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LiDAR-Based Hand Contralateral Controlled
Functional Electrical Stimulation System
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Abstract— Contralateral controlled functional electrical
stimulation (CCFES) can induce simultaneous movements
in patients’ bilateral hands. It has been clinically proven
to be effective in improving hand motor control and dex-
terity. sEMG and bending sensor-based data gloves for
detecting patients’ motor intent have been developed with
limitations. sEMG sensor signals are unstable and suscep-
tible to noise. Data gloves composed of bending sensors
require complicated calibration and tend to have data drift.
In this paper, a LiDAR-based system for hand CCFES is
proposed. The method utilized LiDAR to detect the patient’s
motion intention without contact in CCFES systems. It has
been clinically proven that LiDARs can effectively distin-
guish the different motion amplitudes of hand gestures
as quantitative evaluation sensors of functional electrical
stimulation (FES). Training data for classifiers were col-
lected from 9 healthy individuals and 15 stroke patients
performing 4 gestures, including hand opening, fist clench-
ing, wrist extension, and wrist flexion. The support vector
machine (SVM), linear discriminant analysis (LDA), and
k-nearest neighbor (kNN) were verified for their classifica-
tion performance in offline hand gesture recognition tests.
Experiments were also conducted on 6 stroke volunteers
to evaluate gestures triggered by FES. The SVM classi-
fier showed excellent classification performance for four
hand gestures, with an average F1-score of 0.97 ± 0.05 in
offline tests. As for online gesture recognition, an average
F1-score of 0.92 ± 0.09 was obtained. In the evaluation
experiments, between data from 50% and 100% movement
amplitude, paired t-tests showed significant differences.
The experimental results indicated that the proposed sys-
tem showed promise for hand rehabilitation.

Index Terms— Contralateral controlled functional electri-
cal stimulation, stroke rehabilitation.
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I. INTRODUCTION

STROKE is a shared global healthcare problem, which
causes motion function damage to patients and then leads

to severe negative impacts on patients’ quality of life [1].
Although patients can recover their motor control ability
to a certain extent during the natural recovery period, they
still have incomplete upper extremity function recovery [2].
In this case, upper extremity rehabilitation focuses on restoring
affected hand function more effectively during or even after
the natural recovery period. Appropriate rehabilitation can
also help patients get back to normal life and improve their
quality of life [3]. Lots of different stroke recovery treatments
were utilized for hand rehabilitation, and functional electrical
stimulation (FES) is one of them.

FES is a neurorehabilitation method that artificially activates
the sensory and motor systems of the damaged central nervous
system [4]. FES has been widely used to help patients restore
motion function. However, many FES systems cannot motivate
patients to complete the action subjectively. Those FES sys-
tems that take patients’ volitional attempts into account require
complicated signal processing [5].

Given the shortcomings of the above control strategies,
Knutson et al. have proposed contralaterally controlled func-
tional electrical stimulation(CCFES) [5]. Simply put, CCFES
reproduces the movement of the upper limb on the hemiplegic
side based on detecting an intentional attempt on the healthy
side, thereby realizing the identical movement of the patient’s
bilateral upper limbs [6].

Currently, surface electromyography (sEMG) is a com-
monly used method in movement intention detection.
Chen et al. applied sEMG sensors in subjects’ volitional
attempt detection on seven gestures, but only two healthy sub-
jects were involved, with nearly 500ms delay [7]. In addition to
sEMG sensors, other sensors were applied in CCFES systems.
Knutson et al. proposed CCFES therapy with data gloves,
mainly focusing on the hand opening gesture [5]. Ruiz-Olaya
combined sEMG and inertial sensors to detect elbow and wrist
motion [8]. However, mainstream sensors applied in CCFES
systems have their limits. The sEMG signal is unstable and can
easily be affected by noise, such as human sweat and motion
artifacts [9]. Data gloves usually consist of bending sensors,
which rely on the resistance change to calculate the variation
of bending angles. Temperature can cause data to drift in
this piezoresistance-type transducer. The bending sensors are
also fragile at the pin, which may lead to fatal breaking [10].
Inertial sensors have high measurement accuracy but also have
drift problems. As inertial sensors have limited adaptability to
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the palm [11], they are more often applied as supplementary
ones to detect the motion of large joints.

