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Abstract— A brain-computer interface (BCI) measures
and analyzes brain activity and converts it into computer
commands to control external devices. Traditional BCIs
usually require full calibration, which is time-consuming
and makes BCI systems inconvenient to use. In this study,
we propose an online P300 BCI spelling system with zero
or shortened calibration based on a convolutional neural
network (CNN) and big electroencephalography (EEG) data.
Specifically, three methods are proposed to train CNNs
for the online detection of P300 potentials: (i) training a
subject-independent CNN with data collected from 150 sub-
jects; (ii) adapting the CNN online via a semisupervised
learning/self-training method based on unlabeled data col-
lected during the user’s online operation; and (iii) fine-
tuning the CNN with a transfer learning method based
on a small quantity of labeled data collected before the
user’s online operation. Note that the calibration process
is eliminated in the first two methods and dramatically
shortened in the third method. Based on these methods,
an online P300 spelling system is developed. Twenty sub-
jects participated in our online experiments. Average accu-
racies of 89.38%, 94.00% and 93.50% were obtained by
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the subject-independent CNN, the self-training-based CNN
and the transfer learning-based CNN, respectively. These
results demonstrate the effectiveness of our methods, and
thus, the convenience of the online P300-based BCI system
is substantially improved.

Index Terms— Brain–computer interface (BCI), electroen-
cephalography (EEG), P300, convolutional neural net-
work (CNN), transfer learning, semisupervised learning/
self-training, big data.

I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) provides a direct
human-machine interaction pathway between the brain

and external devices without relying on the peripheral nervous
system and muscles [1]. It acquires brain signals and translates
them into computer commands to control external devices.
Electroencephalography (EEG)-based BCIs are some of the
most commonly used BCIs. They mainly include P300-based
BCIs, steady-state visual evoked potential (SSVEP)-based
BCIs, and motor imagery (MI)-based BCIs. In this study,
we mainly focus on P300-based BCIs.

A BCI usually requires a subject-specific calibration phase,
during which the user is required to perform a specific
task while labeled EEG data are recorded for training a
subject-specific EEG decoding model. However, the calibra-
tion phase is generally tedious and time-consuming, mak-
ing BCIs inconvenient to use. Some attempts have been
made to completely eliminate the calibration phase and
build BCIs with instant operation. Such BCIs are usually
called zero-calibration/training BCIs or calibration-free BCIs.
To build a zero-calibration BCI, a natural idea is to employ
a subject-independent model for EEG decoding. Researchers
have conducted various offline studies to build subject-
independent P300 detection models. These models are usually
obtained using two approaches, i.e., the pooled approach and
the ensemble approach [2]. The pooled approach involves
training a model such as a convolutional neural network
(CNN) [3], [4], [5], [6] or a hierarchical recurrent network [7]
on a pool of data derived from multiple subjects to extract
invariant patterns across the subjects and then using the
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obtained model to directly predict for new users. The ensemble
approach combines a committee of weak models learned from
the EEG data of a pool of subjects or a single subject to
create a subject-independent model [8], [9]. Previous studies
on building subject-independent models generally achieved
accuracies of approximately 60%–90% in offline analyses.
In addition to these offline models, in [10], an online zero-
calibration P300 spelling system was developed based on
a CNN trained with a large dataset containing EEG data
from 55 subjects. Another idea for building a zero-calibration
BCI is to apply semisupervised learning methods. Researchers
first trained a subject-independent model, for example, one
based on a support vector machine (SVM) [11] or a linear
discriminant analysis (LDA) classifier [12], [13], and then
adapted the model based on EEG data recorded from the
user and the corresponding labels predicted by the model.
In this way, the labeled data for model pretraining are
entirely collected from other users, and a subject-specific
calibration phase for the user is not needed. However,
to our knowledge, such online P300 systems are rarely
implemented.

