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Abstract— Accurate reconstruction of the brain activities
from electroencephalography and magnetoencephalogra-
phy (E/MEG) remains a long-standing challenge for the
intrinsic ill-posedness in the inverse problem. In this study,
to address this issue, we propose a novel data-driven
source imaging framework based on sparse Bayesian
learning and deep neural network (SI-SBLNN). Within
this framework, the variational inference in conventional
algorithm, which is built upon sparse Bayesian learning,
is compressed via constructing a straightforward map-
ping from measurements to latent sparseness encoding
parameters using deep neural network. The network is
trained with synthesized data derived from the probabilistic
graphical model embedded in the conventional algorithm.
We achieved a realization of this framework with the algo-
rithm, source imaging based on spatio-temporal basis func-
tion (SI-STBF), as backbone. In numerical simulations, the
proposed algorithm validated its availability for different
head models and robustness against distinct intensities
of the noise. Meanwhile, it acquired superior performance
compared to SI-STBF and several benchmarks in a variety
of source configurations. Additionally, in real data exper-
iments, it obtained the concordant results with the prior
studies.
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I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) and magne-
toencephalography (MEG) are widely used noninvasive

techniques to explore human brain function with millisecond
temporal resolution. Reconstruction of the cortical activities
from the E/MEG recordings plays an important role in the
field of neuroscience research and decease diagnose [1], [2].
The aforementioned problem can be addressed by solving the
forward and inverse models sequentially. In forward model,
the lead field matrix, which represents the linear relation
between sources and measurements, is obtained depending
on the configuration of sensors as well as the geometric and
electric attributes of individual brain anatomy [3]. The inverse
problem aims at estimating brain current sources from E/MEG
recordings based on the known lead field matrix. In distributed
source imaging models, current sources are located on voxels
discretized over the entire cortical surface. Unfortunately,
it involves solving an inherently ill-posed linear inverse prob-
lem since the source space dimensionality (∼O(104)) always
enormously exceeds the sensor space’s (∼O(102)).

In order to acquire a unique meaningful estimate in the
neurophysiology context, prior assumptions are used to narrow
the solution space. In the minimum-norm estimate (MNE) [4],
L2-norm of sources was introduced and interpreted as the
underlying energy should be minimized. As a variant of MNE,
low resolution brain electromagnetic tomography (LORETA)
[5] and standard LORETA [6] employed the discrete Laplacian
operator to reflect the spatial correlation between discretized
voxels. Notably, the aforementioned algorithms can be framed
into the Bayesian schema with L2-norm interpreted as the
ingredient of negative log of likelihood function. Under
empirical Bayesian framework [7], also referred to as sparse
Bayesian learning (SBL), the hyper parameters introduced
in regularization terms can be released and optimized with
other variables simultaneously, which induce the estimates
with high sparsities. Champagne [8] was a representative SBL
algorithm and outperformed several benchmarks in various
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source configurations. In addition, the usage of constraints in
temporal domain also benefits to source localization. Temporal
basis functions (TBFs) are widely used in the inverse problem,
with which we are allowed to formulate the model in latent
space with dimensionality tremendously smaller than the num-
ber of time points. TBFs can be predefined [9] or extracted
in data-driven manner, such as singular value decomposition
(SVD) [10] and stimulus-evoked factor analysis (SEFA) [11].
Furthermore, in source imaging based on spatio-temporal basis
function (SI-STBF) [12], TBFs were alternately updated with
other coefficients in the variational inference.

With the rapid development of deep learning in last decade,
more and more attempts have been made to solve the inverse
problem using deep neural networks (DNNs), attracted by
whose effectiveness in building up the mapping between vari-
ables via extracting the underlying correlation from large-scale
training dataset [13]. For example, a DNN model composed
of long short-term memory (LSTM) layers was presented
in [14] to estimate the location and time-course of single-
dipole source. It formulated a sequence-to-sequence (seq2seq)
network with the same length between spatio-temporal input
and output. Hecker et al. proposed a tailored convolutional
neural network (CNN) called ConvDip [15], which converted
an interpolated 2D image of EEG data on single time point into
the corresponding estimated source vector. In source imaging
framework network (SIFNet) [16], the inverse problem was
reinterpreted as a supervised multi-class classification task and
the discriminative model was constructed based on residual
convolutional layers [17]. In data-synthesized spatio-temporal
denoising autoencoder (DST-DAE) [18], a denoising autoen-
coder [19] based model was trained with samples generated
via a data synthesis strategy with the usage of TBFs.