The control strategies for FES in CCFES systems also
have diversity, such as threshold-triggered, multiple-threshold-
triggered, and proportional mapping. The control strategies
above are open-loop, which have no feedback or evaluation
of FES effect. Lack of FES evaluation may cause excessive
muscle fatigue and insufficient range of motion, thus reducing
rehabilitation training efficiency and patient motivation [12].
In order to enable effective FES evaluation, sEMG sensors
and data gloves are utilized. Zhou et al. put forward a
wireless multichannel sEMG-FES system with a complex
signal process to avoid real-time artifact removal, using the
bias of the patient’s bilateral sEMG signal as the feedback
signal [13]. For data gloves, current studies lack quantitative
metrics for instant evaluation [5], [14]. Wang et al. used
data gloves to detect gestures triggered by FES, but without
performance verification tests and a quantitative metric for
the evaluation [14]. Studies involving various gestures should
be conducted for effective hand rehabilitation and have a
quantifiable FES evaluation.

In summary, current CCFES studies’ main limitations lie
in the fact that sensors are vulnerable to environmental influ-
ences, and lack evaluations of FES-triggered gestures. This
paper proposes utilizing light detection and ranging (LiDAR)
sensors for CCFES systems to address these shortcomings.
LiDAR sensors are often applied for hand gesture recogni-
tion but are never used for hand rehabilitation. As a non-
contact sensor, LiDAR can free patients from cumbersome
and long-time equipment wearing. Thanks to Time-of-flight
(TOF) algorithm, LiDAR is robust to surroundings and can
easily achieve real-time effects without complex data process-
ing [15], [16]. The advantages of easy setup, robustness, and
real-time performance make LiDAR a suitable detection sensor
for the motion intention of patients. LiDAR is also applied
to assess FES-triggered gestures, helping to detect different
motion amplitudes. Modulating the FES parameters can be
based on feedback LiDAR signal, which will improve overall
hand rehabilitation effects.

In this paper, a combination of LiDAR, CCFES, and an
FES evaluation based on LiDAR is used to assist stroke
patients with repetitive hand rehabilitation training. Section II
illustrates the design of the LiDAR-based closed-loop CCFES
system and the experiments which verify the feasibility of the
system. Section III describes the results of the experiments.
Finally, the last two sections presents the discussion and
conclusion.

II. SYSTEM AND HARDWARE DESIGN

A. System Overview Description

This paper aims to develop a low-cost hand CCFES system
based on LiDAR. Generally, the hardware structure can be
divided into gesture recognition and FES modules. Fig. 1
displays the system’s control block diagram. In the block
diagram, the LiDAR collects gesture data from the healthy
side of the patient. This data is classified online, and the

Fig. 1. Control block diagram of the LiDAR-based hand CCFES system.

result is delivered to the FES module. According to the clas-
sification result, the FES module activates the corresponding
FES channel, enabling the hemiplegic hand to perform the
identical movement as the healthy side. While the FES is in
progress, the LiDARs continually gather gesture data from the
bilateral hands, which allows the microcontroller unit (MCU)
to make an appropriate evaluation of the movements triggered
on the hemiplegic side by comparison. Below is a detailed
illustration of gesture recognition and FES modules in the
B and C subsections.

B. LiDAR-Based Motion Detection Module
The motion detection module’s primary duties involve iden-

tifying the gesture from the healthy hand, controlling the
FES module, and evaluating the movements induced on the
hemiplegic side. According to the functional requirements
mentioned, the K210 is selected as the MCU of the module.
It utilizes the RISC-V architecture and runs at up to 400MHz,
which fulfills the real-time requirements of the classification
operations. In addition, the K210 possesses abundant periph-
erals, enabling communication with multiple devices.

Considering the required detection range of hands and
cost control, a commercially available micro TOF LiDAR
module is used to collect data (P8864-SMD-B15, SenkyLaser,
Ltd., Shanghai, China). The LiDAR module is tiny, 18mm ×

12mm × 4.49mm in size, and has a typical working distance
of 0.1m to 2m, making it ideal for interior applications. Within
the detection range, it measures distance information of 8 ×

8 pixels.