In addition to eliminating the calibration process, other
approaches propose shortening the calibration time. When a
training set containing EEG signals collected from a pool
of subjects is available, researchers typically use this train-
ing set along with a small quantity of subject-specific cal-
ibration data to build models based on transfer learning
methods. For instance, a classifier based on an xDAWN
filter [14], a CNN [15], [16], [17], and a reinforcement learning
model [18] were previously trained on data acquired from
a pool of subjects and then adapted with subject-specific
labeled data via incremental training or model fine-tuning.
By applying probabilistic frameworks, each parameter of
the subject-specific models shared the prior learned from a
pool of subjects and was optimized using subject-specific
data [19], [20]. Riemannian geometry methods affine trans-
form the covariance matrices of different subjects to cen-
ter them with respect to a reference covariance matrix and
then classify them using minimum-distance-to-mean (MDM)
classifiers [21], [22], [23], [24]. In [25], a small quantity of
user data was added to the training datasets, each of which
contained data from one subject, and the model was trained
by an ensemble method. These methods generally obtain
accuracies of approximately 75%–90% in offline analyses.
For online implementation purposes, several P300 spelling
systems [26], [27], [28] and a robot control system [29]
based on transfer learning were proposed, and accuracies of
approximately 80%–90% were achieved. When a training set
containing EEG signals collected from a pool of subjects was
unavailable, some other studies trained their models based
on a small quantity of subject-specific labeled data as well
as unlabeled data recorded during use. These studies were
mainly based on semisupervised learning algorithms. For
instance, a model was initially trained with a small quan-
tity of subject-specific data and then adapted with unlabeled
data [30], [31]. In [32], two models were first trained with a
small quantity of labeled calibration data, and then the models
taught each other to build a final classifier with unlabeled data

using a cotraining algorithm. In [33], the relationship between
unlabeled data and labeled data was used to define a penalty
term for a regularized discriminant analysis model. Most of
these semisupervised learning-based models have achieved
accuracies of approximately 80%. In addition to the above
offline analyses, Gu et al. pushed the related research to online
practices, and accuracies above 85% were achieved [34], [35].
Although existing studies have shown that various methods can
build models or develop BCI systems with zero-calibration
or shortened calibration processes, such studies are still in
their infancy. Most previous studies did not adopt large
training datasets, which are more likely to contain individ-
ual diversity and provide the possibility to learn invariant
brain patterns across subjects. Additionally, most studies only
established their models via offline analyses, which require
online validations. The performance of the existing online
BCI systems with zero-calibration or shortened calibration
processes needs further improvement. Therefore, most existing
studies can hardly meet the practical requirements of this
task.

In this study, based on a CNN and big EEG data, an online
P300 BCI spelling system with zero-calibration or short-
ened calibration is developed. Specifically, three methods
for training cross-subject P300 detection models are pro-
posed, including (i) training a subject-independent CNN with
a dataset containing EEG signals collected from 150 sub-
jects; (ii) adapting the CNN trained in (i) online via a
self-training algorithm based on unlabeled data collected
during the user’s online operation; and (iii) fine-tuning the
CNN trained in (i) through a transfer learning method with
a small quantity of labeled data, which are collected dur-
ing a calibration phase before the user’s online operation.
Based on these methods, an online P300 BCI spelling system
is developed. Twenty healthy subjects participated in our
online experiments. The experimental results demonstrated
that with the help of a CNN and a training dataset collected
from a large pool of subjects, an online P300 BCI with
zero-calibration or shortened calibration can be established,
which will substantially improve the convenience of the use of
P300 BCIs.

The remainder of this paper is organized as follows.
Section II presents the utilized methods, including those for
data acquisition, P300 detection model establishment, and
online decision making. The experimental implementation
and results are presented in Section III, and a discussion is
provided in Section IV. Finally, the conclusion in Section V
reviews the approach developed in this paper.

II. METHODS

A. Equipment

During the experiment, EEG signals were collected at
a sampling rate of 1,000 Hz with a 30-channel EEG cap
(LT 37) following the extended 10-20 system and referenced
to the right mastoid. A SynAmps2 amplifier (Compumedics,
Neuroscan, Inc., Australia) was used to collect EEG signals.
All electrode impedances were maintained below 5 k� during
the experiment.
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Fig. 1. GUI of the P300 speller. The buttons flash in green (such as the
button “Q” on the virtual keyboard), and the predicted target characters
are displayed in the textbox at the top of the GUI (such as the text “T” in
the textbox).