Different from conventional imaging algorithms, where the
prior knowledge is imposed through constructing the proba-
bilistic generative model with explicit mathematical expres-
sions, the emerging DNN-based methods implicitly integrate
the prior assumptions in the derivation of training data. Never-
theless, most of the presented approaches generate the data in
heuristic fashion with little mathematical foundation. On the
contrary, probabilistic generative model has the advantage
in deriving the explicit and hierarchical correlation between
variables, but it often remains intractable to acquire the true
posterior distributions of latent variables. Even though we con-
sider the approximation using mean field assumption, it takes
much time on the alternately update for groups of parameters
in every complete variational inference process.

In this paper, to solve the inverse problem, we propose a
novel source imaging framework with a combination of sparse
Bayesian learning and deep neural network (SI-SBLNN).
Specifically, the network is employed to construct a mapping
from observed measurements to latent sparseness encoding
parameters in the probabilistic graphical model of specific SBL
based algorithm. The network is trained with the synthesized
data derived from the above probabilistic model. Once the
training is accomplished, the variational inference in original
algorithm can be significantly compressed because the critical
parameters are directly output from the trained network and the
convergence can be readily fulfilled. This proposed framework

is flexible to achieve different realizations based on distinct
SBL algorithms or probabilistic graphical models. In this
work, we selected SI-STBF as the backbone to illustrate the
implementation details and corresponding imaging results. The
main contributions of this paper are presented as follows:

1) A novel framework is proposed to solve the inverse prob-
lem in source imaging, where sparse Bayesian learning
is incorporated with deep neural network.

2) Gamma distribution is utilized for sampling the sparse-
ness encoding parameters in training data.

3) Adaptive weighted mean square error (MSE) is pre-
sented as the loss function to measure the discrepancy
between the estimated parameters and ground truth.

The rest of this paper is organized as follows. In Section II,
we derive the novel framework for inverse problem and
illustrate the implementation in detail. Meanwhile, we also
expound the experimental protocol and performance metrics.
Section III demonstrates the source imaging results on both
simulated and real E/MEG data. Some discussion and conclu-
sions are illustrated in Section IV and V respectively.

For notation, upper and lower case bold face letters denote
matrices and vectors respectively. Scalars are represented by
roman lowercase variables. ∥·∥F denotes the Frobenius norm
of a matrix and N (x|µ, 6) denotes a Gaussian distribution
of x with the mean µ and covariance 6.

II. METHODS

A. Probabilistic Generative Model
With the usage of Maxwell’s equation [3], E/MEG record-

ings can be approximately expressed as the linear mapping of
brain current sources as:

B = LS + ε, (1)

where B = [b1, b2, . . . , bT ] ∈ RP×T is the E/MEG mea-
surements with P sensors and T time points, bt represents
a snapshot of measurements at time point t . S ∈ RD×T

indicates the sources and D is the number of discretized
voxels over the cortical mesh. L ∈ RP×D is the lead field
matrix whose columns reflect the sensors response induced
by the unit current sources. The orientation of each source
is restricted perpendicular to the cortical surface. ε ∈ RP×T

denotes the measurement noise with independent and identical
Gaussian distribution N (εt |0, 6ε) at each time point. Because
D always enormously exceeds P , it is inherently ill-posed
to estimate brain sources from E/MEG measurements with
the known lead field matrix. Therefore, prior knowledge is of
great importance to acquire unique meaningful estimate in the
context of neurophysiology.

Because of the convenience to integrate prior assumptions,
probabilistic graphical model is widely used for the inverse
problem. For instance, in SI-STBF, hierarchical structure
is constructed between multiple latent variables, which are
respectively imposed different prior distributions. As shown
in Fig. 1, sources S are decomposed into the product of three
ingredients including spatial basis functions A, temporal basis
functions 8, and coefficients 2:

S = A28, (2)
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Fig. 1. Probabilistic graphical model of SI-STBF. The variables inside
green dashed square are time series while the ones outside the square
are time-invariant. The shaded node indicates the observed variable.
The square-node variables are known and the circle-node ones are
unknown. Directed arrows between nodes indicate probabilistic depen-
dencies. The red dashed arrow represents the mapping constructed by
deep neural network beyond the scope of original SI-STBF.

where 8 =
[
φ1, φ2, . . . ,φK

]⊤, A = [A[1], . . . , A[dγ ]], 2 =

[2⊤

[1]
, . . . ,2⊤

[dγ ]
]
⊤. φk ∈ RT indicates the kth TBF with T

time points. Spatial basis functions A are constructed based
on a data driven parcelization [20] of the cortical mesh with
each A[i] ∈ RD×ri derived from one parcel. The parcelization
is implemented based on Multivariate Source Pre-localization
(MSP) [21], which estimates the contribution of each dipole
to the measurements. Coefficients 2 build up the connection
between spatial and temporal basis functions. Additionally,
2[i] ∈ Rri ×K is imposed the prior distribution with precision
parameter γi as:

p(2[i]|γi ) ∝ exp
(
−

γi

2
∥2[i]∥

2
F

)
. (3)

