[22] C. M. Wong et al., “Online adaptation boosts SSVEP-based BCI
performance,” IEEE Trans. Biomed. Eng., vol. 69, no. 6, pp. 2018–2028,
Jun. 2022.

[23] Y. Chen, C. Yang, X. Chen, Y. Wang, and X. Gao, “A novel training-
free recognition method for SSVEP-based BCIs using dynamic window
strategy,” J. Neural Eng., vol. 18, no. 3, Mar. 2021, Art. no. 036007.

[24] I. Volosyak, “SSVEP-based Bremen–BCI interface—Boosting infor-
mation transfer rates,” J. Neural Eng., vol. 8, no. 3, Jun. 2011,
Art. no. 036020.

[25] P. Yuan, X. Chen, Y. Wang, X. Gao, and S. Gao, “Enhancing per-
formances of SSVEP-based brain–computer interfaces via exploiting
inter-subject information,” J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046006.

[26] B. Lee et al., “Key issues and technologies for AR/VR head-mounted
displays,” Proc. SPIE, Adv. Display Technol. X, vol. 11304, p. 1130402,
2020.

[27] E. H. Land, “Retinex theory of color-vision,” Sci. Amer., vol. 237, no. 6,
p. 108, 1977.



1806 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[28] B. C. Kress and W. J. Cummings, “Invited paper: Towards the ulti-
mate mixed reality experience: Hololens display architecture choices,”
in Proc. SID Symp. Dig. Tech. Papers, May 2017, vol. 48, no. 1,
pp. 127–131.

[29] N. V. Manyakov, N. Chumerin, A. Robben, A. Combaz, M. van Vliet,
and M. M. Van Hulle, “Sampled sinusoidal stimulation profile and
multichannel fuzzy logic classification for monitor-based phase-coded
SSVEP brain–computer interfacing,” J. Neural Eng., vol. 10, no. 3,
Jun. 2013, Art. no. 036011.

[30] X. Chen, Z. Chen, S. Gao, and X. Gao, “A high-ITR SSVEP-based
BCI speller,” Brain-Comput. Interfaces, vol. 1, nos. 3–4, pp. 181–191,
Mar. 2014.

[31] S. Mehrotra, S. Basukala, and S. Devarakonda, “Effective lighting design
standards impacting patient care: A systems approach,” J. Biosci. Med.,
vol. 3, no. 11, pp. 54–61, 2015.

[32] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, “EEG-
based communication: Improved accuracy by response verification,”
IEEE Trans. Rehabil. Eng., vol. 6, no. 3, pp. 326–333, Sep. 1998.

[33] K. F. Lao, C. M. Wong, Z. Wang, and F. Wan, “Learning prototype spa-
tial filters for subject-independent SSVEP-based brain–computer inter-
face,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2018,
pp. 485–490.

[34] C. M. Wong et al., “Learning across multi-stimulus enhances target
recognition methods in SSVEP-based BCIs,” J. Neural Eng., vol. 17,
no. 1, Jan. 2020, Art. no. 016026.

[35] K. Holmqvist et al., “Eye tracking: Empirical foundations for a minimal
reporting guideline,” Behav. Res. Methods, vol. 55, no. 1, pp. 364–416,
Apr. 2022.

[36] W. Fuhl, M. Tonsen, A. Bulling, and E. Kasneci, “Pupil detection for
head-mounted eye tracking in the wild: An evaluation of the state of the
art,” Mach. Vis. Appl., vol. 27, no. 8, pp. 1275–1288, Nov. 2016.

[37] I. T. C. Hooge, D. C. Niehorster, R. S. Hessels, D. Cleveland, and
M. Nyström, “The pupil-size artefact (PSA) across time, viewing direc-
tion, and different eye trackers,” Behav. Res. Methods, vol. 53, no. 5,
pp. 1986–2006, Oct. 2021.

[38] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” J. Physiol.,
vol. 160, pp. 106–154, 1962.

[39] F. W. Campbell and L. Maffei, “Electrophysiological evidence for the
existence of orientation and size detectors in the human visual system,”
J. Physiol., vol. 207, no. 3, pp. 635–652, May 1970.

[40] F. W. Campbell and J. J. Kulikowski, “The visual evoked potential as
a function of contrast of a grating pattern,” J. Physiol., vol. 222, no. 2,
pp. 345–356, 1972.

[41] E. Yin, Z. Zhou, J. Jiang, F. Chen, Y. Liu, and D. Hu, “A speedy
hybrid BCI spelling approach combining P300 and SSVEP,” IEEE Trans.
Biomed. Eng., vol. 61, no. 2, pp. 473–483, Feb. 2014.

[42] M. Xu, J. Han, Y. Wang, T.-P. Jung, and D. Ming, “Implementing over
100 command codes for a high-speed hybrid brain–computer interface
using concurrent P300 and SSVEP features,” IEEE Trans. Biomed. Eng.,
vol. 67, no. 11, pp. 3073–3082, Nov. 2020.

