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Mapping Individual Motor Unit Activity to
Continuous Three-DoF Wrist Torques:
Perspectives for Myoelectric Control

Chen Chen , Yang Yu , Xinjun Sheng , Member, IEEE, Jianjun Meng , and Xiangyang Zhu

Abstract— The surface electromyography (EMG) decom-
position techniques provide access to motor neuron activi-
ties and have been applied to myoelectric control schemes.
However, the current decomposition-based myoelectric
control mainly focuses on discrete gestures or single-DoF
continuous movements. In this study, we aimed to map
the motor unit discharges, which were identified from
high-density surface EMG, to the three degrees of free-
dom (DoFs) wrist movements. The 3-DoF wrist torques and
high-density surface EMG signals were recorded concur-
rently from eight non-disabled subjects. The experimental
protocol included single-DoF movements and their vari-
ous combinations. We decoded the motor unit discharges
from the EMG signals using a segment-wise decomposition
algorithm. Then the neural features were extracted from
motor unit discharges and projected to wrist torques with
a multiple linear regression model. We compared the per-
formance of two neural features (twitch model and spike
counting) and two training schemes (single-DoF and multi-
DoF training). On average, 145 ± 33 motor units were
identified from each subject, with a pulse-to-noise ratio of
30.8 ± 4.2 dB. Both neural features exhibited high estima-
tion accuracy of 3-DoF wrist torques, with an average R2

of 0.76 ± 0.12 and normalized root mean square error of
11.4 ± 3.1%. These results demonstrated the efficiency of
the proposed method in continuous estimation of 3-DoF
wrist torques, which has the potential to advance dexterous
myoelectric control based on neural information.

Index Terms— Continuous myoelectric control, elec-
tromyography decomposition, motor unit discharge, linear
regression, wrist torque.
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I. INTRODUCTION

MYOELECTRIC control techniques have found wide
applications in human-machine interfaces such as pros-

thetics, exoskeletons, and gaming [1], [2], [3], [4]. The
bio-signal used in these systems, electromyography (EMG),
contains rich information about muscle contraction and
thereby could be used to decode the human motion intention.
Among current myoelectric control schemes, state-machine
and pattern recognition are the two most representative and
popular methods. The state-machine was first proposed, real-
izing a few motions’ simple control [5]. Pattern recognition has
been applied to myoelectric control since the 1980s [6]. From
then on, various classification models have been investigated to
improve the control performance [7], [8], which could discrim-
inate tens of motions or gestures with high accuracy (>95%).
However, these two control schemes could only identify the
discrete motions. Currently, one of the most challenging issues
is how to decode the continuous kinematics/kinetics of human
movements.

The common strategies for continuous control are based
on regression models such as linear regression, Gaussian
mixtures, and neural networks [2], [9], [10], [11]. The EMG
features, in the time or frequency domain, are usually extracted
and projected to the continuous force/angle of multiple degrees
of freedom (DoFs) using these regression models [12], [13].
In regression-based continuous control schemes, the EMG
signals are usually regarded as stochastic signals, where the
movement kinematics/kinetics are reflected by the statistical
properties. Therefore, it is difficult to interpret the neural
drive transferred into the muscles. Another continuous control
scheme is the simultaneous and proportional control (SPC),
which is proposed based on muscle synergy [14], [15]. The
SPC scheme takes muscle coordination into consideration
during human movements. Based on the non-negative matrix
factorization (NMF), the muscle synergies are extracted from
several EMG channels, allowing for the observation of acti-
vation patterns and their activation intensities across multiple
muscles. Nevertheless, the implementation of NMF is based
on the EMG features, which could merely reflect the partial
neural drive [16], [17].

Although SPC-related studies have gained tremendous
momentum in the past decade, achieving natural and
intuitive EMG-based control is still challenging. The EMG
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decomposition techniques provide another possible solution.
Using the EMG decomposition, the motor unit action
potential train (MUAPT) could be identified [18], directly
representing the motor neuron discharges derived from the
spinal cord. After verifying the decomposition algorithm
itself [19], [20], [21], the MUAPT-based control schemes
have been rapidly applied to the continuous estimation of
movement kinematics, such as the angle and force/torque
of fingers, wrists, and knees [22], [23], [24], [25]. On the
one hand, the discharge properties of motor units could be
projected to the activation level of each DoF linearly [22],
[26]. The discharge rate of motor units has been demonstrated
to be highly correlated with kinematics/kinetics [27]. On the
other hand, the neural drive can be estimated from MUAPTs
and sent into a neuromuscular-skeletal model [25], [28].
The EMG decomposition techniques contribute to a better
understanding of the control mechanism underlying human
movements. Furthermore, the derived MUAPT-based control
scheme has shown promising results in intuitive and dexterous
myoelectric control.

