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Assessment of Multivariate Information
Transmission in Space-Time-Frequency
Domain: A Case Study for EEG Signals

Sixuan He, Yaru Li, Xinning Le, Xiaoyu Han, Jingfeng Lin, Xiaohang Peng , Min Li, Ruobing Yang,
Dezhong Yao , Pedro A. Valdes-Sosa, and Peng Ren

Abstract— Objective: Multivariate signal (MS) analysis,
especially the assessment of its information transmission
(for example, from the perspective of network science),
is the key to our understanding of various phenomena in
biology, physics and economics. Although there is a large
amount of literature demonstrating that MS can be decom-
posed into space-time-frequency domain information, there
seems to be no research confirming that multivariate infor-
mation transmission (MIT) in these three domains can be
quantified. Therefore, in this study, we attempted to com-
bine dynamic mode decomposition (DMD) and parallel com-
munication model (PCM) together to realize it. Methods:
We first regarded MS as a large-scale system and then
used DMD to decompose it into specific subsystems with
their own intrinsic oscillatory frequencies. At the same
time, the transition probability matrix (TPM) of informa-
tion transmission within and between MS at two consec-
utive moments in each subsystem can also be calculated.
Then, communication parameters (CPs) derived from each
TPM were calculated in order to quantify the MIT in the
space-time-frequency domain. In this study, multidimen-
sional electroencephalogram (EEG) signals were used to
illustrate our method. Results: Compared with traditional
EEG brain networks, this method shows greater potential in
EEG analysis to distinguish between patients and healthy
controls. Conclusion: This study demonstrates the feasi-
bility of measuring MIT in the space-time-frequency domain
simultaneously. Significance: This study shows that MIT
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analysis in the space-time-frequency domain is not only
completely different from the MS decomposition in these
three domains, but also can reveal many new phenomena
behind MS that have not yet been discovered.

Index Terms— Dynamic mode decomposition (DMD),
electroencephalogram (EEG), multivariate information
transmission (MIT), multivariate signal (MS), network
science, space-time-frequency, parallel communication
model (PCM).

I. INTRODUCTION

A. Introduction to Multivariate Information Transmission

MULTIVARIATE signal (MS) analysis is a mainstream
topic across the scientific community, as well as a pow-

erful method to describe the dynamics of complex systems [1].
Since these recorded signals are usually not completely inde-
pendent, but interact with each other, it is of great significance
to investigate the information transmission between them, and
the method based on network science has become the leading
approach. It has not only contributed to a better understanding
of various phenomena in the fields of biology, economy, ecol-
ogy, climate and transportation, but also has many practical
applications [2]. For example, Zhang et al. used network
science techniques to investigate multi-channel electrocardio-
grams in healthy subjects and patients with arrhythmia in
order to enhance the accuracy rate of disease identification [3].
Mutua et al. proposed an approach called the visibility graph to
analyze multivariate empirical records from stock markets; the
results showed that this network method can provide valuable
future stock price predictions [4]. Deza et al. used network
science to study historical temperature records from multiple
locations around the world, and revealed the inherent dynamics
of the global climate [5]. Tang et al. employed correlation
coefficients on multiple traffic time series to construct a
network, and concluded that the periodicity of traffic data can
efficiently predict traffic patterns over the course of a day [6].
Although network science can reveal topological connectivity
between signals, it can only manifest multivariate information
transmission (MIT) in the spatial domain, without considering
their temporal and frequency domain properties. It is well
known that MS contains three domains of information: space,
time, and frequency. Nevertheless, it seems that no research to
date has been able to successfully quantify how multivariate
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information is transmitted simultaneously across these three
domains. Aiming to rectify this deficiency, we attempted
to combine dynamic mode decomposition (DMD) with a
parallel communication model (PCM) to realize it. In addition,
multidimensional electroencephalogram (EEG) signals were
employed as an example to illustrate our method.

The contributions of this article are as follows: (1) As shown
in Table I in the Appendix, traditional network analysis is able
to describe MIT and quantify it with topological parameters,
but this approach only reveals the spatial information of MS.
In addition, although tensor analysis can decompose MS in
three domains, it cannot describe how MS transmit informa-
tion simultaneously in these domains [7]. Only our proposed
approach can quantitatively evaluate MIT in the space-time-
frequency domain. In our method, DMD was first employed
to unveil the MIT in the space-time-frequency domain, and
then parameters extracted from the PCM model were used
to quantify MIT [8], [9]. (2) Unlike previous literature, our
method does not regard MS as a closed system, but rather
as an open system; they constantly exchange information
with the outside environment. In this paper, EEG signals
were used as an example to illustrate this method. The
brain, as commander-in-chief of the body, constantly interacts
with other physiological systems (such as the circulatory and
respiratory systems). Therefore, it is unreasonable to regard
EEG signals as a closed system as a description of its func-
tional activities. Our approach not only attempts to describe
information transmission within the brain, but also reveals
how the brain transmits information to other physiological
systems, and vice versa. (3) Our method extracts a series of
parameters which can reveal new phenomena behind MS. For
example, the channel capacity parameter is used to explore the
maximum information transmission capacity of the brain, and
further investigate whether the disease significantly alters this
capacity. This question has never been studied and answered.