B. Subjects
Twenty healthy subjects (14 males and 6 females, aged

between 21 and 41 years, average age 25.85 years) par-
ticipated in all online experiments, which are detailed in
Section III-A. The study was approved by the Ethics Com-
mittee of Guangzhou First People’s Hospital, China. Written
informed consent was obtained from all subjects.

C. Graphical User Interface
The graphical user interface (GUI) of the proposed P300

spelling system is shown in Fig. 1. A 4 × 10 button matrix of
characters was presented to each subject for stimulus presen-
tation. The paradigm was the same as that employed in our
previous study [5]. Specifically, for each trial corresponding
to one character input, to prepare the subject, during the 3 s
before the stimulus onset, all buttons were not intensified.
Upon onset, all buttons started to flash successively in a
random order. Each flash lasted for 100 ms, and the interval
between the onsets of two successive flashes was 30 ms, which
meant that there was an overlap of 70 ms between any pair
of successive flashes. Each of the 40 buttons flashed once in
each round, and 10 rounds of button flashes formed a trial.
No pause occurred between adjacent rounds. Therefore, it took
[(400 − 1) × 30 + 100] ms = 12.07s to complete 400 flashes
in a trial.

During each trial, to input a character, the subject was
instructed to focus his/her attention on the flashes of the
character he/she intended to input (i.e., the target) and to keep
a running mental count of the number of flashes.

D. A Subject-Independent CNN Model
In this study, a subject-independent CNN, which was estab-

lished for an offline analysis in our previous study [5], was
applied as one of the three P300 detection models. We briefly
review the method for training the CNN model in this section
for the sake of the completeness of this paper.

1) Training Set Construction: We applied a large EEG
dataset collected in our previous study [5] as a training set.
To build this dataset, we recruited 150 subjects (128 males and
22 females between 18 and 32 years of age) in an experiment
to collect training data. Each subject performed 60 character
input trials. During this phase, the target of each trial was

randomly specified by the system rather than freely determined
by the subject.

2) Data Preprocessing: The EEG signals were first band-
pass filtered at 0.5–10 Hz using a fourth-order Butterworth
filter. After that, epochs corresponding to each button flash
from 0 to 600 ms after the onset of the stimulus were extracted
and then downsampled at a rate of 24. Consequently, in each
trial, there were Nc · Nr epochs, and in each epoch, there
were 1, 000 Hz × 600 ms ×

1
24 = 25 sampling points for each

channel. Here, Nc and Nr are the numbers of buttons (40 in
this study) and rounds (10 in this study), respectively. Finally,
the signals of each epoch were normalized as follows:

f̃i, j =
fi, j − f̄i

σi
, (1)

where fi, j and f̃i, j are the unnormalized and normalized
signals of channel i at sampling point j , respectively, and
f̄i and σi are the average and standard deviation of the signal
of channel i in the epoch, respectively.

After preprocessing, the data of each epoch formed a 30 ×

25 matrix denoted as Fns,nt,nr,nc , where ns represents the index
of the subject (ranging from 1 to Ns), nt represents the index
of the trial (ranging from 1 to Nt), nr represents the flash round
index (ranging from 1 to Nr), and nc represents the character
index (ranging from 1 to Nc). Herein, Nr = 10, and Nc = 40.

To reduce the influence of the low EEG signal-to-noise
ratios (SNRs) and the short interstimulus intervals (ISIs) of the
stimuli, we averaged the preprocessed signals corresponding
to the first nr (nr = 1, 2, . . . , Nr) rounds in a trial as follows:

Xns,nt,nr,nc =
1
nr

nr∑
m=1

Fns,nt,m,nc . (2)

In our online study, only Xns,nt,Nr,nc (ns = 1, 2, . . ., Ns, nt =

1, 2, . . . , Nt, nc = 1, 2, . . . , Nc) were used for both model
training and online prediction.

A sample Xns,nt,nr,nc was labeled as a positive sample if and
only if its corresponding character nc was the target of the
current trial. Otherwise, it was labeled as a negative sample.