However, the current MUAPT-based control schemes still
have several limitations. The previous studies mainly investi-
gated the feasibility of the MUAPT-based continuous control
during single-DoF or two-DoF tasks [22], [29], [30]. In addi-
tion, compared with the conventional continuous control, the
experimental protocol in MUAPT-based control is compara-
tively simple, which cannot satisfy the practical application.
To overcome these limitations, this study aimed to map the
motor unit discharges, identified from high-density surface
EMG signals, to the multi-DoF and continuous wrist torques.
A segment-wise algorithm [31], which is suitable for decom-
posing EMG signals of multi-DoF tasks, was used to decode
the MUAPTs. Then we proposed a continuous multi-DoF
estimation method and validated its performance in individual
DoFs’ movements and their various combinations. The esti-
mation performance of two training methods and two neural
features were tested with a multiple linear regression model.

II. METHODS

A. Subjects
Eight healthy subjects with no neurological or psychiatric

disorders (5 males and 3 females, aged 25 ± 3 years, all right-
handed) participated in the experiment. All participants signed
informed consent prior to participation. The experimental
protocol as well as the informed consent were approved by
the local ethics committee of Shanghai Jiao Tong University
(approval number B2020026I) and followed the Declaration
of Helsinki.

B. Experimental Setup
In the experiment, the subjects performed the isometric

contractions of the wrist without joint movements. The torques
and EMG signals were recorded concurrently. We used an
external trigger channel to synchronize the two signals and
designed a graphical user interface (GUI) to provide the
real-time display of the torque signals for subjects (Fig. 1).

Fig. 1. Experimental setup. (a) The graphical user interface to provide
visual feedback for the subject. (b) The multi-channel amplifier used
for EMG recording. (c) The customized transducers for wrist torque
recording. (d) The recording areas of high-density EMG signals with
three electrode grids.

1) Torque Signals: We customized a force transducer plat-
form to record the 3-DoF torques of the wrist (Fig. 1c).
The involved movements included pronation (Pro), Supination
(Sup), wrist flexion (Fle), wrist extension (Ext), Ulnar devi-
ation (Uln), and Radius deviation (Rad). The torque signals
were amplified by a data acquisition board (PXIe-6363, NI,
USA) with a sampling rate of 1000 Hz.

The wrist torque curves were displayed to the subject in real
time and indicated by the cursor’s position in a GUI, as shown
in Fig. 1c. The clockwise and counterclockwise rotation of the
arrow represented Pro and Sup (DoF1). The left-right and up-
down movements of the arrow represented the activation of
Fle-Ext (DoF2) and Rad-Uln (DoF3), respectively.

2) EMG Signals: High-density surface EMG signals were
recorded from the forearm muscles with three electrode grids
(ELSCH064NM3, OT Bioelettronica, Italy). Each grid con-
tained 64 channels (8 × 8) with a 10 mm inter-electrode
distance in two directions. The electrode grids were mounted
around the proximal third of the forearm (Fig. 1d), covering
most wrist-related muscles. The EMG signals were acquired
and amplified by a multi-channel amplifier (EMG-USB2+,
OT Bioelettronica, Italy). The gain was set as 500 with a
sampling rate of 2048 Hz.

C. Experimental Protocol

Before the experiment, the subjects had enough time to
familiarize themselves with the experimental protocol and the
GUI. The maximum contraction torque of each DoF was
measured and used to normalize the activation space of the
cursor. During the experiment, the subject sat in a chair with
his/her forearm placed into the torque measurement device
and supported by an armrest. The forearm and palm were
secured in the device to ensure the isometric contraction of
wrist movements.