Hence, the prior probability of entire 2 can be expressed as:

p (2|γ ) =

K∏
k=1

N
(
θk

∣∣0, 0−1
)

(4)

diag (0) =

γ1, . . . , γ1︸ ︷︷ ︸
r1

, . . . , γdγ , . . . , γdγ︸ ︷︷ ︸
rdγ


⊤

, (5)

where θk represents the kth column in 2. Meanwhile, 8 is
imposed the prior distribution with parameters α as:

p(8|α) =

T∏
t=1

N
(
ϕt

∣∣0, diag(α−1)
)

. (6)

With the application of mean field assumption, the variational
posterior distribution is decomposed as:

q (2, 8) = q (8)

K∏
k=1

q (θk) . (7)

In VB-EM process, q (θk) , q (8) , γ , and α are alternately
updated until the convergence of variational lower bound F ,
also called free energy, is fulfilled. Specifically, free energy
has the definition as:

F = ⟨log p (B, 2, 8) − log q (2, 8)⟩q(2,8), (8)

where ⟨ f (x)⟩q(x) denotes the expectation of f (x) under the
distribution q (x). The specific expression of free energy in

SI-STBF is presented in [12]. Additionally, q (θk) is updated
as follows:

q (θk) = N (θk |θ̄k, 6θk)

θ̄k = 6θk F⊤

B⟨φk⟩q(8) − F
∑
j ̸=k

⟨φ⊤

j φk⟩q(8)θ̄ j


6−1

θk = F⊤ F⟨φ⊤

k φk⟩q(8) + 0, (9)

where F = L A.

B. A Combination of Sparse Bayesian Learning and
Neural Network

It is worth noting that precision parameters γ have the
dominant influence on the reconstructed sources. Optimized
values of γ always achieve enormous difference in magni-
tude between ingredients and hence it leads to sparseness in
coefficients 2 owing to the formulation in (3). Moreover,
if γ are settled down during the optimization in VB-EM,
iterative update process is tremendously compressed and the
computational cost can be greatly reduced.

In this study, we introduce a mapping based on deep neural
network represented as the red dashed arrow in Fig. 1, which
directly reconstructs precision parameters γ from measure-
ments B. Using this mapping, we are allowed to acquire
the estimated sources with much fewer epochs of update in
variational inference. Based on the hierarchical structure of the
graphical model, through repeatedly conducting the top-down
sampling procedure, we can obtain the pairs {B(n), γ (n)

}
N
n=1

for network training. Specifically, above all, spatial and tem-
poral basis functions A and 8 are predefined before the
sampling procedure. Precision parameters γ are drawn from a
specific distribution with the same dimensions as the number
of components in A. Afterwards, 2, S, and B are sequentially
generated based on (4), (2), and (1).

1) Gamma Distribution for Precision Parameters Sampling:
As mentioned above, precision parameters γ need to be
sampled before other variables. Nevertheless, how to derive
the training samples {γ (n)

}
N
n=1, which maintain the innate

attributes in SI-STBF, is not straightforward. Intuitively,
we have the preference for γ in which outliers exist with small
values, because it implies the sparseness in sources S.

Here, we declare gamma distribution is an appropriate
option to derive {γ (n)

}
N
n=1. In SI-STBF, two update rules,

including EM based manner and convex approximation, are
tractable for γ optimization. The latter one leads to much
higher convergence rate but they have the same stationary
points theoretically [22]. Suppose γ are regarded as variables
whose components are imposed gamma distributions as the
prior. Simultaneously, mean field assumption is adopted and
parameters in variational posterior are iteratively updated to
promote the free energy. These update formulas have slight
difference from the EM update rule in SI-STBF. Therefore,
gamma distribution is satisfactory for γ sampling.

Gamma distribution is defined in terms of two parameters,
called shape a > 0 and rate b > 0, which respectively
control the sparsity and scale. To concretely illustrate how
gamma distribution is influenced by the shape parameter,
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in the supplementary material, we exhibit the histograms of
samples drawn from gamma distributions with distinct a and
fixed b. As demonstrated, shape a dominates the sparsity of
gamma distribution and outliers with small scale can be readily
sampled with tiny a. Hence, relatively small values of a were
used to derive {γ (n)

}
N
n=1 in subsequent experiments.