C. Functional Electrical Stimulation Module
The FES module receives commands from the motion detec-

tion module and then turns on the corresponding FES channel.
It mainly comprises the serial communication, boost circuit,
and stimulation pulse generation section. The accumulation of
charges on the skin surface brought by unipolar current stimu-
lation can lead to unnecessary muscle fatigue or tingling [17].
In order to solve this issue, a bipolar stimulation waveform
is utilized. In clinical applications, the pulse width of FES
often ranges from 100µs to 500µs, and the frequency ranges
from 10Hz to 50Hz [18]. The module parameters are designed
to have the same modulation range. The pulse amplitude of
FES should be high enough to trigger muscle contraction, and
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Fig. 2. Block diagram of the FES module.

the maximum stands at 40 mA. Given that the resistance of
the human forearm is approximately 1k� [19], the module’s
output voltage can be adjusted from 5V to 40V. Therefore,
the voltage of the stimulation generation section is supplied
by the boosting circuit rather than the USB. The FES module
provides eight stimulation channels to facilitate subsequent
additions of rehabilitation gestures. The number of channels
can be adjusted under different circumstances. Three gestures
are chosen in the paper, namely hand opening, fist, and wrist
extension. Each gesture corresponds to one FES channel and
three stimulation channels are employed accordingly.

Fig. 2 displays the block diagram for the module. The
power circuit supplies power through a USB to allow the
module to function correctly. As the MCU of the FES module,
the STM32F103 micro-controller (STMicroelectronics, Inc.,
ITA&FR) interacts with the host devices, i.e., K210, via
the communication module. The STM32F103 microcontroller
activates the stimulation channels following the commands
received from the K210, wherein the instructions include the
FES frequency, pulse width, and channel number. Through
the boost circuit, the voltage from the power circuit can be
modulated to meet the requirements of the stimulation pulse-
producing circuit. When the MCU enables the stimulation
channel, the H-bridge circuit generating stimulation pulse
can provide proper FES. A high-speed analog multiplexer
CD74HC4067 (Texas Instruments, Inc., USA) is applied in the
channel selection part to switch various stimulation channels
quickly. Pairs of hydrogel electrodes are attached to the
corresponding muscles of gestures, with a size of 4 × 4 cm.

III. METHODS

Experiments were conducted to construct a reasonable ges-
ture classifier and verify the feasibility of the proposed system.
Initially LiDAR data was collected to generate the gesture
classifier. Then the online classification performance of the
classifier was tested. The potential of LiDAR as an evaluation
method of FES-triggered gestures was also validated.

The study recruited 21 stroke survivors with upper-limb
mobility impairment. Fifteen of them participated in the
LiDAR gesture data collection, and the others were involved in
the evaluation experiments of FES-triggered gestures. Subjects

TABLE I
BASIC CHARACTERISTICS OF ALL PARTICIPANTS

Fig. 3. The experimental setup for gesture data collection.

were excluded if they had severe cognitive impairment or
could not sit upright without human support. Cushions were
used as trunk supports to help patients sit upright in the chair if
necessary. Since the hand motor function of a stroke patient’s
healthy side is almost the same as that of a healthy person [20],
data from healthy subjects can complement data from the
patient’s healthy side. Nine healthy participants with no history
of neurological or mobility impairments participated in the
experiments. All participants gave their informed consent
before participation. The Guangzhou First People’s Hospital
Department of Ethics Committee gave its approval to the
procedures (approval no. K-2019-064-01). Table I provides
essential information for all participants.

A. Generation of the Gesture Classifier
LiDAR data were collected to generate a suitable gesture

classifier. During the data collection procedure, participants sat
comfortably in front of a table with their forearms supported.
As illustrated in Fig. 3, the LiDAR was mounted on a shelf
ahead of the table. The vertical distance between the tabletop
and the LiDARs was 450mm. It allowed the subjects’ hands
to be fully exposed to the measuring range of LiDARs and
for subjects to place their arms while sitting comfortably.
The table was designed to be wide enough to facilitate
rehabilitation training for wheelchair users.

Subjects were instructed to place their wrists off the table’s
edge to ensure their palm and wrist movements could be
detected. They were required to place their hands on the pad
for each data collection. Each subject performed four types of
hand gestures: hand opening, fist clenching, wrist extension,
and wrist flexion, as Fig. 4 shows. These are typical gross
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Fig. 4. Four types of hand gestures during the data collection phase.

Fig. 5. Visualization image of gesture data collected by LiDAR. The
LiDAR collected distance data, and the scale on the right side is
millimeters.

hand movements that FES can trigger [20]. Finer gestures are
difficult to stimulate only by non-invasive FES. The restoration
of finer hand motor function is based on the rehabilitation of
gross motor function. Therefore, the gestures mentioned above
were chosen for studies in this paper. Wrist flexion was seen as
the natural rest gesture when subjects reached out their hands
off the table’s edge.

In order to simplify the data labeling, there were specific
sequences for collecting the training data, starting with hand
opening, then fist, wrist flexion, and wrist extension. Five
trials were run for each gesture, and each trial lasted for
15s. Subjects had a 10s rest between trials. Instruction about
gestures and how long they need to maintain the gesture was
given to subjects before collecting the training data.