3) CNN Architecture: We built a CNN with the architecture
shown in Fig. 2 for cross-subject P300 detection. This network
architecture is similar to the one used in [36]. It contains
three convolutional layers and two fully connected layers.
All layers except FC5 use the rectified linear unit (ReLU)
function as the activation function, while FC5 uses the logistic
sigmoid function as its activation function. The network takes
preprocessed data Xns,nt,nr,nc as its inputs, and the output can
be regarded as the modeled probability of the presence of
a P300 potential P

(
y = 1 | Xns,nt,nr,nc;M

)
, where y is the

binary label indicating the presence or absence of a P300
potential with values of 1 or 0, respectively, and M is the
model for P300 potential detection.

4) Subject-Independent CNN Model Training: The subject-
independent CNN model was the same as the model employed
in our previous offline study [5]. It was established by training
a CNN with the architecture described in Section II-D.3 offline
using the large training set described in Section II-D.1. The
convolutional kernels and weights of the network were ini-
tialized with the Xavier initialization method [37]. The model
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Fig. 2. The architecture of the CNN used for cross-subject P300 detection.

was trained using adaptive moment estimation (Adam) [38]
to optimize the mean-squared error (MSE). Since the ratio of
positive and negative samples in the training set was 1 : 39,
the loss function was weighted by multiplying the positive
samples by 39. The model was trained on an NVIDIA GeForce
GTX 1080 Ti GPU with CUDA 9.0 and cuDNN v7 using
TensorFlow [39].

5) Online Decision Making: In this study, the subject-
independent CNN was employed online as a P300 detection
model for the proposed system. Specifically, in each trial, once
the system stopped the stimulus presentation process, each
preprocessed signal segment was input into the model, whose
output was regarded as the probability of the presence of a
P300 potential P

(
y = 1 | Xns,nt,nr,nc;M

)
. The system output

the character with the maximum probability of P300 potential
presence as the predicted target, i.e.,

ĉT (ns, nt, nr;M)

= argmax
nc∈{1,2,...,Nc}

P
(
y = 1 | Xns,nt,nr,nc;M

)
. (3)

With the subject-independent model, users operated the
system instantly without subject-specific calibration.

E. A Subject-Specific CNN Model Adapted Online by
Self-Training

In the following, we propose a semisupervised learning/self-
training method to adapt the CNN model online and improve
its performance. Specifically, the user operated the BCI at
the beginning without calibration, and the subject-independent
CNN was employed as the P300 detection model. After
10 character input trials, the model was automatically adapted
online based on the subject-independent model and the data
derived from the 10 trials by using the self-training algorithm
presented in Algorithm 1. In the next 10 trials, the updated
model was employed instead of the subject-independent model
for P300 detection and target character identification. Then, the
model was adapted online once again based on data recorded
in trials 11–20 using the self-training method, and the obtained
model was used in the remaining trials.

F. A Subject-Specific CNN Model Fine-Tuned by Transfer
Learning

We further propose a transfer learning method to adapt the
CNN model and improve its performance. Specifically, before
the online operation, the user performed a calibration task
containing five character input trials. During the calibration
process, the target character for each trial was cued by the

Algorithm 1 Adapting the CNN Based on a Semisupervised
Learning/self-Training Method
Input: The data obtained online during N trials (N = 10 in

this study), and the CNN model currently used for P300
detection.

Output: An updated CNN model for P300 detection.
1: repeat
2: Apply the CNN model to the data from N trials. For

each trial, we obtain a predicted label as well as a
probability showing confidence of the prediction.

3: Select the 2n (n is the index of the current iteration)
trials with the largest probabilities.

4: Retrain the CNN model using the data from the selected
2n trials with the predicted labels.

5: until The maximum number of iterations (5 in this study)
is reached.

computer. The subject-independent CNN was fine-tuned using
the calibration data with labels. The fine-tuned CNN was
used for online prediction. As described in Section II-C,
in each trial, 12.07 s of stimulus presentation was employed.
Therefore, it took approximately 1 min to perform the cali-
bration task for each user, which is much shorter than the full
calibration process.

III. EXPERIMENTS AND RESULTS

A. Experiments
Twenty subjects participated in three online experiments.

The order of the experiments was random for each subject.
Experiments I, II and III correspond to spelling tasks in
which the subject-independent CNN, the self-training-based
CNN and the transfer learning-based CNN, respectively, were
employed.