2) Network Architectures: In this work, we chose a multi-
layer perceptron (MLP) and two different CNN-type models
for validation, including EEGNet [23] and residual convolu-
tional network used in SIFNet [16], which are both widely
used in temporal signal processing. EEGNet is a compact
CNN composed of three convolution blocks and one fully-
connected layer. The former one contains depthwise and sep-
arable convolution modules which extracts different patterns
of information from the signal. The residual network used in
SIFNet incorporates a sequential of residual blocks where each
one consists of two CNN layers with batch normalization to
alleviate the covariance shift [24]. For above models, softmax
functions in last layers for classification were eliminated to
fulfill the demand in our proposed framework. In the rest of
this paper, EEGNet maintains its notation and residual network
is denoted as ResNet.

3) Loss Function: Even though MSE is popular in the
field of machine learning for its effectiveness, direct use of
MSE between the estimates γ̂ and ground truth cannot meet
our requirement. Because of the inherent attribute of gamma
distribution, γ are readily drawn with components which cover
a wide range of values. To avoid reconstructing extremely
enormous values, log γ̂ is output from the neural network and
the discrepancy between log γ and log γ̂ is adopted in the loss
function. More critically, only the information of components
in γ with small scale can be completely propagated to the
sensor space through the hierarchical structure in SI-STBF.
From measurements B, it is infeasible to explicitly estimate
how small 2[i], is when whose information is covered by other
components with huge scale. Owing to the coupling between
γi and 2[i] in (3), it remains unrealistic to build up a precise
mapping from B to great γi .

In this work, we proposed an adaptive weighted MSE to
release the restriction of explicit reconstruction of γ among
all components, where the weighting coefficients are related
to the scale of corresponding ingredients. Specifically, the
large weighting coefficient is equipped for small γi because
precise estimation is desired. In addition, we need to obviate
small estimate for γi with great scale, otherwise it leads to
redundant or interfered imaging result. Weighting coefficients
are set to different values for distinct scenarios as shown in
Table I, where the threshold γ ∗ is defined as the minimum of
γ multiplied by 104 and w ≫ 1. Eventually, the loss function
has the expression as:

L =
(
log γ − log γ̂

)⊤ W
(
log γ − log γ̂

)
, (10)

where W is a diagonal matrix with the weighting coefficients
as the diagonal elements.

C. Full Algorithm Implementation
The entire algorithm is composed of the data synthesis

phase, model training phase, and source estimation phase.

TABLE I
ADAPTIVE WEIGHTING COEFFICIENTS FOR LOSS FUNCTION

1) Data Synthesis Phase: First of all, spatial basis functions
A is constructed based on the partition set P over corti-
cal mesh. To achieve flexible source reconstruction, P con-
sists of parcelizations Ps with different clustering scales s.
Each Ps is derived based on random MSP scores. Temporal
basis functions 8(n) are composed of specific number of
Gaussian-damped sinusoidal time courses with the definition
as φ (t) = sin (2π f t) exp

(
−( t−τ

ω
)2), where f , τ , and ω

denote the frequency, phase, and damping rate respectively,
which are randomly sampled from specific intervals to promote
the diversity of training data. Afterwards, precision parameters
γ (n), with the same dimensionality as the number of clus-
ters in P , are drawn from gamma distribution with random
shape a. According to (4) and (5), θ

(n)
k is sampled from the

Gaussian distribution with precision matrix 0(n) derived from
γ (n). Negative values in 2(n) are clamped and complemented
with zeros. Sources S(n) are the product of aforementioned
components as in (2). Finally, depending on (1), we obtain
measurements B(n) corrupted by the noise ε with specific
signal-to-noise ratio (SNR). Additionally, B(n) are re-scaled
by division of their absolute maximum and γ (n) should be
normalized compatible with B(n). After repeatedly conducting
the above top-down sampling procedure, we acquire abundant
data {B(n), γ (n)

}
N
n=1 for the model training phase. The detailed

procedure is encapsulated in Procedure 1.
2) Model Training Phase: The neural network is trained

through minimizing the loss function in (10) among the
training dataset {B(n), γ (n)

}
N
n=1. Stochastic gradient descent

is used for parameters update within the neural network.
3) Source Estimation Phase: Once the training phase is

accomplished, using the trained neural network, the unseen
realistic E/MEG signals B are converted into the estimated
precision parameters γ̂ . With the fixed γ̂ , variational inference
is substantially compressed, where the convergence of the
free energy is always fulfilled around five epochs of update
with neglectable computational cost compared to SI-STBF.
Estimated sources Ŝ can then be obtained based on Ŝ = A2̄8,
where 2̄ is the variational mean and 8 is extracted TBFs.
Detailed procedure is exhibited in Procedure 2.