A total of about 18,000 frames of data were acquired
for healthy participants and about 12,000 frames of data for
stroke patients. The data was utilized for training the gesture
recognition classifiers but not for online gesture classification.
Fig. 5 shows a visualization image of the converted data hand
opening gesture, fist clenching, wrist extension, and wrist
flexion. The scale on the right side in Fig. 5 is millimeters,
which indicates the distance between the LiDAR and the mea-
sured objects. Those pixels with light blue, indicating closer
distance, show the projection of gestures onto the LiDAR, and
pixels with dark blue are the projection of distant unrelated
objects, for example, ceilings. Gathered data were processed
using Python 3.8. The detailed data processing methods are
illustrated in the following.

Fig. 6. Features selected by the random forest, which are the pixel
points in the red frames. The scale on the right side is millimeters.

1) Feature Selection: As there were unrelated obstacles
within the detection range of the LiDAR, distance data con-
tained irrelevant pixel data. Considering that, feature selection
was required to reduce redundant data. Random forest is an
efficient algorithm for feature selection [21]. It focuses on
the contribution of features to every tree. The Gini index was
utilized to calculate the contribution, which can be calculated
as:

G(p) = 1 −

k−1∑
k

p2
k (1)

Random forest was adopted to select the most compelling
features from 64 original features. Eight features with the most
significant contribution were chosen for subsequent training of
the classifiers. The original features were the depth information
of the 8 × 8 pixels. Those pixels were represented by (xi ,
yi , di ), where xi and yi denoted the lateral and longitudinal
coordinates of the i th pixel, and di was the distance value of
the i th pixel. Fig. 6 depicts the features selected by random
forest in the visualized images. As seen from Fig. 6, these
features are discriminatory for different gestures.

Given that the statistical features for distance data with
various gestures could differ, the following features were also
added for classification:

Count of the valid values, COV:

C OV = Count (dvalid) (2)

Average valid values, AVV:

AV V =

∑C OV
i=1 dvalid

C OV
(3)

Maximum of valid values, MaxOV:

Max OV = Max(dvalid) (4)

Minimum of valid values, MinOV:

MinOV = Min(dvalid) (5)
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where dvalid is the valid distance value of each pixel. Due
to the design of the experimental table, the distance between
participants’ hands and the LiDAR should not surpass the
threshold, which was the distance between the tabletop and the
LiDARs. The LiDAR contains only the suitable pixels, which
leads to slightly rough acquired data, and the values greater
than the threshold may appear at the edge of the hands. Thus,
valid distance data include pixel data that do not exceed the
threshold and those marginally larger than the threshold.

These four features (the average valid values (AVV), the
count of the valid values (COV), the maximum of valid
values (MaxOV), the minimum of valid values (MinOV), and
eight features selected via Random Forest were extracted and
supplied to train the different classifiers.

2) Classification: Normalization is required to avoid bias-
ing the prediction results toward features with solid values,
significantly improving the model’s accuracy. The selected
features are normalized with MinMaxScaler, having all feature
values translated to a range of 0 to 1. The participants’
gestures were categorized using a variety of machine learning
algorithms, including linear discriminant analysis (LDA) [22],
the k-nearest neighbor (kNN) classifier [23], and a support
vector machine (SVM) [24]. Below is a synopsis of each
algorithm.

Linear discriminant analysis (LDA) is based on Bayesian
theory and applies the Gaussian distribution to build a class
conditional density model [25]. It has a lower computa-
tional cost than other classifiers, and when combined with
simple feature extraction, it can yield superior classification
results [26]. The objective function can be expressed as:

maxW
tr(W T SbW )

tr(W T SwW )
(6)

where Sb is the interclass divergence matrix, Sw is the sum
of scatter matrices for each class and maxW is the projection
matrix with the best classification performance. The optimiza-
tion solver for Eq. 6 was singular value decomposition.

K-nearest neighbours (kNN) algorithm is a fundamental
gesture classification algorithm that is simple but effective in
many cases. The kNN aims to classify input data according to
the closest training examples [27]. The distance between the
input query point and the other training data points should be
measured to determine which data points are most relative to
a given query point. Here the distance is calculated using the
Euclidean distance, which measures a straight line between the
query point and the other points [28]. The Euclidean distance
can be defined as:

dist (A, B) =

√√√√ n∑
i=1

(ai − bi )2 (7)

where n is the dimensional number of attribute vectors.
A = (a1, a2, . . . , an), and B = (b1, b2, . . . , bn) are attribute
vectors. The kNN algorithm was run with various k values to
pick the k value with the best classification performance. The
values of k ranged from 1 to 15 at intervals of 1.