B. Background Description
1) Multidimensional EEG: Multidimensional EEG is one of

the most important imaging modalities in neuroscience, owing
to its low cost, non-invasive, simple acquisition and high
(millisecond-level) temporal resolution advantages. EEG is
collected primarily by placing standardized, conductive, and
multichannel electrodes on the surface of an individual’s skull
[10]. At present, there are many ways to analyze multichannel
EEG signals, among which the brain network (BN) method is
the most commonly employed. For example, Jalili et al. con-
structed EEG BN using partial correlation (PC) and then inves-
tigated its small-world, vulnerability, modularity, assortativity
and synchronizability to distinguish schizophrenia patients
from healthy controls (HC) [11]. Deng et al. constructed BN
based on the phase locking value (PLV) of each pair of EEG
signals, and then extracted their corresponding topological
attributes for emotion recognition [12]. Nicolaou and Georgiou
calculated the Granger causality (GC) of each pair of EEG
signals to construct BN in order to automatically classify
the states of general anesthesia patients between awake and
anesthesia [13]. It is worth noting that although the application

of BN in multidimensional EEG signal analysis can be used
to reveal the functional connections between different brain
regions, the above three defects still exist [14], [15], [16].
Therefore, we attempted to quantify how EEG signals simul-
taneously transmit information in the space-time-frequency
domain by the combination usage of DMD and PCM.

2) Dynamic Mode Decomposition: DMD was originally used
for fluid flow analysis, and recently implemented to investigate
high-dimensional physiological signals, such as EEG signals.
It can capture their coherent spatiotemporal patterns without
making any prior assumptions [17], [18]. Furthermore, DMD
is able to decompose EEG signals into subsystems with
their own intrinsic oscillatory frequency, which provides a
way to investigate how EEG signals transmit information at
different frequencies [19]. Simultaneously, their corresponding
transition probability matrices (TPM) are also calculated to
describe the spatio-temporal information transmission within
and between signals of each subsystem.

3) Communication Model: A basic communication model
usually consists of three indispensable parts: the senders (or
sources), the receivers (or sinks), and the communication
channel that carries information from the senders to the
receivers [20]. The communication channel determines the
basic nature of the model and usually is the most important of
these components [21]. In mathematical expression, a TPM
is usually implemented to describe the properties of the
communication channel, whose rows and columns respectively
indicate the senders and receivers. Each element in the matrix
represents the probability that a receiver gets the message
when a given sender emits it [22]. In general, a series of
communication parameters (CPs) can be obtained through the
TPM in order to quantify MIT in the model.

It should be noted that in practical applications, communi-
cation systems are usually large in scale and must be decom-
posed into multiple parallel subsystems to realize information
transmission; that is, a PCM is adopted [23]. Generally, the
PCM subsystems are not only independent of one other,
but also can deliver information within their own specific
frequency bands; that is, the frequency band of the whole
system is divided into sub-frequency bands overlapping in time
but not in frequency, in order to ensure the efficiency of MIT
in the whole communication system.

In this study, all EEG leads (i. e. brain regions) are regarded
as both senders and receivers in the communication model.
Communication channels are regarded as the vehicle, by which
the information is transmitted between leads. Furthermore,
many studies have demonstrated that the brain is composed of
many dynamic subsystems, which provides physiological basis
to investigate EEG signals using PCM. It should be pointed
out that the method of DMD was employed first to extract
EEG dynamic subsystems for further CP extraction in order
to quantify MIT in the space-time-frequency domain.

4) Assessment of MIT for EEG Signals in the Space-Time-
Frequency Domain: This study uses patients with Parkinson’s
disease (PD) as an example of EEG signals to illustrate
the proposed approach. The main symptoms of PD patients
include not only motor symptoms, but also non-motor symp-
toms, such as cognitive dysfunction [24]. Many previous
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studies have employed EEG signals to investigate the brain
function of PD patients. For example, Li et al. revealed
that EEG BN in PD patients can be implemented to predict
the severity of gait freezing [25]. Geraedts et al. showed
that analysis of EEG BN of PD patients can be used for
effective early diagnosis of their non-motor symptoms [26].
Olde Dubbelink et al. showed that EEG BN decentralization
is an early symptom of PD patients, and suggested that
the severity of the disease increases over time in patients
with strong decentralization [27]. Although these traditional
BN approaches can reveal the brain information transmission
process of PD patients to a certain extent, as mentioned above,
some deficiencies still remain. Therefore, this study attempts
to implement the DMD-based PCM to investigate the MIT of
EEG signals for PD patients.

In this paper, PCM is used for EEG analysis; its working
diagram is shown in Fig. 1. First, multidimensional EEG
signals were preprocessed for noise and artifact removal.
Then, the preprocessed EEG signals were decomposed into
subsystems with their own intrinsic oscillatory frequencies by
DMD. At the same time, the TPM of information transmission
within and between MS at two consecutive moments in each
subsystem can also be calculated. In the following, CPs
derived from each TPM were calculated, and distribution
indexes (DI) for each type of CP in all EEG subsystems were
derived within each EEG frequency band (delta, theta, alpha
and beta waves) for further statistical testing and classification
of PD and HC. The DMD-based PCM model developed in
this paper is illustrated above. Furthermore, two other types of
methods, namely the unparallel communication model (UCM)
without subsystem decomposition and traditional BN methods,
were also employed for comparison. It is worth noting that
DMD-based PCM quantitatively measures MIT in the space-
time-frequency domain, while UCM only describes MIT in
the spatio-temporal domain, and BN only investigates MIT in
the spatial domain.