4) Parameters Setting and Computation Requirements: The
partition set P consisted of three parcels Ps with s =

1, 2, 3 unless otherwise specified. Shape parameters in gamma
distributions were drawn from uniform distribution between
0.15 and 0.25. For Gaussian-damped sinusoidal time courses,
f was sampled from log-uniformly distribution between
1 and 5, which implied the preference for low frequency.
In addition, τ and ω were respectively drawn from uniform
distribution over intervals (0.2, 0.5) and (0.05, 0.1). We set
K = 3. In Monte-Carlo simulations, time courses were
with sampling rate of 50 Hz and partitioned into pre- and
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Procedure 1 Data Synthesis Phase
Input:

Lead field matrix L, spatial basis functions A, dataset size
N , dimensionality of precision parameters dγ , number of
TBFs K , and specific SNR.

Output:
Training dataset {B(n), γ (n)

}
N
n=1.

1: for n = 1 to N do
2: Sample a(n) from uniform distribution;
3: for i = 1 to dγ do
4: γ

(n)
i ∼ Gam(a(n), 1);

5: end for
6: Sample f (n) from log-uniformly distribution;
7: for k = 1 to K do
8: Sample τ

(n)
k and ω

(n)
k from uniform distributions

respectively;

9: φ
(n)(t)
k = sin(2π f (n)t) exp

(
−(

t−τ
(n)
k

ω
(n)
k

)2
)

;

10: Sample θ
(n)
k based on (4) and (5);

11: end for
12: S(n)

= A2(n)8(n);
13: Obtain B(n) based on (1) where Gaussian white noise

is sampled with specific SNR
14: s(n)

= max
∣∣vec(B(n))

∣∣
15: B(n)

= B(n)/s(n), γ (n)
= γ (n)

· (s(n))2

16: end for

Procedure 2 Source Estimation Phase
Input:

Measurement B, lead field matrix L, spatial basis func-
tions A, extracted TBFs 8, trained network f (x; θ), and
tolerance δ.

Output:
Estimated sources Ŝ.

1: γ̂ = exp ( f (B; θ));
2: repeat
3: update the variational posterior distribution of θk with

fixed γ̂ based on (9) for each k respectively
4: compute the free energy F ;
5: until relative change of F < δ

6: Ŝ = A2̄8, where 2̄ =
[
θ̄1, θ̄2, . . . , θ̄ K

]
.

post-stimulus periods with 50 time points per phase. Sources
were regarded as active during the post-stimulus period. Noise
was integrated with distinct values of SNR including −5,
0, 5, 10 dB. The whole neural networks were implemented
in Pytorch and trained on single 16 GB NVIDIA Tesla
T4 GPU. Detailed configurations of the neural networks,
including the architectures and parameters, were presented in
the supplementary document. For the loss function in (10), the
weighting coefficient was set w = 100. Adam [25] was chosen
as the optimizer where learning rate was 10−3 and other
parameters for gradient rectification was set as recommended
with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Batch size was
256 and 100 epochs of training were adequate for convergence.
Tolerance δ was set to be 10−6.

D. Evaluation

1) Simulation Protocol: To validate the availability of
SI-SBLNN across head models, three different cortical meshes
distributed in Brainstorm [26] were used in the numerical
simulations, which were derived from the default MR images
of ICBM152, FsAverage, and Colin27. They were respectively
downsampled with 1000, 1500, and 2000 voxels while the
orientation of located dipoles was imposed perpendicular
to the cortical surface. Lead field matrix was acquired via
OpenMEEG [27] software package embedded in Brainstorm,
based on the sensor configuration in 64-channel Neuroscan
Quik-cap system with two reference electrodes removed and
three layers head surface obtained from Boundary Element
Method (BEM).

In order to obtain spatial extended sources for Monte-
Carlo experiments, we randomly selected the seed dipoles on
cortical mesh and then iteratively absorb neighbor elements
into the patches until the desired area of activated region
is fulfilled. To reduce the variance of performance metrics
caused by diverse positions of the patches, 100 Monte-Carlo
experiments were conducted for each experimental scenario
such that the majority of cortical surface is covered by the
generated extended patches. For the evaluation data, dipoles
were activated with the time courses randomly generated with
the same manner as illustrated in Procedure 1. Simulated
sources were projected onto the sensor space with lead field
matrix and Gaussian noise was integrated with specific SNR
based on (1). Simulated measurements were normalized by
division of their absolute maximum and the estimated sources
required to be rescaled.

2) Performance Metrics: To acquire the quantitatively and
comprehensively evaluation of the source imaging perfor-
mance, we utilized four validation metrics for assessment.
The first metric is the area under the receiver operating
characteristic curve (AUC) [28], which is an effective metric
for sensitivity and specificity of the detection. The large AUC
value implies the algorithm is capable to detect sensitively.
The next metric is the spatial dispersion (SD), which measures
the spatial blurriness of the estimated sources [29], [30].
To evaluate the correctness of the localization, the distance
of localization error (DLE) [29], [30] is introduced. Finally,
a mean square error (MSE) between the simulated and esti-
mated sources is utilized to evaluated the accuracy of time
courses reconstruction over the whole brain [31]. For good
source imaging performance, the small values of SD, DLE
and MSE are desired. The detailed calculations of AUC, SD,
DLE, and MSE are presented in the supplementary material.