Support vector machine (SVM) is a supervised machine
learning model invented by Vapnik in the context of statistical

learning theory [29]. The SVM algorithm attempts to estab-
lish the separation between two or more classes of objects,
assuming that the greater the separation, the more reliable
the classification [30]. It is extensively employed for small
sample classification and has outstanding non-linear and high-
dimensional classification performance [31]. Also, it has high
stability and is easy to train with few training parameters [32].
The kernel function chosen for the SVM classifiers was a
radial basis kernel function, which can be expressed as:

K ( fi , f j ) = exp(−γ
∥∥ fi − f j

∥∥2
), γ > 0 (8)

where fi and f j are two different feature vectors, K ( fi , f j ) is
the kernel function of fi and f j , and γ parameter can be seen
as the inverse of the radius of influence of samples selected
by the model as support vectors [33].

Cross-validation and grid-search were implemented to opti-
mize the hyperparameters selection. Nine extracted features,
including the AVV, COV, MaxOV, MinOV, and eight features
selected by Random Forest, were supplied to the LDA, KNN,
and SVM algorithms separately. A five-fold cross-validation
approach was used to train and evaluate all classifiers. The
dataset was divided equally into five groups. Then the clas-
sifiers were trained in four groups, with the accuracy of the
classifiers validated in the fifth group. The process continued
until each data group was used as a test set [34].

B. Online Gesture Classification
Online tests of the generated classifier were conducted to

verify its performance. The classifier that trained well on the
PC was transplanted to K210, facilitating online classification
and subsequent FES activation. Online gestures were classified
in much the same way as during data collection, with subjects
sitting comfortably at a table with their hand outstretched.
Each gesture was held for about 30s, and there was a 30s
rest between gestures. K210 classified the gestures in real-time
based on the LiDAR data collected every 500ms and sent the
results to a PC for display. The experiment procedure was
illustrated to subjects before the online classification began,
and subjects were allowed to perform the four gestures ran-
domly during the experiment. This experiment phase involved
six subjects who had participated in the gesture data collection
in the earlier stage. In the training data collection, the data
collected was utilized for training the classifiers and didn’t go
through online classification. While in the online gesture clas-
sification experiments, subjects performed gestures randomly,
and the trained classifier delivered the gesture classification
results in real-time.

C. Validation of Evaluation for FES-Triggered Gestures
Before we design the closed-loop controller based on

LiDAR, we need to validate the LiDAR data can be used as
feedback on FES-triggered motion amplitudes. The primary
purpose of this part was to verify whether the disparity in
data from bilateral LiDAR could discriminate different action
amplitudes and whether it was sufficient to be used as an
indicator for the evaluation of action produced by FES. The
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Fig. 7. Diagram of hydrogel electrodes placement. Three FES channels
corresponded to various gestures: 1-Wrist extension, 2-hand opening,
and 3-fist clenching. Electrodes were positioned on the extensor carpi
ulnaris for wrist extension, the extensor digitorum for hand opening, and
the flexor digitorum profundus for fist clenching.

movement amplitudes for a given FES intensity have indi-
vidual differences. Even for the same subject, the movement
amplitudes can vary in different periods. Therefore, we need
to evaluate if the desired movement amplitude is obtained
in the open-loop FES. The placement of hydrogel electrodes
is exhibited in Fig. 7. Based on the gestures, muscles that
should be activated were determined. When FES parameters
remain unchanged, the larger the amplitude of gestures that
FES triggered, the better the FES effects were. The specific
placements of hydrogel electrodes were chosen according to
the subject’s muscles. Electrodes were positioned on the exten-
sor carpi ulnaris for wrist extension, the extensor digitorum
for hand opening, and the flexor digitorum profundus for fist
clenching.