II. MATERIALS AND METHODS

A. Dataset Collection and Preprocessing
This study used the well-known public dataset “Parkinson’s

disease: Resting state EEG (https://osf.io/pehj9/)” for analysis.
The dataset includes 20 PD patients (ages: 70.0 ± 7.2 years,
9 males and 11 females) and 20 age-matched control partici-
pants without neurological disease (ages: 68.0 ± 6.0 years,
8 males and 12 females). All PD patients were diagnosed
using the UK Brain Bank (or Movement Disorder Society)
clinical criteria. The Unified-Parkinson Disease Rating Scale
(UPDRS) scores of these PD patients are 28.9 ± 16.9.
The experiment was approved by the Ethics Committee of
the Hospital District of Southwest Finland, and conducted
according to the principles of the Declaration of Helsinki.
EEG signals were recorded with 64 electrodes by a NeurOne
(Bittium, Finland) Tesla amplifier (sampling rate: 500 Hz,
bandpass filtering: 0.16 to 125 Hz). The resting EEG signals
of each subject with eyes closed were collected for two min-
utes. Data preprocessing was performed using PREP, a well-
known toolbox for large-scale EEG signal preprocessing [28].

Fig. 1. Flow chart of this paper. Note: PCM, UCM, and BN denote the
parallel communication model, unparallel communication model, and
brain network, respectively. The UCM was constructed directly based
on the EEG delta, theta, alpha and beta waves, without any subsystem
decomposition. The BNs were constructed via PC, PLV and GC. The
topological attributes of BN include the clustering coefficient, rich club
coefficient, network density, network strength and average link strength.
Finally, accuracy, precision, recall, and area under the receiver operator
characteristic curve (AUC) were regarded as classification performance
indexes to evaluate the differentiation ability of the two-subject groups.

It performs automated noise removal, bad channel detection,
and referencing in a way that allows users to divert the data
to particular applications without any direct operations on the
raw data.

B. EEG Subsystem Decomposition Based on DMD
DMD is a data-driven method which decomposes EEG sig-

nals into dynamic modes (DMs) in the form of spatio-temporal
coherent structures, which can be seen as subsystems of the
signal [29]. This algorithm focuses on finding a linear operator
A by way of linear regression between Xpri and Xpos , which
satisfies the following equation:

Xpos
= AXpri (1)

Xpri
=

 |

x1
|

|

x2
|

· · ·

|

xt−1
|

 (2)

Xpos
=

 |

x2
|

|

x3
|

· · ·

|

xt
|

 (3)

where Xpri and Xpos are two n × (t-1) matrices, n and
t indicate the number of EEG leads and number of EEG
sampling points, respectively. Specifically, Xpri and Xpos

represent the multidimensional EEG data collected from time
point 1 to t-1, and from time point 2 to t-1, respectively,
regarded as the EEG signals recorded in the prior and pos-
terior time periods. It is not practical to directly calculate
operator Aentirely from Xpri and Xpos , because n is too
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large to perform the eigen-decomposition of A, which would
have a prohibitively high computational cost. Therefore, the
DMD algorithm employed a rank-reduced approach, where
the eigenvalues and eigenvectors of A were calculated by the
low-rank approximate matrix Ã. The specific steps are shown
as follows.

Step 1. Use singular value decomposition on Xpri :

Xpri
≈ U6V∗ (4)

where U and V represent the left and right singular vectors
of Xpri , respectively, and the asterisk represents a conjugate
transpose.

Step 2. Substitute (4) into (1) and rewrite Xpos :

Xpos
= AU6V∗ (5)

Step 3. Project A on U to obtain the low-rank matrix Ã:

Ã ≜ U∗AU = U∗XposV6−1 (6)

Step 4. Calculate the eigen-decomposition of Ã:

ÃW = W3 (7)

where W is the matrix of eigenvectors of Ã, and 3 is the
diagonal matrix containing all eigenvalues λm (m = 1, . . . , r).

Step 5. Compute the DMs (i.e. the eigenvectors of A):

8 = XposV6−1W (8)

Each column of 8, namely φm , accompanied by the corre-
sponding eigenvalue λm , represents the eigenvectors of A [17],
[18]. The value of m ranges from 1 to r , and r is set to
300, representing the number of truncated modes (i.e. number
of DMs). For more details about the r value, refer to the
discussion. Apart from this, each DM φm contains n elements,
indicating the power amplitude values of n EEG leads in the
mth DM, respectively. It is expressed as follows:

φm = [φ1
m, . . . , φi

m, . . . , φn
m]

T (9)

Furthermore, the oscillatory frequency of the DM φm can
be calculated from its corresponding eigenvalue λm :

fm =

∣∣∣∣ imag (log(λm)/1t)
2π

∣∣∣∣ (10)

where 1t indicates the time difference between two sequential
sampling time points of the signal [20]. Finally, the linear
operator A can be estimated as follows:

A = 838†
≈

r∑
m=1

φmλmφ†
m (11)

where ‘†’ means the pseudoinverse. Then, the sublinear shift
operator Am can be easily derived as follows:

Am = φmλmφ†
m (12)

which describes how EEG signals at a particular frequency
fm are transmitted within the mth DM (i.e. subsystem). These
DMs not only represent spatio-temporal patterns [19], but also
correspond to specific frequencies fm . As can be seen, DMD
provides the foundations to investigate multidimensional EEG
signals from the space-time-frequency perspective.