Experiment I: An online test was conducted for the system
with the subject-independent model. Specifically, each subject
performed a spelling task involving the spelling of the follow-
ing 40 characters: “THE FIVE BOXING WIZARDS JUMP
QUICKLY. - 510641?”.

Experiment II: An online test was conducted for the system
with the self-training-based model. Each subject spelled the
same characters as those in Experiment I. The experiment
containing 40 character spelling trials was divided into three
stages. The first stage containing trials 1–10 employed the
subject-independent model, while the second stage containing
trials 11–20 and the third stage containing trials 21–40 respec-
tively employed the models adapted once (using the data from
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trials 1–10) and twice (first using the data from trials 1–10
and then using the data from trials 11–20). We calculated
the performance achieved for each stage, and the performance
attained during the last stage was regarded as the performance
of the self-training-based model.

Experiment III: An online test was conducted for the system
with the transfer learning-based model. Specifically, each sub-
ject performed a calibration task involving the spelling of five
characters cued by the computer. The model was fine-tuned
with the data recorded during the calibration process and was
then employed for online decision making. After that, each
subject spelled the same characters as those in Experiment I.

B. Results of the Online Experiments
In this study, accuracy, defined as the ratio of the number

of correctly spelled characters to the total number of spelled
characters, was adopted as a performance metric. Moreover,
the information transfer rate (ITR) was also applied to evaluate
the ability of the system to balance accuracy and spelling
speed. The ITR is defined by

ITR =
1
T

(
log2 Nc + a log2 a + (1 − a) log2

(
1 − a
Nc − 1

))
,

(4)

where a is the accuracy of target character prediction, Nc
is the number of characters in the GUI, and T is the time
needed to spell one character. Herein, Nc = 40, and T =
1

60 (1.2 Nr + 0.07) min.
The results of online Experiments I–III are presented in

Table I. As shown in the table, with the subject-independent
CNN, the self-training-based CNN and the transfer learning-
based CNN, average accuracies of 89.38%, 94.00% and
93.50% were achieved, respectively. These results demon-
strated that with the subject-independent CNN, the system was
able to achieve satisfactory performance. The performance was
further improved when the self-training or transfer learning
method was applied.

It is worth noting that the results of Experiment II in
Table I were obtained from the last 20 online trials, where
the updated CNN model was applied. To explore the differ-
ence between the performance achieved before and after the
online adaptation process based on self-training, we present
the average accuracies obtained across all subjects in the
three stages of Experiment II, as shown in Table II. Note
that the results of trials 1–10, trials 11–20, and trials 21–40
were obtained with the subject-independent CNN model, the
updated CNN model based on the data of trials 1–10, and
the updated CNN model based on the data of trials 1–20,
respectively. It follows from Table II that the average accura-
cies increased gradually. With an online adaptation based on
the unlabeled data collected from 20 character input trials, the
system performed significantly better in trials 21–40 than in
trials 1–10 (p = 0.034), with the average accuracy improved
from 87.00% to 94.00%.

C. Results of the Offline Analyses
1) The Change in Performance With Respect to the Number

of Flash Rounds: In the online experiments, the number of

Fig. 3. Average accuracies and ITRs with standard deviations across
20 subjects with respect to the number of flash rounds.

Fig. 4. Average accuracy and ITR with standard deviations across
20 subjects with respect to the number of trials used to fine-tune the
CNN.

flash rounds Nr for each trial was 10. In order to explore
the relationship between Nr and the accuracy as well as
the ITR, we conducted an offline test on the changes in
the accuracy and the ITR with respect to Nr. As shown in
Fig. 3, the average accuracy monotonically increased as the
number of flash rounds increased for all models. However, the
average ITRs increased at first, reached maximum values at
approximately 2–3 rounds, and then gradually decreased. The
best average ITR was 51.72 bits/min, achieved at 2 rounds of
button flashes when the self-training-based CNN was applied.