The subjects were required to perform wrist motor tasks
involving 1-3 DoFs. The experimental protocol included 7 ses-
sions, as described in Tab. I. In each session, we designed
different tasks to imitate various circumstances in realistic
motions as much as possible. Sessions 1-3, 4-6, and 7 covered
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TABLE I
DESCRIPTION OF MOTOR TASKS IN THE EXPERIMENT

the 1-3 DoF wrist tasks, respectively. In each task, the sub-
ject performs the corresponding movements cyclically, with
a frequency of about 0.5 Hz. The contraction intensity of
each movement was medium, which is not strictly requested.
For each task, the subject performed two repeated trials.
Sometimes one more trial was required depending on the
completeness of the task, while always two trials were used
for the following analysis. Each trial lasted for 20 seconds.
Rest periods of 1–2 minutes between sessions were allowed
to avoid muscle fatigue. The duration of the experiment was
about 1 hour for each subject.

D. Data Analysis
The flow chart of data analysis is shown in Fig. 2. After

preprocessing, we decomposed the EMG signals from 1-DoF
tasks into MUAPTs using a segment-wise decomposition
method [31]. The obtained separation matrix was used to
decompose the multi-DoF EMG signals in a pseudo-online
manner. The neural features were extracted and projected to
the torques using a linear regression model.

1) Preprocessing: The torque signals were first up-sampled
to 2048 Hz by interpolation to match the frequency of EMG
signals, and then low-pass filtered by 20 Hz to remove the
baseline noise. For the EMG signals, we used a 4th-order

Fig. 2. The flow chart of data analysis. The EMG signals from
1-DoF tasks were first decomposed offline to obtain the separation
matrix. Then we decomposed the EMG signals of multi-DoF tasks in a
pseudo-online manner. Two features, twitch force and spike count, were
extracted from the training data and projected to the wrist torques using
multiple linear regression. The regression model was validated on the
testing data.

Butterworth filter with a bandpass frequency of 20-500 Hz
and a comb filter with a cutoff frequency of 50 Hz. Several
EMG channels (usually < 5) with excessive noise, where the
root mean square value of EMG signals was higher than three
times the average, were removed. The excessive noise might
be caused by poor contact between electrodes and skin.

2) EMG Decomposition: A segment-wise decomposition
method was used to decompose the EMG signals [31]. The
EMG signals from each DoF were regarded as a segment and
decomposed into MUAPTs individually using the convolution
kernel compensation (CKC) algorithm [32], [33]. Briefly, the
generation of EMG signals can be modeled as a multi-input-
multi-output system, where the EMG signals are described as
the convolutive mixture of a series of motor unit discharges
and their action potentials. The unknown mixture matrix
is compensated, and the spike train of each motor unit is
estimated as:

ŝ j (t) = cT
s j ȳC−1

ȳ ȳ ȳ(t) (1)

where ȳ is the extended EMG signal with an extending factor
of 10, cs j ȳ = E(ȳ(t)sT

j (t)) is the cross-correlation vector
between the j th spike train s j and the EMG signals, C ȳ ȳ =

E(ȳ(t)ȳT (t)) is the correlation matrix of the extended EMG
signals, and t indicates the sample point in the time domain.
E(·) denotes the mathematical expectation. In this study,
the cross-correlation vector (cs j ȳ) was estimated iteratively
with the natural gradient descent algorithm [33]. The cross-
correlation vectors calculated from each segment were grouped
to estimate the spike trains from the global EMG that was
obtained by cascading the EMG signals from each DoF [31].
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Fig. 3. Representative decomposition results from 1-DoF tasks of sub-
ject 4. (a) Three out of 192 channels of the high-density EMG signals.
(b) The concurrently recorded torques of three DoFs. (c) The identified
motor unit spike trains by segment-wise decomposition method. Each
point in the horizontal line indicates one discharge from the same motor
unit.

The estimation formula was the same as Eq. 1, while the ȳ was
replaced with the extended global EMG. Then the discharges
were extracted from ŝ j (t) using the K-means++ clustering.

In this study, the 1-DoF tasks were decomposed into
MUAPTs using the segment-wise method. The first-trial
EMG signals of each DoF were cascaded and decomposed,
as described above. The decomposition was applied to each
grid individually. The MUAPTs identified from each grid
were grouped after removing the duplications. Fig. 3 shows
an example of the decomposition result of 1-DoF tasks. The
separation matrix and other decomposition parameters (e.g.,
clustering centroids for spike extraction) were kept. For the
2/3-DoF tasks in the training data and all the tasks in the
testing data, we directly multiplied the preprocessed EMG
signals by the separation matrix to estimate the MUAPTs [23],
[34]. The discharges were extracted based on the obtained
clustering centroids. Due to the lack of ground truth, the
decomposition accuracy was evaluated based on a signal-based
metric, pulse-to-noise ratio (PNR) [35].