It should be noted that in practical application, we often use
the augmented matrices Xpri

aug and Xpos
aug , rather than Xpri and

Xpos , to obtain the sublinear operator Am . The shift-stacked
data matrix method introduced by Tu et al., was used to obtain
the augmented matrices. Please refer to [30] for details.

C. EEG Analysis Based on Parallel Communication
Model

As mentioned above, each EEG subsystem obtains one
sublinear shift operator, Am . Then, its corresponding TPM
Ppos|pri

m can be inferred as follows:

Ppos|pri
m = norm

(
(Am)T

)

=


pm

(
l pos
1 |l pri

1

)
. . . pm

(
l pos
n |l pri

1

)
... pm

(
l pos

j |l pri
i

) ...

pm

(
l pos
1 |l pri

n

)
· · · pm

(
l pos
n |l pri

n

)


(13)

pm

(
l pos

j |l pri
i

)
≥ 0 (14)

n∑
j=1

pm

(
l pos

j |l pri
i

)
= 1 (i = 1, 2, . . . , n) (15)

In order to meet the requirements of the TPM in the
communication model, we first took the transpose of Am ,
then normalized each row (see (14) and (15)). The rows and
columns of this matrix represent the senders and receivers
of the communication model, respectively. Each element
pm

(
l pos

j |l pri
i

)
denotes the transition probability that informa-

tion is delivered from the i th EEG lead to the j th lead within
the mth subsystem. As mentioned above, the EEG signal was
analyzed by the PCM, and its global configuration can be seen
on the left side of Fig. 2. The right side of Fig. 2 indicates
how the EEG leads transmit information within one subsystem,
namely, its corresponding TPM.

Furthermore, the power ratio of the i th EEG leads to all
EEG leads within the mth subsystem can be calculated as
follows, which is given as the source probability distribution:

Ppri
m =

[
pm

(
l pri
1

)
, . . . , pm

(
l pri
i

)
, . . . , pm

(
l pri
n

)]
=

[ (
φ1

m
)2∥∥φm
∥∥2 , . . . ,

(
φi

m
)2∥∥φm
∥∥2 , . . . ,

(
φn

m
)2∥∥φm
∥∥2

]
(16)

where the total power of all EEG leads and the power of its
i th lead in the mth EEG subsystem are

∥∥φm
∥∥2 and

(
φi

m
)2,

respectively.
The joint probability matrix in the mth EEG subsystem can

be computed below:

Ppri,pos
m = diag

(
Ppri

m

)
Ppos|pri

m (17)

with the size of n × n, which consists of elements
pm

(
l pri
i , l pos

j

)
(i, j = 1, . . . , n).

Then, the receiver probability distribution in the mth EEG
subsystem can be calculated below:

Ppos
m = Ppri

m Ppos|pri
m (18)
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Fig. 2. The EEG signal was analyzed by the PCM; its configuration can be seen on the left side of the figure. The right side of the figure describes
how each EEG lead transmits information in each subsystem, namely, its corresponding TPM. Note: fm represents the intrinsic oscillatory frequency
of the mth subsystem.

with the size of 1 × n, which consists of elements pm

(
l pos

j

)
( j = 1, . . . , n). Finally, another conditional probability matrix
Ppri |pos

m in the mth EEG subsystem can be computed by the
division of Ppri,pos

m by Ppos
m , with the size of n×n, which con-

sists of elements pm

(
l pri
i |l pos

j

)
= pm

(
l pri
i , l pos

j

)/
pm

(
l pos

j

)
(i, j = 1, . . . , n) [20].

D. Feature Extraction
In this study, a total of 8 CPs was derived for each EEG

subsystem, which are shown as follows:
1) Calculation for Each EEG Subsystem:

a) Source entropy: The source entropy of the mth EEG
subsystem is given below:

H pri
m = −

n∑
i=1

pm

(
l pri
i

)
log2 pm

(
l pri
i

)
(19)

which indicates the total amount of information contained
within the mth EEG subsystem, before any information is sent
by brain regions.

b) Sink entropy: The sink entropy of the mth EEG sub-
system is given bellow:

H pos
m = −

n∑
j=1

pm

(
l pos

j

)
log2 pm

(
l pos

j

)
(20)

which indicates the total amount of information contained
within the mth EEG subsystem, after the information arrives
at brain regions.

c) Loss entropy: The loss entropy of the mth EEG subsys-
tem is given below:

H pri |pos
m = −

n∑
i=1

n∑
j=1

pm(l pri
i |l pos

j ) log2 pm(l pri
i |l pos

j ) (21)

which indicates the amount of information within the mth

EEG subsystem, sent by brain regions in the early stage,
does not eventually reach themselves; that is, this part of

the information is lost during the transmission process. This
parameter may represent information transmitted by brain
regions to the peripheral nervous system.