3) Comparison With Conventional Algorithms: In this paper,
we derive a realization of SI-SBLNN with SI-SBTF as the
backbone, which plays the essential role in data synthesis
and source estimation phases. Hence, it is necessary to have
the proposed algorithm compared to SI-STBF in order to
explore whether it maintains or even promotes the imaging
performance. In addition, the algorithm was tested against the
benchmark methods including SBL [7], LORETA [5], and VB-
GLM [9]. In this comparison, both LORETA and VB-GLM
were transformed within the empirical Bayesian framework
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TABLE II
PERFORMANCE METRICS FOR SOURCE RECONSTRUCTION WITH DIFFERENT NETWORK ARCHITECTURES AND DIFFERENT SIZES OF TRAINING

DATASETS. RESULTS ARE ASSESSED ACROSS 100 MONTE-CARLO SIMULATIONS AND SHOWN AS MEDIANS. THE BEST

RESULTS ACROSS DIFFERENT ARCHITECTURES ARE HIGHLIGHTED IN BOLD FONT

with slight modification. The detailed derivation of benchmark
approaches are presented in the supplementary document.

E. Application to Real Data
To further evaluate the practical imaging performance of the

proposed algorithm, two real datasets were used for validation.
The first data was obtained from the OpenNeuro database.
Its accession number is ds000117. The dataset is composed
of simultaneous MEG/EEG recordings from 16 participants
performing a simple visual recognition task from presenta-
tions of famous, unfamiliar and scrambled faces. The exper-
imental design and multiple modalities data acquirement are
expounded in [32]. Only the MEG measurements were used in
our subsequent analysis, which were recorded at 1100Hz with
an Elekta-Neuromag VectorView 306 system. The averaged
response obtained from the subject 01 during famous face
presentation epoch was downsampled at 100Hz and used
for source estimation. The time window was chosen to be
−500 ms to 500 ms (0 ms means stimulus onset). The noise
covariance was estimated from the empty room recordings.
The cortical surface was discretized with 1024 voxels. The
second data is a public epilepsy dataset, which is available
from the Brainstorm download page. The EEG data was
recorded with sampling rate of 256 Hz from a patient suffering
from focal fronto-parietal epilepsy, who was performed a left
frontal tailored resection and was seizure-free with a follow-
up of 5 years.1 The average recordings, head model, and the
lead field matrix can be acquired by following the proce-
dures outlined in the Brainstorm tutorial. The time window
was selected −200 ms to 200 ms (0 ms means the spike).
Noise covariance was estimated from the recordings between
110 ms and 160 ms. The cortical surface was discretized with
1024 voxels.

III. RESULTS

For clear visualization of the source imaging results at spe-
cific time point, the thresholded absolute value of the current

1http://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy

sources, which is normalized with unit maxima, is shown on
the cortical surface in this paper. The thresholds are determined
upon the level of background activity based on Otsu’s method
[20], [31], [33].

A. Different Network Architectures and Different Sizes of
Training Datasets

As a first step, we evaluated the performance of differ-
ent network architectures and how they were influenced by
the size of training dataset. Four networks were trained via
three synthesized training datasets with different sizes. Con-
cretely, we utilized two distinct configurations for ResNet and
EEGNet respectively, which are indicated as ResNet-Shallow,
ResNet-Deep, EEGNet-Narrow, and EEGNet-Broad. ResNet-
Deep consists of more residual blocks than ResNet-Shallow.
EEGNet-Broad shares the same architecture with EEGNet-
Narrow, but the former one have more feature maps in each
module. The detailed configurations including architectures
and parameters are presented in supplementary document. Two
MLP models with 90 and 1000 hidden units, respectively
denoted as MLP-90 and MLP-1000, are also used for com-
parison. Three training datasets with distinct sizes are denoted
as D.1, D.3, and D.6, which are composed of 1×104, 3×104,
and 6×104 samples for each level of SNR. The training dataset
with smaller scale is included in the one with larger scale and
hence we have D.1 ⊂ D.3 ⊂ D.6. In this section, simulated
sources were activated with single patch and different extents
of 2, 6, 10, 18 cm2. Only the head model derived from
ICBM152 was utilized. SNR was 5 dB.