3) Feature Extraction: The MUAPT was decoded in the
form of a series of motor unit firing sequences and the
corresponding action potential waveforms. From MUAPTs,
we extracted two kinds of neural features. One is based on
a muscle force model, where the motor unit mechanically
generates a twitch force at every firing instant. The other was
extracted by simply counting the firings in a sliding window.

The twitch force of each firing was regarded as an impulse
response and modeled as in [36]. A critically damped, second-
order system can reasonably approximate the twitch force of
the i th motor unit.

fi (t) =
Pi · t

Ti
· e1−(t/Ti ) (2)

Fig. 4. Illustration of the force generated from a spike train.

where Pi is the peak amplitude of the twitch force, Ti is the
rise time (from the discharge instant) to the peak force of the
impulse response. The relationship between twitch force and
contraction time is approximated as an inverse power function
in the form as:

Ti = TL · (
1
Pi

)1/c (3)

where TL represented the longest contraction time desired for
the motor neuron pool, which was set as 90 ms in this study.
c is a constant set to 4.2.

In the twitch force model, the gain of each firing varies
as a function of the firing rate to simulate the non-linear
force behavior. The gain in the j th firing of i th motor unit
is formulated as:

gi, j =

1, Ti/I S I j <= 0.4
1−e−2(Ti /I S I j )

3

Ti /I S I j
, Ti/I S I j > 0.4

(4)

where I S I j indicates the inter-spike interval between the j th
and ( j +1)th firing. As a result, the twitch force of each firing
and the force curve of each motor unit (Fi (t)) is modeled as:

fi j (t) = gi j ·
Pi · t

Ti
· e1−(t/Ti ) (5)

Fi (t) =

m∑
j=1

fi j (t − ti j ), t − ti j ≥ 0 (6)

where ti j indicates the j th firing instant of the i th motor
unit. Fig. 4 illustrates the generation of the twitch force curve
for each motor unit. In this study, the peak amplitude of
each twitch was regarded as the same (Pi = 1), while the
contribution of each motor unit to the torques was described
by the regression coefficient in the multiple linear regression
model.

A sliding window was applied to feature extraction. For the
twitch feature, the twitch force curve in the sliding window
was first generated depending on Eq. 6, and then, averaged
across all the time instants in the sliding window. For the
spike feature, the number of firings in the sliding window
was counted for each motor unit. The effect of the window
length on the estimation performance was investigated, and
the window length of 300 ms was adopted for the following
analysis. The overlapping between two adjacent windows was
200 ms. The torque signals were also averaged in the sliding
window.

4) Regression Model: The neural features were projected to
the wrist torques using a multiple linear regression model.

yd = b0d + b1d x1 + b2d x2 + . . . + bmd xm (7)

where yd indicates the torque of the dth DoF, bid is the
regression coefficient of the i th MU for the dth DoF, m is the
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Fig. 5. Example 3-DoF estimation results from the subject 4. (a) Three representative EMG signals. (b) Representative motor unit spike trains
identified from 3-DoF tasks. Only about 1/5 spike trains are displayed for clarity. These motor units’ corresponding action potential waveforms are
given on the right. (c) The recorded and estimated wrist torques of three DoFs.

number of identified motor units. The regression coefficients
were calculated using the least-square method:

B = (X T X)−1 X T Y (8)

where Xn×m is the feature matrix of n samples, Bm×3 contains
the regression coefficients of all the identified motor units and
three DoFs, Yn×3 is the torques of three DoFs.

5) Performance Evaluation: The EMG signals recorded in
the experiment were divided into training and testing data.
Each subject performed two repetitive trials for each motor
task. The EMG and torque signals in each task’s first trial
were used to train the regression model, and signals in the
second trial were used for testing.