d) Degree of diffusiveness: The degree of diffusiveness in
the mth EEG subsystem is given below:

H pos|pri
m = −

n∑
i=1

n∑
j=1

pm(l pos
j |l pri

i ) log2 pm(l pos
j |l pri

i ) (22)

which indicates the amount of information within the mth

EEG subsystem, received by brain region at a later time, does
not originally come from themselves; that is, new information
acquired during the transmission process. This parameter may
represent information sent by the peripheral nervous system
and eventually transmitted to brain regions.

e) Mutual information: The mutual information of the mth

EEG subsystem is given below:

I pri;pos
m =

n∑
i=1

n∑
j=1

pm

(
l pri
i , l pos

j

)
log2

pm

(
l pos

j |l pri
i

)
pm

(
l pos

j

) (23)

which indicates the amount of information within the mth EEG
subsystem, transmitted between brain regions.

The relationship between these five types of CPs is shown
in Fig. 3.

f) Joint entropy: The joint entropy of the mth EEG sub-
system can be derived from the five types of CPs mentioned
above:

H pri,pos
m = H pri

m + H pos|pri
m

= H pos
m + H pri |pos

m

= H pri
m + H pos

m − I pri;pos
m (24)

g) Channel capacity: The channel capacity of the mth EEG
subsystem is given below:

Cm = max
Ppri

m

I pri;pos
m (25)
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Fig. 3. The relationship between five types of CPs (sink entropy, source
entropy, loss entropy, degree of diffusiveness, and mutual information).

Since I pri;pos
m is a convex function with Ppri

m as its indepen-
dent variable, it is always possible to find a Ppri

m to maximize
I pri;pos
m , namely Cm , which indicates the maximum amount

of information able to be transmitted between brain regions.
For more details about the iterative computation of Cm , refer
to the [20], and [21].

h) Limited entropy: According to the literature, equilibrium
refers to the state of a biological system that does not evolve
over time, and is used to describe the long-term dynamics
of that system [31]. This study attempts to calculate the
amount of information contained within each EEG subsys-
tem when it reaches the equilibrium state, namely limited
entropy.

Ppos|pri
m Sm = Sm (26)

n∑
i=1

Si
m = 1 (Si

m ≥ 0) (27)

H∞
m = −

n∑
i=1

n∑
j=1

Si
m pm

(
l pos

j |l pri
i

)
log pm

(
l pos

j |l pri
i

)
(28)

where Sm =
[
S1

m, . . . , Si
m, . . . , Sn

m
]T , and Sm represents the

power distribution of all EEG leads when the mth subsystem
reaches its equilibrium state.

2) CP Distribution Evaluation at Each EEG Frequency Band:
As can be seen, a total of 8 CPs, namely H pri

m , H pos
m , H pri |pos

m ,
H pos|pri

m , I pri;pos
m , H pri,pos

m , Cm , and H∞
m , can be derived

from the mth EEG subsystem. Since each subsystem has its
own oscillatory frequency fm , the DIs for each type of CP,
including mean, variance, skewness and kurtosis [32], can be
easily calculated within each EEG frequency band. Therefore,
a total of 32 CP DIs can be obtained within each EEG signal
band for further analysis.

E. Statistical Tests

The Jarque-Bera normality test was performed for each
CP DI at the significance level of 0.05. Since almost all
of the CP DIs are not normally distributed, the Wilcoxon
rank-sum test was implemented to assess differences of
these CP DIs between PD patients and HC. p values
less than 0.05 after Bonferroni correction were considered
significant.

F. Classification
In this study, a total of 32 CP DIs derived from each

EEG frequency band were used to differentiate between
PD patients and HC, by ten commonly used classi-
fiers: Bayes Net (BYN), Naive Bayes (NB), support vec-
tor machine (SVM), Bagging (BG), J48, simple logistic
(SL), k-nearest neighbor (KNN), Adaboost (AB), random
forest (RF) and light gradient boosting machine (LGB)
[33], [34], [35], [36], [37], [38], [39], [40], [41]. These
classifiers are built into the well-known software Weka
[42]. In addition, 10-fold cross-validation was employed,
and the corresponding accuracy, precision, recall, and AUC
were calculated as indices to evaluate the two-subject group
differentiation [43]. Finally, the L2-norm sparse constraint
was implemented on the CP DIs in order to prevent model
overfitting.

Furthermore, two additional data processing procedures
were applied for comparison: (1) 8 CPs (H pri , H pos ,
H pri |pos, H pos|pri , I pri;pos , H pri,pos , C and H∞) were cal-
culated directly from each EEG frequency band, respectively.
Since these CPs are not derived from decomposed EEG
subsystems, the unparallel communication model (UCM) was
adopted for comparison. (2) Three types of BN were first
constructed based on PC, PLV and GC. Then, corresponding
topological attributes were extracted for the two-subject group
classification [44], [45], [46].

III. RESULTS

Fig. 4 shows the means and standard deviations of CP DIs
for PD and HC. We found that out of the total 32 DIs in
each EEG frequency band, 21, 18, 23 and 27 DIs were sig-
nificant for detection of PD patients at delta, theta, alpha and
beta EEG frequency bands, respectively, which convincingly
demonstrates the effectiveness of our proposed approach and
the feasibility of simultaneously investigating MIT of EEG
signals in the space-time-frequency domain.