First, we focus on the distinction between the MLP and
CNN-type models. As demonstrated in Table II, for three
training datasets, the CNN-type models consistently acquired
the better results among all the validation metrics. Besides,
it is easy to validate that there are enormously more learnable
parameters in MLP-1000 than other compared models. Hence,
compared to MLP, EEGNet and ResNet are more efficient
in capturing the meaning information. Second, we investi-
gate how the imaging performance of CNN-type models is
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TABLE III
PERFORMANCE METRICS FOR SOURCE RECONSTRUCTION WITH DIFFERENT CORTICES AND CORRESPONDING HEAD MODELS. RESULTS ARE

ASSESSED ACROSS 100 MONTE-CARLO SIMULATIONS AND SHOWN AS MEDIANS. THE BEST RESULTS ACROSS

DIFFERENT ALGORITHMS ARE HIGHLIGHTED IN BOLD FONT

influenced by the size of training dataset. When the net-
works were trained with D.1, they acquired the compara-
ble imaging results and no one had the superior values
than others among entire metrics. As the training dataset
enlarged, the difference between distinct models became clear.
For D.3 and D.6, EEGNet-Broad had significantly larger
AUCs and smaller SDs, DLEs, and MSEs than EEGNet-
Narrow, while ResNet-Deep acquired slightly better perfor-
mance than ResNet-Shallow among most metrics. Meanwhile,
ResNets obtained remarkably superior imaging results than
EEGNets when abundant synthesized data were used for
training. It is worth noting that EEGNets were less sensitive
than ResNets to the size of training dataset. Specifically,
EEGNets obtained indistinguishable results with varying sizes,
while ResNets acquired upgraded imaging performance as the
dataset enlarged. Nevertheless, although using more training
data led to better performance for ResNets, the improvement
from D.3 to D.6 was empirically smaller than the one from
D.1 to D.3. In the subsequent experiments, to achieve the
balance between imaging results and computational cost,
unless otherwise specified, we employed the network with
architecture of ResNet-Deep and trained with 3×104 samples
for each SNR level.

B. Different Head Models

To verify the availability of the proposed algorithm for
different head models, in this section, we conducted the com-
parison between SI-SBLNN and SI-STBF across distinct head
models derived from cortical surfaces including ICBM152,
FsAverage, and Colin27. The experiments retained the settings
in Section III-A. For Colin27, the parcelizations Ps were
generated with clustering scales of s = 2, 3, 4 to avoid
too many clusters over the cortical mesh, which lead to
the difficulty in estimating precision parameters with huge
dimensionality.

Table III depicts that, for all extents across different head
models, SI-SBLNN acquired the superior performance com-
pared to SI-STBF with larger AUCs and smaller SDs, DLEs,
and MSEs. Moreover, as the spatial extents of activated
region enlarged, SI-SBLNN obtained relatively stable values
of AUC and decreased values in other metrics. It validated
that the novel framework is available for different cortices
and distinct numbers of discretized voxels over the cortical
surface.

Fig. 2. Performance metrics for various levels of SNRs. The figures are
results of 100 Monte-Carlo simulations and data are shown as medians
surrounded by 95% confidence intervals.

C. Influence of SNR

In this section, we tested the influence of SNR for distinct
algorithms. We used the head model derived from FsAver-
age. Two patches of simulated sources were activated with
spatial extents of approximately 6 cm2 and white noise
was integrated with different SNRs including −5 dB, 0 dB,
5 dB, and 10 dB. Fig. 2 depicts the performance metrics
for different algorithms with varying SNRs. As the SNR
increased, all the algorithms produced increasing values of
AUC and descending values of SD, DLE, and MSE imply-
ing the higher detection accuracy and smaller spatial dis-
persion, localization error, and time courses reconstruction
error. SI-SBLNN was relatively robust to intensity of the
Gaussian white noise and acquired more stable imaging result
compared to conventional algorithms. Additionally, except
AUCs, SI-SBLNN produced significantly better results than
the benchmarks under small SNR. With increasing values of
SNR, the discrepancy in multiple metrics between SI-SBLNN
and benchmarks gradually descended. Specifically, with SNR
of 10 dB, SI-STBF acquired the comparable performance with
SI-SBLNN among AUC, DLE, and SD and even better results
of MSE.
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Fig. 3. Source imaging results of different methods for varying SNRs.
Sources are activated with sizes of approximately 6 cm2. The rescaled
absolute values of current activities are presented at the peak of the
time course.

To intuitively demonstrate the source imaging performance
of different algorithms influenced by varying SNRs, one
realization of randomized simulations is presented in Fig. 3.
As depicted, under the Gaussian noise with SNR of −5 dB,
SI-SBLNN was capable to reconstruct the sources with spa-
tial extents and locations basically in line with the ground
truth. In the same circumstance, other algorithms obtained
interfered imaging results in irrelevant regions over the cor-
tical surface. As the noise intensity decreased, most methods
acquired more plausible imaging results. With SNR = 5 and
10 dB, SI-SBLNN, SI-STBF, and SBL successfully local-
ized the sources in correct region without spurious estima-
tions. Notably, thanks to the usage of spatial basis functions,
SI-SBLNN and SI-STBF reconstructed the sources with most
accurate extents. In contrast, SBL acquired overly focal imag-
ing results while LORETA and VB-GLM reconstructed diffuse
sources covered many irrelevant regions.