In the training data, the 1-DoF EMG signals (sessions
1-3) were decomposed into MUAPTs by the segment-wise
algorithm. The obtained decomposition parameters (separation
matrix and clustering centroids) were collected to decompose
the remaining 2/3-DoF EMG signals (sessions 4-7) in the
training data and all EMG signals (1/2/3-DoF, sessions 1-7)
in the testing data.

After EMG decomposition, the two neural features were
extracted from the identified MUAPTs. The features were
divided into training and testing data similar to the EMG
signals. We used two strategies to train the regression model.
The first was the single-DoF training, where only the features
extracted from 1-DoF tasks in the training data were used

to train the regression model. The second was the multi-DoF
training, where the features extracted from all the tasks (1/2/3-
DoF) in the training data were used. The testing data for the
two training strategies were the same, including 1/2/3-DoF
tasks.

To evaluate the estimation performance of wrist torques,
we extracted four metrics, which are the Pearson correlation
coefficient (R), the determination coefficient (R2), the normal-
ized root mean square error (nRMSE), and the roughness.
The metric roughness was used to evaluate the output smooth-
ness, indicating the ratio between the fluctuation level of the
estimations and recordings [11], [29]. The definitions of these
four metrics are given as follows:

R =

∑n
j=1(y j − ȳ)(ŷ j − ¯̂y)√∑n

j=1(y j − ȳ)2
√∑n

j=1(ŷ j − ¯̂y)2
(9)

R2
= 1 −

∑n
j=1(y j − ŷ j )

2∑n
j=1(y j − ȳ)2 (10)

n RM SE =

1
n

√∑n
j=1(ŷ j − y j )2

max(y j ) − min(y j )
× 100% (11)

roughness =
S(ŷ)

S(y)
, S(y) = −

1
2n

n−1∑
j=1

∣∣∣∣ y j − y j+1

Ts

∣∣∣∣ (12)



1812 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE II
SUMMARY OF DECOMPOSITION RESULTS

where y j indicates the recorded torques, ȳ is the average value
of recorded torques, ŷ j is the estimated torques, ¯̂y is the
average value of estimated torques, Ts is the sampling time
interval and set to 0.1 s in this study. The four metrics were
calculated for each trial and each DoF.

All the data analyses were implemented in MATLAB 2022a
(Matlab Inc. USA).

E. Statistic Analysis
A one-way analysis of variance (ANOVA) was applied

to evaluate the effect of training strategies, features, and
DoFs, on the three performance metrics. The homogeneity of
variance for three metrics was first tested. If satisfied, the
Bonferroni method was conducted. If not, Dunnett’s C method
was used instead. The significance level was set to 0.05. The
symbols ∗, ∗∗, and ∗∗∗ indicate the significant difference with
a level of P < 0.05, P < 0.01, and P < 0.001, respectively.

III. RESULTS

On average, 145 ± 33 motor units were identified from
each subject, with a PNR value of 30.8 ± 4.2 dB. From
three grids, the numbers of identified motor units were 51 ±

10, 56 ± 19, and 38 ± 18, respectively. Tab. II gives the
detailed decomposition results of each subject. Representative
decomposition results in training and testing session are shown
in Figs. 3c and 5b. The average time cost of the decomposition
in the sliding window was 11.9 ± 4.9 ms.

After EMG decomposition, we extracted two neural features
from MUAPTs and used two training strategies for wrist
estimation. As shown in Fig. 6, the single-DoF and multi-
DoF training strategies exhibited similar performance in the
1-DoF tasks, only showing a significant difference in nRMSE.
On the contrary, the multi-DoF training outperformed the
single-DoF training dramatically when estimating the 2/3-DoF
wrist torques. The average R2 of 3-DoF torques was 0.01 ±

0.77 and 0.75 ± 0.12 for single-DoF and multi-DoF training,
respectively. As to the two neural features, the twitch feature
presented a better performance in the wrist estimation of 1/2-
DoF tasks, with higher R/R2 and lower nRMSE. For the
3-DoF tasks, the twitch and spike feature showed no significant
difference, with R=0.88 ± 0.07/0.87 ± 0.07, R2

=0.76 ±

0.12/0.75 ± 0.12, and nRMSE=11.4 ± 3.1%/11.6 ± 3.3%,
respectively. For all the tasks, the estimation roughness of the
spike feature was higher than that of the twitch feature.