Six stroke patients participated in the experiments. Before
the experiment, the therapist determined stimulation parame-
ters corresponding to 50% and 100% motion amplitudes for
each subject. The pulse width of the FES ranged from 100µs
to 500µs, the voltage amplitude from 5V to 40V, and the
frequency from 10Hz to 50Hz. For all subjects, the pulse
duration was set to be 5s on and 5s off. The exact parameters
were chosen based on the three-point calibration method [35].
A 100% motion amplitude was defined as the maximum
motion amplitude that the FES could trigger for the patients
without causing pain. It was different for every patient since
the actual effects of FES varied from person to person. As for
50% motion amplitude, it was half of the maximum motion
amplitude. Since no additional sensors were used, distinguish-
ing 50% motion amplitude was most straightforward with the
naked eye after 100% motion amplitude was confirmed. In this
case, 50% motion amplitude was adopted in the validation
experiments. Using a classifier to classify different action
ranges under the same gesture would make classifier training
difficult. Considering real-time and accuracy requirements, the
classifier was used for gesture recognition, and the feature
COV was for differentiating movement amplitudes. The use of
the feature COV made the movement amplitudes differentia-
tion simple to calculate and reduced the difficulty of classifier
training.

Fig. 8. The experimental setup for validating that LiDAR can differenti-
ate various motion amplitudes under the same gesture.

Fig. 9. The flow chart of the validation experiment with the hand
opening gesture as an example.

Fig. 8 shows the device setup of the validation experiment.
During experiments, subjects were required to perform the
gesture with maximum motion amplitude on their healthy
hands. Once gestures were detected, the FES module, which
used an open-loop controller, generated a pre-defined FES to
activate the muscles. With the stimulation activated, bilateral
LiDAR data was gathered. Data was collected separately when
stimulation triggered 50% and 100% motion amplitudes of
hand opening, fist, and wrist extension. Wrist flexion was not
included because there was a natural wrist drop when the wrist
was placed off the edge of the table. Fig. 9 illustrates the
experiment procedures. The therapist adjusted the FES param-
eters corresponding to 50% and 100% motion amplitudes for
each subject before the experiment.

IV. RESULTS

A. Offline Classification Performance of Chosen
Classifiers

Fig. 10 displays the average F1-score performance for each
classification approach. The training data was collected from
24 subjects performing different gestures. The Friedman non-
parametric test verified that the F1-score of classifiers for
various participants differed (F = 13.77, p = 0.001 < 0.05).
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Fig. 10. F1-score performance for the SVM, LDA, and KNN classifiers.
SVM = support vector machine, LDA = linear discriminant analysis,
kNN = k-nearest neighbor. Total = all gestures. Error bars represent
the standard deviation of the F1-score for 24 subjects.

Following that, the Nemenyi post-hoc test was used to compare
means pairwise. For α = 0.05, SVM and LDA (p = 0.001)
exhibited statistically significantly different means. There was
no statistically significant difference between SVM and KNN
(p = 0.225) and LDA and KNN (p = 0.111). It indicated
that SVM classifiers had the best classification performance
for each participant (average F1-score = 0.96), followed
by the KNN (average F1-score = 0.90) and LDA (average
F1-score = 0.70).

Friedman non-parametric test revealed a statistically sig-
nificant difference in F1 score among the selected classifiers
for hand opening (F = 8.82, p = 0.012 < 0.05), fist (F =

14.11, p = 0.001 < 0.05), wrist extension (F = 13.77,
p = 0.001 < 0.05), and wrist flexion (F = 6.46, p =

0.039 < 0.05). The SVM algorithm exhibited a higher average
F1 (0.97 ± 0.05) than other classifiers in these four hand
gestures. Those classification outcomes were employed as the
foundation for choosing the machine learning method with the
best performance. Therefore, SVM was selected as the final
gesture recognition algorithm in the following experimental
tests.

The classification performance of the stroke and healthy
subjects’ data are displayed in Table II after it was trained
with the SVM algorithm. Here HO = hand opening, FT =

fist, WE = wrist extension, WF = wrist flexion. The results
demonstrated a generally good classification performance,
with all F1-scores above 0.9. The best performance for recog-
nizing hand gestures was obtained for hand opening, with a
high F1-score for both stroke (F1-score = 1.00) and healthy
participants (F1-score = 0.99). For hand opening (F1-score =

1.00 and 0.99), fist (F1-score = 0.96 and 0.94), and wrist
extension (F1-score = 0.98 and 0.96), the classifier exhibited
slightly better performance in stroke survivors than in healthy
subjects. For wrist flexion, the classifier showed the same
performance with an F1-score of 0.97. The SVM classifier
achieved an average F1-score of 0.97, indicating outstanding
classification performance for stroke and healthy subjects.