Fig. 5 illustrates the classification performance of PCM,
UCM and BN for two-subject group differentiation at each
EEG frequency band. The average accuracy, precision, recall
and AUC of PCM for the ten commonly used classifiers at
the delta frequency band were 0.937, 0.938, 0.937 and 0.955,
respectively; at the theta band were 0.895, 0.899, 0.893 and
0.905, respectively; at the alpha band were 0.847, 0.849,
0.850 and 0.902, respectively; and at the beta band were
0.918, 0.919, 0.921 and 0.940, respectively. PCM showed a
significantly stronger ability to differentiate between the two
groups than UCM, PC-based BN, or PLV-based BN. Although
its classification ability was not significantly different from
that of GC-based BN, computation time was much shorter.
For more details, refer to the discussion.

In sum, it is more reasonable and effective for PCM to
reveal the MIT of EEG signals simultaneously in the space-
time-frequency domain, rather than UCM or BN, both of
which only include the MIT in the spato-temporal domain or
spatial domain. Finally, Fig. 5 illustrates all the classification
performance values for ten commonly used classifiers to
differentiate the two subject groups. The mean and standard
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Fig. 4. The means and standard deviations of CP DIs at each EEG frequency band for PD and HC (After Bonferroni correction, ∗p < 0.05,
∗∗p < 0.01).

deviation of their AUC, precision and recall values are also
shown in the Table II in the Appendix.

IV. DISCUSSION

The use of network science to analyze MIT has become
a research hotspot in recent years, since much research has
already shown that signals are not independent of each other,
but affect each other through information interaction [47].
However, as mentioned in the introduction, this method still
has some deficiencies. Therefore, in this paper, we proposed
a new approach, namely DMD-based PCM, to verify the
feasibility of simultaneously analyzing MIT in the space-
time-frequency domain. Then, we took multidimensional EEG
signals as an example to illustrate our proposed method.

This paper regards all brain regions as both senders and
receivers in the communication model. A TPM was used
to represent the communication channels, describing how
information is transmitted from one region to another over time
(including within the same brain region). It is worth noting that
the autocorrelation coefficient (or normalized phase-locking
value) of an EEG signal is always equal to 1. This is one
of the main reasons why the traditional BN method generally
does not take into account self-loops of network nodes; that
is, it cannot describe the influence of a brain region on

itself over time. However, this is clearly not a comprehensive
description of brain activity, and even contradicts much of the
previous literature. For example, biological neuron models are
mathematical descriptions of cells in the nervous system that
generate sharp electrical potentials across their membranes.
Although biological neuron models contain many subtypes,
without exception, all such models show that the current
discharge of a neuron is highly related to its own previous
voltage level [14]. In addition, the autoregressive model, which
indicates that the current amplitude of an EEG signal can be
predicted by a linear combination of its previous amplitudes,
is the most widely accepted one for EEG analysis [15], [16].
Therefore, no matter from the cellular or macro level, the neu-
ral activities of the brain are temporally correlated; the current
activation state of a neuron is impossible to separable from its
previous states, which means that temporal information must
be taken into account in studying MIT.

In engineering, there are many subtypes of communication
models. Since much previous literatures have demonstrated
that the brain is a complex and large-scale system composed
of many subsystems [8], [9], [19], this paper adopted the
PCM. Thus, investigation of how information is transmitted
within EEG subsystems provides a more complete frame of
brain activity. This study selected DMD to decompose the
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Fig. 5. Classification performance between PD and HC by PCM, UCM, PC-based BN, GC-based BN and PLV-based BN, at each EEG frequency
band, respectively.

EEG signals into subsystems, for the following reasons: (1)
DMD has been demonstrated to be able to make full use
of EEG information to capture potential subsystems of the
brain, so-called DMs. (2) DMD does not require any prior
assumptions, such as determined system equations, to process
the EEG data. Thus, it is a powerful data-driven approach,
especially suitable for processing physiological signals with
high dimensionality and complexity [17], [18]. (3) Each DM
has its own inherent frequency, which provides the basis for
the use of PCM to investigate EEG signals, since, in PCM,
different frequency-specific signals are conveyed via different
communication subsystems. Furthermore, the TPM derived

from DMD can indicate spatio-temporal information transmis-
sion patterns within and between EEG signals in each subsys-
tem. Thus, DMD provides the foundation to simultaneously
analyze inter-series and intra-series information transitions of
EEG signals in each dynamic subsystem, namely concurrently
assessing MIT of EEG signals in the space-time-frequency
domain.