The estimation results of each DoF in different motor tasks
are depicted in Fig. 7. The estimation accuracy of DoF 2 was

Fig. 6. Estimation results using different training methods and features.
(a,c,e,g) give the comparison of estimation results between single-DoF
and multi-DoF training methods, which were averaged across two fea-
tures. The comparison of estimation results between these two features
is shown in (b,d,f,h), where the multi-DoF training method was used.

consistently higher than that of the other two DoFs, with an
average R2 >0.8 even in 3-DoF tasks. The increase in the
window length had a positive effect on the estimation accuracy
of wrist torques, as depicted in Fig. 8. The rise in the window
length increased the R2 and decreased the roughness across
all motor tasks, no matter which feature was used.

IV. DISCUSSION

We investigated the feasibility, accuracy, and potential for
multi-DoF and proportional myoelectric control by extracting
motor unit discharges from surface EMG signals. During
multi-DoF wrist tasks, it is possible to identify over 100 motor
units from each subject. The high yield decomposition allowed
for the continuous control of multi-DoF based on the motor
unit discharges.

A. EMG Decomposition
One basis supporting the 3-DoF continuous control is

the segment-wise decomposition algorithm, which could
significantly increase the number of identified motor units
from surface EMG signals. Limited neural information was
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Fig. 7. The estimation results of each DoF using the multi-DoF training
method.

extracted from MUAPTs using the classic decomposition
methods [32], [37], so it is difficult to estimate the multi-DoF
kinetics simultaneously and proportionally. Compared with
previous studies, more MUAPTs were identified during the
multi-DoF wrist movement [22], [38]. Although the increase
in the motor unit number was at the cost of the decline of
decomposition precision, the torque estimation based on the
neural features showed high accuracy during multi-DoF tasks.

Moreover, the decomposition scheme used in this study is
suitable for real-time applications. The efficiency of applying
the pre-calculated separation matrix to newly recorded EMG
signals has been demonstrated in several studies [34], [39].
After segment-wise decomposition of the 1-DoF EMG sig-
nals, we decomposed the 2/3-DoF EMG signals using the
obtained separation matrix. On the one hand, this decom-
position scheme could dramatically reduce the computation
complexity, providing the possibility of real-time applications.
The time cost of < 50 ms in the sliding window satisfied the
requirement of online decomposition and left enough time for
the feature extraction and regression [40]. On the other hand,
the motor units could be tracked across tasks depending on the
separation vectors [23], [30]. The motor units activated during
1-DoF tasks could also be identified during multi-DoF tasks.

Fig. 8. The effect of the window length on the R2 (a) and roughness
(b). The sliding length was set to 100 ms. The multi-DoF training method
was used here. The error bar indicates the standard deviation.

B. Torque Estimation
After EMG decomposition, we extracted two neural features

from the identified MUAPTs. Both the twitch and spike
features indicate the instantaneous activation intensity of each
motor unit, which are highly correlated with the continuous
kinematics/kinetics. In addition, the 3-DoF wrist movements
are related to different muscles innervated by different motor
neuron pools. The activation pattern of motor units also
contains information about the types of wrist movements.
Therefore, the neural features could be applied to the con-
tinuous multi-DoF estimation of wrist torques.

Compared with spike counting, the twitch model better
interprets the force generation at the motor unit level. The
relationship between the motor unit discharge rates and muscle
force may not be linear [41]. With consideration of indi-
vidual discharges’ contribution to the force formation, the
force estimation precision could be improved [42]. In the
1/2-DoF tasks, the estimation accuracy by the twitch feature
was higher than that by spike, demonstrating the advantage
of the twitch model in torque estimation. In addition, the
twitch feature could achieve smoother output than the spike
feature. The advantage of the spike feature lies in its low
computation complexity. Moreover, the spike feature presented
a comparative performance in torque estimation, especially in
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the 3-DoF tasks. Both two features satisfied the requirements
in real-time applications (a time delay of < 300 ms) using the
current configuration of the sliding window [40]. The sliding
length of the window could be changed to adjust the output
frequency for different application sceneries.

The increase in the window length could improve the
estimation accuracy and output smoothness, especially when
using the spike feature. The neural feature became relatively
stationary with a longer window, which might be the reason
for accuracy improvement. Also, the improvement of the
spike feature was more prominent since the twitch model has
already implemented an additional filter process for the spikes.
It should be noted that the non-oscillatory DoFs had much
greater errors. During the real-time control, additional post-
processing methods, such as an exponential moving average
filter [30], could be used to reduce the error caused by the
estimation fluctuation.