2) The Performance of the Transfer Learning-Based Models
With Respect to the Number of Calibration Trials: In Experiment
III, for each subject, the CNN model was fine-tuned using five
trials of calibration data and consequently outperformed the
subject-independent CNN validated in Experiment I. We fur-
ther conducted an offline analysis to explore the relationship
between the model performance and the quantity of calibration
data used to fine-tune the CNN model. Specifically, for each
subject, the CNN model was fine-tuned based on the subject-
independent CNN, with the number of calibration trials vary-
ing from one to five, and the fine-tuned models were validated
with data collected in Experiment III. The average accuracy
and ITR are shown in Fig. 4. As seen in the figure, as the
number of trials used to fine-tune the CNN increases from
one to five, both the average accuracy and the ITR increase
gradually.

3) Results of an Offline Analysis Conducted on a Dynamic
Stopping Strategy: The above experiments were all based on
a system with a consistent number of flash rounds for all trials.
To seek a better balance between accuracy and spelling speed,
we further conducted an offline analysis where a dynamic
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TABLE I
RESULTS OF ONLINE EXPERIMENTS I–III

TABLE II
ONLINE PERFORMANCES OF DIFFERENT

CNN MODELS IN EXPERIMENT II

stopping strategy was used in each trial, i.e., the number of
flash rounds was adaptive.

The dynamic stopping strategy was described in our previ-
ous study [5], and we briefly review it here. First, we empiri-
cally set the minimum and maximum numbers of flash rounds
for each trial to 4 and 9, respectively. Second, in each round
after the fourth round of each trial, we fed the data into the
CNN model and obtained a predicted target character as well
as a probability showing the confidence of the prediction. If the
probability was larger than a preset threshold or the number
of flash rounds reached 9, the system output the predicted
target character. Otherwise, the next round of button flashes
progressed. The threshold for the probability in each round
was set by applying leave-one-subject-out cross-validation to
the training set (collected from 150 subjects). Specifically, the
data of 149 subjects were used to train a CNN model, whereas
the data of the remaining subject were used for testing. To set
the threshold for the fourth round, for each trial in the training
set, the data from the first to the fourth rounds were averaged

and then fed into the CNN, and a predicted target character as
well as its probability showing the confidence of the prediction
were obtained. The probabilities were averaged over all trials
for the test subject. The probabilities of the 150 subjects were
obtained through leave-one-subject-out cross-validation, which
formed a distribution. A threshold was set for the fourth round
such that the top 20% of the probabilities were larger than it
(0.9811 in this study). By using the same method, we set the
thresholds for the fifth to the eighth rounds according to the
top 40%, 60%, 80%, and 100% of the probability values in
the distributions obtained after the fifth to the eighth rounds.

The results of the offline analysis based on a dynamic
stopping strategy are shown in Table III. Note that the results
of the self-training-based CNN were obtained from the last
20 online trials, where the updated CNN model was applied.
Comparing the results shown in Tables I and III, we can see
that the dynamic stopping strategy improved the spelling speed
with acceptable average accuracies and thus improved the ITR.

IV. DISCUSSION

In this study, we developed a CNN- and big EEG data-based
online P300 BCI spelling system with zero-calibration or
shortened calibration. Specifically, three methods were pro-
posed to train cross-subject P300 detection models, including
(i) training a subject-independent CNN using data collected
from 150 subjects, (ii) adapting the CNN online based on a
self-training method and the unlabeled data collected during
the user’s online operation, and (iii) fine-tuning the CNN based
on a transfer learning method and a small quantity of labeled



1760 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE III
RESULTS OF AN OFFLINE ANALYSIS BASED ON A DYNAMIC STOPPING STRATEGY

Fig. 5. Spatial filter obtained with the subject-independent CNN. The
spatial filters are obtained by averaging the absolute values of the
weights in layer C1 across the ten kernels.

Fig. 6. Spatial filters obtained with the self-training-based CNNs.
Compared with the spatial filter obtained with the subject-independent
CNN shown in Fig. 5, the spatial filters obtained with the self-training-
based CNNs change slightly for most subjects.

data. The experimental results demonstrated the effectiveness
of our system.