In this study, eight types of CPs were utilized to describe
the brain information transition: (1) H pri

m , H pos
m , H pri |pos

m ,
H pos|pri

m and I pri;pos
m are the most commonly used CPs

to evaluate how information is transferred from senders to
receivers in the communication model; their relationship is
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shown in Fig. 3. The information content of H pri
m and H pos

m
is usually not equal, because some of the H pri

m emitted
from the sender, that is H pri |pos

m , does not eventually arrive
at the receiver. In our case, this parameter might indicate
the amount of information sent from brain regions but is
eventually delivered to other physiological systems. On the
other hand, H pos|pri

m represents the information arriving at the
receiver which does not come from the sender. In our case,
this parameter might indicate that the information arriving at
brain regions comes from other physiological systems during
information transmission. In this way, our approach may be
more consistent with physiological facts than the traditional
BN method. The brain is connected to the peripheral nervous
system, which is responsible for transmitting information to
the whole body, and simultaneously collecting information
from the body, coordinating the brain with all organs of the
body. Even when a person is at rest, the messages sent by
brain regions cannot only travel between them. Some of the
information must also be delivered to the peripheral nervous
system, which controls basic physiological activities such as
breathing and heartbeat. At the same time, information from
the peripheral nervous system is also fed back to the brain
in real time [48], [49]. However, previous research has only
regarded the brain as a closed system, which is not very
scientific. In this model, it is possible to use H pri |pos

m and
H pos|pri

m to investigate such mechanisms. Actually, it is the
exactly amount of information, I pri;pos

m , transmitted between
brain regions during communication process. (2) Channel
capacity Cm is the most widely used CP in the communication
model, describing the maximum amount of information that
can be transmitted from the sender to the receiver [20],
[50]. This study used this parameter to measure the max-
imum information transmission capacity of the brain, and
to investigate whether diseases can significantly change this
capacity. (3) Equilibrium, meaning state does not vary over
time, reveals the long-term dynamics of a biological system.
In fact, there have been many studies on equilibrium in
physiological systems, involving sleep, gait, and circulatory
system, etc., which have demonstrated its great significance for
identification of diseases [31], [51], [52]. However, no study
has been conducted so far on the equilibrium state of brain
information transmission. Thus, this study has proposed and
explored the parameter of limited entropy, namely H∞

m , when
the information transmission process is being an equilibrium.

We have some comments on the results, as follows: (1) This
paper does not view the EEG signals as a closed system, but
as an open system that constantly interacts with other physio-
logical systems. As shown in Fig. 3, the influence of the brain
on other physiological systems might be expressed as loss of
entropy, while the influence of other physiological systems on
the brain might be manifested in degree of diffusiveness. It is
apparent from Fig. 4 (c) that the average loss entropy in PD
patients is significantly lower than in the HC group, indicating
that the brains of PD patients exhibit decreased control over the
activities of other physiological systems. In contrast, as shown
in Fig. 4 (d), the average degree of diffusion in PD patients
is significantly higher than in the HC group, indicating that

in PD patients, other physiological systems send a large
amount of information to the brain, which may be due to a
variety of whole-physiological symptoms in PD patients [53].
In addition, it can be found from Fig. 4 (a), (b) and (f) that the
amount of information in the brains of PD patients increases
over time. These findings are also consistent with much
of the previous literature that PD patients show cognitive
overload [54]. Also considering Fig. 4 (c) and (d), one pos-
sible reason is that the brains of PD patients are unable to
properly process and integrate abnormal information received
from other physiological systems. Instead, a lot of faulty
information is generated in their neural circuits, thus resulting
in cognitive overload, which may in turn also further hinder
the brain’s ability to control peripheral physiological sys-
tems. (2) We also introduced the channel capacity parameter
to estimate the maximum information transmission capacity
of the brain (Fig. 4 (g)), and found that the value of this
parameter in PD patients was significantly lower than that in
healthy people. This finding is supported by a lot of previous
medical literature. For example, Du et al. showed that the
information processing ability of PD patients was significantly
decreased due to the decrease of dopamine and precipitation of
α synuclein oligomers, and there is even disorganized neuronal
cross-talk between these brain circuits [55]. (3) This study
also introduced the concept of limited entropy, which can
be used to characterize the chaotic state of the brain over
a long period. Many previous studies have shown that the
physiological mechanisms of ill or aging individuals are in a
more disordered state [56]. As can be seen from Fig. 4 (h),
the average limited entropy of PD patients is significantly
higher than that of the HC group, which not only indicates
that PD significantly increases the degree of brain disorder,
but also explains the cause of extensive cognitive conflict in
PD patients from a physical perspective. (4) Research on the
variability of physiological parameters has always been an
important means to understand the biological mechanisms of
diseases. For example, a large literature has shown that the
variability of electrocardiogram and gait rhythm signals in HC
groups is greater than in pathological groups, which indicates
that healthy physiological systems have strong plasticity [57],
[58]. Therefore, variance, skewness and kurtosis were used
in this study to evaluate the variation of CPs. The results
showed that for most of the extracted CPs, HC had greater
variability than PD patients, which suggests that their brains
show stronger plasticity.

In this study, the PCM parameters in EEG signals extracted
by each individual were also tested by Spearman correlation
with their UPDRS scale scores. The results showed that after
Bonferroni correction, a total of four parameters in the alpha
band and three in the beta EEG band were significantly
correlated. Previous literature has shown that many later-stage
PD patients have cognitive impairment, and the alpha and
beta bands of their EEG signals best represent their cognitive
state [59]. In addition, the parameter among these seven with
the largest absolute value is channel capacity, measured in the
EEG alpha band. This parameter fully indicates that with the
aggravation of the disease, the maximum transmission
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TABLE I
A COMPARISON OF THREE METHODOLOGIES

capacity of information inside their brain decreases
significantly.