[43] A. Duszyk et al., “Towards an optimization of stimulus parameters
for brain–computer interfaces based on steady state visual evoked
potentials,” PLoS ONE, vol. 9, no. 11, Nov. 2014, Art. no. e112099.

[44] L. Pessoa, “Mach bands: How many models are possible? Recent
experimental findings and modeling attempts,” Vis. Res., vol. 36, no. 19,
pp. 3205–3227, Oct. 1996.

[45] Y.-H. Lee, T. Zhan, and S.-T. Wu, “Prospects and challenges in aug-
mented reality displays,” Virtual Reality Intell. Hardware, vol. 1, no. 1,
pp. 10–20, Feb. 2019.

[46] H. Chen, G. Tan, and S.-T. Wu, “Ambient contrast ratio of LCDs and
OLED displays,” Opt. Exp., vol. 25, no. 26, p. 33643, 2017.

[47] D. Regan, “An effect of stimulus colour on average steady-state poten-
tials evoked in man,” Nature, vol. 210, no. 5040, pp. 1056–1057,
Jun. 1966.

[48] R. Ward et al., “Non-photopic and photopic visual cycles differen-
tially regulate immediate, early, and late phases of cone photoreceptor-
mediated vision,” J. Biol. Chem., vol. 295, no. 19, pp. 6482–6497,
May 2020.

[49] Y. Joon Kim, M. Grabowecky, K. A. Paller, K. Muthu, and S. Suzuki,
“Attention induces synchronization-based response gain in steady-state
visual evoked potentials,” Nature Neurosci., vol. 10, no. 1, pp. 117–125,
Jan. 2007.

[50] S. T. Morgan, J. C. Hansen, and S. A. Hillyard, “Selective attention
to stimulus location modulates the steady-state visual evoked poten-
tial,” Proc. Nat. Acad. Sci. USA, vol. 93, no. 10, pp. 4770–4774,
1996.

[51] P. Toffanin, R. de Jong, A. Johnson, and S. Martens, “Using frequency
tagging to quantify attentional deployment in a visual divided attention
task,” Int. J. Psychophysiol., vol. 72, no. 3, pp. 289–298, Jun. 2009.

[52] D. A. Tipton, “A review of vision physiology,” Aviation, Space, Environ.
Med., vol. 55, no. 2, pp. 145–149, 1984.

[53] Y. Suzuki, T. Minami, and S. Nakauchi, “Pupil constriction in the
glare illusion modulates the steady-state visual evoked potentials,”
Neuroscience, vol. 416, pp. 221–228, Sep. 2019.

[54] W. Brian et al., “Field of view: Not just a number,” Digit. Opt. Immersive
Displays, vol. 10676, Jan. 2018, Art. no. 1067604.

[55] A. Maye, D. Zhang, and A. K. Engel, “Utilizing retinotopic mapping
for a multi-target SSVEP BCI with a single flicker frequency,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 7, pp. 1026–1036,
Jul. 2017.

[56] J. Chen, A. Maye, A. K. Engel, Y. Wang, X. Gao, and D. Zhang,
“Simultaneous decoding of eccentricity and direction information for
a single-flicker SSVEP BCI,” Electronics, vol. 8, no. 12, p. 1554,
Dec. 2019.

[57] J. M. Ales and A. M. Norcia, “Assessing direction-specific adaptation
using the steady-state visual evoked potential: Results from EEG source
imaging,” J. Vis., vol. 9, no. 7, pp. 1–8, Jul. 2009.

[58] R. Srinivasan, F. A. Bibi, and P. L. Nunez, “Steady-state visual evoked
potentials: Distributed local sources and wave-like dynamics are sensi-
tive to flicker frequency,” Brain Topogr., vol. 18, no. 3, pp. 167–187,
Spring 2006.

[59] M. Xu, X. Xiao, Y. Wang, H. Qi, T.-P. Jung, and D. Ming,
“A brain–computer interface based on miniature-event-related potentials
induced by very small lateral visual stimuli,” IEEE Trans. Biomed. Eng.,
vol. 65, no. 5, pp. 1166–1175, May 2018.

[60] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis,” Proc.
Roy. Soc. London, A, Math., Phys. Eng. Sci., vol. 454, no. 1971,
pp. 903–995, 1998.

[61] J. Gilles, “Empirical wavelet transform,” IEEE Trans. Signal Process.,
vol. 61, no. 16, pp. 3999–4010, May 2013.

[62] L. Chang, R. Wang, and Y. Zhang, “Decoding SSVEP patterns from EEG
via multivariate variational mode decomposition-informed canonical cor-
relation analysis,” Biomed. Signal Process. Control, vol. 71, Jan. 2022,
Art. no. 103209.

[63] B. Liu, X. Chen, N. Shi, Y. Wang, S. Gao, and X. Gao, “Improving the
performance of individually calibrated SSVEP-BCI by task-discriminant
component analysis,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29,
pp. 1998–2007, 2021.