B. Online Classification Performance
Fig. 11 shows the gesture recognition performance of each

class across six participants utilizing the SVM classifier in

TABLE II
CLASSIFICATION PERFORMANCE OF THE SVM

Fig. 11. Stacked bar graph of F1-scores from the SVM classifier for all
classes and subjects in the online recognition tests. Participants were
ranked according to the total value of the F1-score for four classes.
The grey horizontal line represents a general cutoff for highly functional
levels of classification performance (average F1-score > 0.9).

the online tests. The minimum and maximum F1-score of the
four gestures in all subjects were 3.46 and 3.91, respectively.
An average F1-score over 0.9 was obtained for 4 out of
6 participants. The SVM-based classifier performed well in
the multi-class classification with an average F1-score of
0.92. It detected the hand opening gesture with an ade-
quate accuracy (F1-score = 0.98), followed by wrist flexion
(F1-score = 0.96), wrist extension (F1-score = 0.90), and fist
(F1-score = 0.83). Though the participants were of different
gender and age, the Friedman non-parametric test indicated
that differences in the F1-score across six participants were
not statistically significant (F = 11.06, p = 0.051 > 0.05).

C. Validation Performance of LiDAR
Fig. 12 showed the COV of bilateral LiDAR data collected

when participants underwent various levels of FES. FES
parameters corresponded to 50% and 100% of the motion
amplitude, respectively, while the motion amplitude of the
healthy hand was maintained at 100%.

The significant difference was tested by paired t-test.
It revealed a significant difference in COV when FES triggered
hand opening with 50% and 100% motion amplitude (T =

−12.73, p < 0.001). As for fist-clenching (T = 11.82, p <

0.001) and wrist extension (T = 12.59, p < 0.001), COV
from 100% motion amplitude was significantly higher than
that from 50% motion of amplitude on the hemiplegic side.
There was a significant difference between COV from healthy
and hemiplegic sides performing hand opening with 100%
motion amplitude (T = −13.46, p < 0.001). However, there
was no significant difference between COV from both hands
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Fig. 12. COV values from six stroke patients when they were receiving
FES on the hemiplegic side. Data from hemiplegic and healthy hands
were collected. Hemiplegic side 50% data were obtained when the
FES triggered 50% motion amplitude of the gesture. The hemiplegic
side 100% data corresponded to 100% FES-triggered motion amplitude.
*** indicates a significant difference in paired t-test with p < 0.001.

performing fist (T = 1.75, p = 0.139 > 0.05) and wrist
extension (T = 0.34, p = 0.745 > 0.05).

V. DISCUSSION

The study aimed to develop a LiDAR-based hand CCFES
system that can effectively assist patients with their repetitive
rehabilitation exercises. Based on this goal, the hardware of
the entire system was designed, and suitable data processing
methods were determined. Besides, experiments were carried
out to verify the feasibility of the system.

As seen from Fig. 5, the accuracy of the LiDAR module
was sufficient to differentiate between the four selected hand
gestures, including hand opening, fist clenching, wrist exten-
sion, and wrist flexion. These four gestures are commonly
used in hand rehabilitation [36], [37]. Twelve features were
extracted from the LiDAR data, including the data from the
center section, average valid values, count of valid values,
and minimum and maximum valid values. Three different
machine learning algorithms, including the linear discrimi-
nant analysis (LDA), k-Nearest Neighbor (kNN), and support
vector machine (SVM), were trained and had achieved good
classification performance when detecting four gestures. After
comparing the classification results of the three classifiers,
the SVM classifier was chosen for its high accuracy and low
calculation delay. Although other feature extraction methods or
classification algorithms were not utilized for possible higher
classification accuracy, the SVM classifier showed adequate
classification performance.

Regarding the offline gestures classification, the LiDAR-
based CCFES system showed comparable classification per-
formance with sEMG-based CCFES systems. Ruiz-Olaya
combined sEMG signals and information from inertial sensors
to detect wrist and elbow motions, with an average F1-score
of 0.92 [8]. Our methods showed better classification perfor-
mance, with an average F1-score of 0.98 for four gestures.

Bi et al. applied an sEMG-based detection armband for gesture
classification with a delay time between the controlling and
controlled limbs of 300ms approximately [20]. Our gesture
classification based on LiDAR exhibited slightly better classi-
fication performance in online trails, with an average accuracy
of 0.92 for four gestures and a delay of about 250ms. As we
mentioned, sEMG requires such complex signal processing
as filtering and amplifying. On the other hand, the LiDAR we
used takes simple processing to calculate the classifier-required
features. Besides, we applied wired serial transmission in
the system. The response delay was reduced compared to
the Bluetooth Bi used. In mirror therapy, a shorter response
time can help patients perform bilateral hand gestures more
simultaneously. Research has shown that aligning the onset of
peripheral stimulation with the subject’s motion intention can
change the excitability of the corticospinal projection to the
stimulated muscles, leading to better skill acquisition [38].