The online P300 spelling system developed in this study
achieved good performances, with accuracies near or above
90% for all three models. This is probably due to the following
reasons. First, deep neural networks have excellent data-fitting
abilities, and our dataset included data from a relatively large
number of subjects compared with those in existing works.
As demonstrated in [5], these two factors provided the model
with the possibility of extracting subject-independent features.
Second, we adapted the CNN by performing self-training
or transfer learning during or before the online operation

Fig. 7. Spatial filters obtained with the transfer learning-based CNNs.
Compared with the spatial filter obtained with the subject-independent
CNN shown in Fig. 5, the spatial filters obtained with the transfer
learning-based CNNs change slightly for most subjects.

to further improve its performance. Third, we implemented
the P300 spelling system online, and thus, during the online
operation, users received feedback regarding the spelling
results from the system and accordingly adjust their mental
states in real time to better complete the spelling task. Note
that the same subject-independent CNN was employed for
both the offline analysis (see our previous study [5]) and
the online test, and the average accuracies were 83.74% and
89.38%, respectively. The fact that the online test yielded
better performance than the offline analysis is probably due
to the effect of the feedback presented to the subjects.

To further explore what spatial and temporal features are
important for EEG classification and how does parameter
update affect the models, we visualize the models before and
after the adaptation from two aspects. (i) We first visual-
ize the convolutional kernels of the first convolutional layer
C1, which plays a role in spatial filtering. Specifically, for
each trained model, the absolute values of the weights in
layer C1 are averaged across the ten kernels, resulting in a
30-dimensional weight vector with each entry representing the
discriminant power of the corresponding channel. We use this
weight vector to generate a topology map to show the impor-
tance of each channel to the classification result. The topology
maps of the subject-independent CNN, the self-training-
based CNN, and the transfer learning-based CNN are shown
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Fig. 8. ERP waveforms and the corresponding Grad-CAM heatmaps obtained with the subject-independent CNN (denoted “CNN-SI”) and the
self-training-based CNN (denoted “CNN-ST”). Note that in the heatmaps, yellow intervals correspond to the important time intervals, while blue
intervals are the opposite.

Fig. 9. ERP waveforms and the corresponding Grad-CAM heatmaps obtained with the subject-independent CNN (denoted “CNN-SI”) and the
transfer learning-based CNN (denoted “CNN-TL”). Note that in the heatmaps, yellow intervals correspond to the important time intervals, while blue
intervals are the opposite.

in Figs. 5, 6, and 7, respectively. From the figures, we can
see that after the model adaptation, for both the self-training-
based CNN and the transfer learning-based CNN, the weights
in layer C1 change, reflecting interindividual variability. For
instance, we find that the self-training-based CNNs for Sub-
jects 13 and 17 and the transfer learning-based CNNs for
Subjects 11, 17, and 18 have relatively large weight changes on
the spatial filters, while the weight changes for other subjects
are slight. (ii) We then use the gradient-weighted class activa-
tion mapping (Grad-CAM) algorithm [40] to produce a coarse
localization map highlighting the important time intervals of
the signals for EEG classification. Specifically, for each trial,
the EEG signal corresponding to the target character is fed into
the subject-independent CNN and the self-training/transfer
learning-based CNN to obtain a heatmap for each model. For
each subject and each model, the EEG waveforms and the
heatmaps are averaged across the 40 trials. Several averaged
waveforms from the EEG channel OZ and the corresponding
heatmaps obtained with the subject-independent CNN and
the self-training/transfer learning-based CNN are presented in
Figs. 8 and 9, respectively. Note that the subject-independent
CNN is applicable for all subjects, and its corresponding
heatmaps show some consistency. After model adaptations,
the models become subject specific, and the important time
intervals vary by subject. This is probably because the EEG
signals contain different discriminative components effective
for the classification, and these components vary by subject.
For instance, as shown in Fig. 8, the time intervals where
typical event-related potential (ERP) components (such as
N200 or P300) occur are coarsely marked as the important
time intervals for the subject-independent CNN, while the self-
training-based CNNs utilize more components in different time
intervals for Subjects 2 and 12 and focus more attention on
the P300 component for Subject 15. Similarly, in Fig. 9, the

classification with the subject-independent CNN mainly relies
on a single time interval with typical ERP components, while
the transfer learning-based CNNs additionally utilize the signal
at approximately 400 ms after the stimulus onset for Subject
17 and pay more attention to the time interval where a P300
component occurs for Subjects 3 and 15.