We have tested two training schemes on the regression
model. The single-DoF training scheme requires much less
training data and has the potential to reduce the users’
training burden. In the previous studies, the single-DoF
training scheme has been used to estimate the 2-DoF wrist
torques based on MUAPTs [29], [30], showing superior
performance to time-domain EMG features. However, the
estimation accuracy with the single-DoF training scheme
decreased rapidly with the increase in the DoF number. The
results demonstrated that the single-DoF training scheme was
not a good choice when estimating the 3-DoF wrist torques
based on the neural features.

C. Comparison With Previous Studies
To the best of our knowledge, for the first time, the

simultaneous and continuous estimation of 3-DoF kinetics was
realized based on the MUAPTs identified from surface EMG
signals. In the previous work, we projected the extracted neural
drive to 2-DoF kinematics/kinetics by assigning individual
motor units to each movement [29], [30]. The torques of each
wrist motion were estimated only based on these exclusive
motor units, which are only activated during one motion.
However, it is difficult to identify the exclusive motor unit
with an increased number of involved motions. Therefore,
we applied a multiple linear regression model to torque
estimation. By training the regression model with all motor
units, the contribution of each motor unit to the torques was
evaluated as the regression coefficients. The proposed method
could realize the simultaneous estimation of 3-DoF torques,
showing comparative accuracy compared with the 1/2-DoF
tasks in previous studies [22], [29].

Apart from the MUAPT-based methods for wrist torque
estimation, the time-domain features are usually extracted
from EMG signals, no matter whether surface or intramuscular
EMG signals, and used to train the regression models [43],
[44]. The R2 of estimation accuracy could be higher than
0.8 for less than 3-DoF tasks. The estimation accuracy of
1/2-DoF tasks by the proposed method was slightly lower
than 0.8. It should be noted that the R2 in this work was
averaged across all the DoF combinations. The Uln-Rad DoF
showed significantly lower estimation accuracy than the other
two DoFs and is usually not taken into consideration in

previous studies. The torque estimation of 3-DoF tasks still
remains challenging. The R2 was about 0.65 or even lower
when using linear regression models [14], [45]. Based on the
neural features extracted from MUAPTs, we could achieve
the R2 of 0.76 for 3-DoF wrist torque estimation using
simple multiple linear regression. It is noteworthy that the
decomposition algorithm could be further improved as the
number of identified MUAPTs is lower than the truly activated
MUAPTs. With more MUAPTs identified, the neural features
could reflect the muscle excitation more precisely. Therefore,
the proposed method has the great potential to improve the
estimation accuracy in the future.

D. Limitations
The main limitation of the study is that we validated

the MUAPT-based torque estimation in offline analysis. The
real-time performance of the proposed method in practical
applications, such as prosthetic control and sign language
recognition, remains for further investigation. This study
mainly focused on the projection method from individual
motor unit activities to the multi-DoF wrist torques. The
results demonstrated the efficiency of the proposed method
in simultaneous and proportional myoelectric control. Based
on a simple multiple linear regression model, individual motor
unit discharges could be projected to continuous wrist torques
with high accuracy. Moreover, we demonstrated the feasibility
of generalizing the proposed method to real-time applications.

Another limitation is that we only included wrist move-
ments. In daily life, the motor tasks of the upper limb
are usually implemented with the cooperation of the elbow,
wrist, and fingers. The proposed methods for estimating the
kinematics/kinetics of multiple joints will be done in future
work. Finally, only non-disabled subjects were recruited. The
inclusion of subjects with limb deficiency is necessary to
demonstrate the general clinical applicability or to make more
general claims about the observed performance.

V. CONCLUSION

We demonstrated the feasibility of mapping the individual
motor unit discharges to continuous 3-DoF wrist torques.
Over 100 motor units were identified from each subject by
using the segment-wise decomposition method. Two neural
features and two training schemes were tested on a multiple
linear regression model, showing high estimation accuracy
(R2

=0.76, nRMSE=11.4%) for 3-DoF tasks. These findings
support the presented estimation methods in multi-DoF and
continuous myoelectric control.
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