The experiment was conducted to verify that various motion
amplitudes of the same gesture could be distinguished accord-
ing to the difference between bilateral LiDAR data. As demon-
strated by the paired t-test, there was no significant difference
in bilateral COV data when the FES produced 100% action
amplitude for fist clenching and wrist extension. That shows
the COV of 100% motion amplitude on the hemiplegic hands
can be considered the same as that of healthy hands when
patients perform fist clenching and wrist extension. For hand
opening, there was a considerable difference in LiDAR data
from both hands while receiving FES. The patients could not
recreate the hand opening on the hemiplegic side just as the
healthy hand, even after receiving the maximum FES within
the tolerable range.

The paired t-test also verified a significant difference
between the COV of 50% and 100% motion amplitude on the
hemiplegic side performing hand opening, fist, and wrist exten-
sion. Based on the mentioned results, the bilateral COV feature
can be applied as a metric for the evaluation of FES-generated
motion amplitude for fist clenching and wrist extension. As for
hand opening, just the COV from bilateral LiDAR can not
tell how the gesture is performed since hand opening with
the maximum motion amplitude on the hemiplegic side still
significantly differs from that on the healthy side. Tarun
Karak et al. utilized data gloves signals as position and velocity
feedback for closed-loop control of FES, achieving prosperous
and stable grasping [39]. Zhou et al. proposed a closed-loop
FES system based on sEMG bias, also for stable grasping [13].
Both of them focused on grasping rather than other hand
gestures. Closed-loop control or evaluation based on LiDAR
has not been studied yet.

This study had several strengths. First, we validated the
feasibility of using LiDAR in a CCFES system to detect
the motion intentions of stroke patients. The selected LiDAR
has the advantages of robustness, non-wearability, and low
cost. Second, the SVM algorithm recognized the gestures and
achieved excellent classification performance in online and
offline classification experiments. Since stimulation pattern
modulation is a crucial aspect of the FES system, it is essential
to introduce the FES evaluation for such a system. The setup
of LiDARs enabled quantitative evaluation of FES-generating



1784 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

movements, facilitating timely adjustment of FES parameters.
It also made it possible to designate FES treatment protocols
more rationally.

There is still room for improvement in our work. Although
the proposed LiDAR-based CCFES system can detect and
classify four selected gestures, the classification accuracy for
wrist extension was slightly lower for other gestures in the
online trial. This was primarily due to the subjects performing
wrist extension with varying wrist angles. As shown on the
LiDAR data visualization graph, Fig. 5, when the wrist exten-
sion angle is minor, the data collected can be indistinguishable
from a fist. In this study, the evaluation method utilizing
the COV feature didn’t show outstanding performance in
distinguishing various motion amplitudes of hand opening.
Besides, a more refined differentiation of motion amplitudes is
required if we apply LiDAR in the feedback data in close-loop
control of FES. We only focuses on the motion amplitudes
of the generated gesture. There would be adverse effects of
overstimulation through lack of evaluation or feedback on the
safety of FES [40], [41]. Additional sensors can be combined
to monitor both the motion amplitudes and the safety of FES.

In the follow-up study, more training guidance is required
to improve the training effect, especially for wrist extension.
The difference between the bilateral LiDAR data can be used
as a metric of FES evaluation and as a feedback signal for
closed-loop control of FES. The feedback control of FES can
be combined with the proposed system. It is also essential
to seek more effective metrics to evaluate different motion
amplitudes of hand opening. As for assessing the safety of
FES, the combination of other sensor data may be a suitable
solution in order to avoid damage caused by inappropriate
FES. Clinical trials should be conducted to validate the feasi-
bility and practicality of the proposed method.

VI. CONCLUSION

A LiDAR-based hand CCFES system has been proposed.
It aimed at realizing active rehabilitation exercises for stroke
patients and evaluation of FES-triggered movements. The
utilization of LiDAR reduced the difficulty of data processing
and wearing. The SVM algorithm for gesture classification
based on LiDAR was applied to achieve a decent classification
accuracy in real-time tests. Experiments on stroke patients also
verified that the difference between bilateral LiDAR data could
be applied to evaluate the motion amplitude of FES-triggered
gestures quantitatively. Future work will focus on closed-loop
control for FES, targeting both the action amplitude of gestures
and the safety of FES to avoid the adverse effects of excessive
or insufficient FES on rehabilitation therapy.
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