Compared with existing online BCI systems, the advantages
of the system developed in this study are as follows. First,
the calibration phase is completely eliminated or dramatically
shortened, and the convenience of the BCI system is thus
improved. By applying the subject-independent model or the
self-training-based model, the system is plug-and-play, which
means that new users can operate this system without a
calibration phase. It is worth mentioning that although the
self-training-based model needs online adaptation, the required
calibration data are entirely unlabeled data collected during
user operations. Moreover, the model adaptation process does
not suspend the user’s operation of the system. For the use
of the transfer learning-based model, the system requires
users to perform a short calibration task. Specifically, the
time needed for the calibration of this system, which is
approximately 1 min, is much shorter than that for traditional
P300 BCIs, which usually take more than 10 min for subject-
specific calibration. Eliminating or shortening the calibration
also reduces the mental load for the users; our experiments
reflect that most subjects did not feel obvious fatigue. Second,
by applying a zero-calibrated CNN (the subject-independent
CNN or the self-training-based CNN) as a P300 detection
model, this system achieves comparable performances to those
of traditional P300 BCIs with full calibration [41], [42], [43].
Additionally, to the best of our knowledge, few studies have
implemented zero-calibrated models online. In [10], an online
spelling system was developed, and an average accuracy of
85% was achieved after 33 s of button flashes for each
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trial. Although it was a good attempt to produce BCIs with
zero-calibration, this approach still needs further performance
improvement. In our study, two zero-calibrated CNNs were
implemented online. An average accuracy of 89.38% was
achieved after 12 s of button flashes for each trial when
the subject-independent model was applied, and the accuracy
improved to 94.00% after the model was adapted by self-
training. Finally, this study improves the online performance
of the BCI system using a transfer learning-based model.
Existing studies based on traditional transfer learning have
obtained accuracies of approximately 80%–85% in online
experiments [26], [28]. Among the several existing P300 BCI
studies based on deep transfer learning, almost all of them only
provided offline analyses with accuracies of 70%–90%, and
their models needed further online validation [15], [16], [17].
Our experimental results showed that by using the transfer
learning-based CNN, the online accuracy could be improved
from 89.38% (obtained with the subject-independent CNN) to
93.50%. In addition, all subjects achieved accuracies of 80%
or above.

Three models are available in our BCI system. The user
can select one model for operating the system according
to the following strategy. (i) If the available computing
resources are insufficient for supporting CNN retraining, the
subject-independent CNN can be conveniently applied. (ii) If
the available computing resources are sufficient for retraining
the CNN, the self-training method can be used when a
calibration phase is not allowed, for instance, when the user
does not know how to collect calibration data or when the
user is unwilling to perform the shortened calibration phase.
Note that there needs to be a period of model adaptation
(4 min in this study) via self-training that does not suspend
the user’s operation of the BCI system. During this period,
the performance of the CNN model is improved step by step.
(iii) If the available computational resources are sufficient for
retraining the CNN and a short period of calibration is allowed,
the transfer learning-based CNN is a good choice since com-
parable performance to that of a fully calibrated BCI model
can be achieved with a much shorter calibration time period.

V. CONCLUSION

This study developed an online P300 BCI spelling system
with zero-calibration or shortened calibration based on a
CNN and big EEG data. Specifically, three methods to train
CNNs for the online detection of P300 potentials were pro-
posed: training a subject-independent CNN with data collected
from 150 subjects, adapting the CNN online based on a
self-training method and unlabeled data collected during the
user’s online operation, and fine-tuning the CNN based on
a transfer learning method and a small quantity of labeled
data collected before the user’s operation. Based on these
methods, an online P300 spelling system was developed.
Average accuracies of 89.39%, 94.00% and 93.50% were
achieved with the subject-independent CNN, the self-training-
based CNN and the transfer learning-based CNN, respectively.
These experimental results indicated that based on a CNN and
big EEG data, an online P300 BCI with zero-calibration or
shortened calibration could be built. In future studies, we will

extend this system to patients, such as those with strokes
or spinal cord injuries, to help them improve their self-care
ability.
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