In order to verify the effectiveness of our proposed method,
we provided two comparisons, namely UCM and BN, which
only reveal the information transition patterns of multidimen-
sional EEG signals from space-time and spatial perspectives,
respectively. First, we used UCM to distinguish two-subject
groups; that is, the EEG signals were not decomposed into
subsystems for analysis. The results show that compared with
UCM, PCM significantly enhanced the recognition accuracy.
This comparison confirms the previous conclusion to some
extent – that is, the brain is composed of multiple subsystems,
each with its own properties. Second, we used the traditional
BN method for comparison. As shown in Fig. 5, the classifi-
cation performance of PCM was significantly higher than that
of PC- and PLV-based BN. Moreover, with GC-based BN,
PCM showed no significant difference in classification ability.
However, GC-based BN requires quite a lot of computing time.
For example, our approach required only 195.46 seconds to
extract the CPs of a PD patient, but 28,062.78 seconds to
construct a GC BN. Thus, our proposed method not only has
high classification accuracy, but also saves much computation
cost, which provides the possibility for future big data pro-
cessing on EEG signals. Thus, our proposed method not only
saves computation time, but also fully reveals the information
transition of multi-dimensional EEG signals from a space-
time-frequency perspective.

It has been widely recognized that classic methods for
processing MS such as empirical mode decomposition, multi-
variate empirical mode decomposition, multivariate empirical
wavelet transform, wavelet transform, tensor decomposition,
independent component analysis, multivariate Fourier-Bessel
series expansion based empirical wavelet transform, and mul-
tivariate iterative filtering are effective [60], [61], [62], [63],
[64], [65]. It should be noted that these methods mainly focus
on the decomposition of MS, including its decomposition into
the space-time-frequency domain, which on the surface is
similar to our research, but in fact is completely different.
Based on previous research, MIT can only achieve this by
combining these methods with complex network techniques
together. (Here, we point out that although combinations of
the above approaches can be used to describe information
transmission among MS to some extent, they still do not
manifest how MIT operates in these three domains simultane-
ously). Specifically, we first used those methods to decompose
MS, and then employed their corresponding decomposition
components to construct brain network, and finally extracted
a set of common topological parameters (such as clustering

TABLE II
MEAN AND STANDARD DEVIATION OF CLASSIFICATION PERFORMANCE

FOR OUR DEVELOPED AND TRADITIONAL METHODS

coefficients, etc.) from the resulting brain networks for disease
classification [66]. The mean and standard deviation of the
AUC, precision and recall values for ten commonly used
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classifiers to differentiate the two subject groups based on
the above approaches are also shown in the Table II in the
Appendix. In addition, we used two additional data sets
(patients with epilepsy and Alzheimer’s disease, and HC)
to fully verify the validity of our approach. The epilepsy
data was classified using a public data set of 1800 EEG
recordings during seizures and 1800 EEG recordings during
normal conditions. For Alzheimer’s disease, we used a data
set collected by hospitals in Sichuan Provincial Province
(including 45 Alzheimer’s patients and 45 healthy controls).
The above comparisons once again verify that our method
was at least not significantly inferior to the above traditional
methods for distinguishing the disease group from the HC.

Possible follow-up work may be as follows: (1) As men-
tioned above, PD patients experience not only brain dys-
function but also a variety of whole-physiological symptoms,
including motor and non-motor symptoms. This is mainly
because in addition to the substantia nigra and locus coeruleus,
PD also affects other areas such as the hypothalamus, dorsal
vagus nucleus, sympathetic ganglion and adrenal medulla [67].
For example, Hilton et al. found that α-synuclein deposition
already occurs in the nerve fibers and ganglia in the submu-
cosal layer of the stomach, duodenum and colon of PD patients
as early as 8 years before the onset of symptoms [68]. In addi-
tion, pathological studies have also confirmed the presence of
Lewy body changes in the cardiac sympathetic nerve fibers
and ganglia, suggesting that PD patients may develop cardiac
sympathetic nerve disorders in the early stage [69]. In our
later studies, we plan to use our approach to investigate the
EEG signals of early-stage PD patients. Since our proposed
approach treats the brain as an open, rather than a closed
system, it is possible that the newly developed parameters
describing the neural information coming from the activities of
the peripheral nervous system might be used to better identify
early-stage patients. (2) Many patients with neurodegenera-
tive diseases may present with Parkinsonian features (e.g.,
Parkinson-plus syndromes). In follow-up research, we also
hope to adopt our approach to investigate the differences in
DMD-based PCM parameter values between PD patients and
those with Parkinsonian syndrome.

V. CONCLUSION

In this study, a DMD-based PCM model is developed,
which proves the feasibility of assessing MIT in space-time-
frequency domain simultaneously for the first time, while
traditional approaches cannot achieve this. Furthermore, this
study demonstrates that MIT in space-time-frequency domain
is quite different from MS decomposition in these three
domains. In addition, our proposed approach does not treat
MS as a closed system, but rather as an open system, which
may represent information from or transmitted to the external
environment. Finally, compared with traditional methods, our
proposed approach can not only help solve practical problems
in various fields, such as disease detection, but also reveals
many new phenomena behind MS that have not yet been
discovered. In sum, we propose a new approach, which can
comprehensively quantify the information transmission of MS

in multi-domain, thus providing new possibilities for many
applications in the future.

APPENDIX

See Tables I and II.
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