D. Influence of the Number of Patches
In this section, we investigated how the imaging results

of SI-SBLNN were influenced by the number of activated
sources. We used the head model derived from FsAverage.
We generated the simulated sources with various patches
ranging from 1 to 4. The extent of each patch was fixed
approximately 6 cm2 and SNR was 5 dB. The performance
metrics for all compared methods with various numbers of
patches are presented in Fig. 4. As the number of patches
increased, SI-SBLNN produced degraded imaging perfor-
mance with decreasing AUCs and growing DLEs, SDs and
MSEs. However, it still outperformed the other algorithms
among all the metrics except SBL in AUC. It is worth
noting that, SI-SBLNN acquired the inverse trends in SD and
DLE compared to most benchmarks, including its backbone
SI-STBF. It is most probably caused by the relatively small
values of shape a in the data synthesized phase. It induced
the preference for source estimation with high sparsity which
was empirically not appropriate for the cases where sources
were activated simultaneously among so many cortical regions.
To further exhibit the capability of different algorithms to
reconstruct multiple sources, Fig. 5 presents the spatial maps
for one realization of randomized simulations with three
sources. The imaging results are depicted at the time points
at which the peak of individual time courses were attained.

Fig. 4. Performance metrics for various numbers of patches. The
figures are results of 100 Monte-Carlo simulations and data are shown
as medians surrounded by 95% confidence intervals.

Fig. 5. Imaging results of different methods with three simultaneous
sources. The sources are activated with sizes of approximately 6 cm2

and individual temporal patterns. The rescaled absolute values of cur-
rent activities are presented at the peak of each source. The SNR is
5 dB.

SI-SBLNN produced the imaging results with consistent loca-
tions and extents with the ground truth at entire time points.
SI-STBF and SBL were capable to localize the sources at
correct regions. However, the former obtained slightly larger
extents than the ground truth while the latter acquired smaller
ones. Additionally, SI-STBF produced the irrelevant estimate
at inferior temporal area. LORETA and VB-GLM acquired
overly extended estimations with too many redundant sources.

E. Result of Real Data
1) Results With Face Processing Experiment MEG Data: In

this section, we investigated the imaging result of SI-SBLNN
for real MEG data, whose description is presented in
Section II-E. Both the data synthesis and model training
phases maintained the same configurations as expounded in
Section II-C.

Fig. 6 presents the visual responses of distinct algorithms at
100 ms and 170 ms after the presentation of famous faces stim-
ulus. As shown in the plots, SI-SBLNN successfully localized
the bilateral neural activation at the occipital area at 100 ms,
which is regarded for early visual processing. At 170 ms,
SI-SBLNN reconstructed the sources in the vicinity of right
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Fig. 6. Source imaging results for MEG recordings in face processing
experiment. The results of different methods are demonstrated from
the left to right columns. The estimates are presented as the rescaled
absolute values of current activities at 100 ms and 170 ms after stimulus
onset.

Fig. 7. Comparison of distinct algorithms on the Brainstorm epilepsy
tutorial data. The rescaled absolute values of current activities are
presented at the spike of recordings (i.e., 0 ms).

fusiform area concordant with the previous reports [9], [34].
SBL and SI-STBF estimated the neural activation at the similar
regions over the cortex. Meanwhile, the former reconstructed
sources with smaller extents than SI-SBLNN while the latter
acquired spurious reconstruction at left temporal pole. Besides,
LORETA and VB-GLM failed to locating the neural activation
at right occipital area and obtained too diffuse estimates which
covered many functionally irrelevant regions.

2) Results With Public Epilepsy EEG Data: In this section,
we validated the imaging performance of proposed algorithm
for real EEG recordings with its acquisition declaration pre-
sented in Section II-E. Both the data synthesis and model train-
ing phases maintained the same configurations as presented in
Section II-C.

As shown in Fig. 7, all the methods except SBL can suc-
cessfully localized the sources on left frontal region over the
cortical surface. Nevertheless, both LORETA and VB-GLM
reconstructed too widespread estimates including many spuri-
ous sources at functionally irrelevant areas. On the contrary,
SI-SBLNN and SI-STBF produced the estimations with good
spatial contiguity, which are consistent with the previous
clinical report in [35].

IV. DISCUSSION

Because of the inherent ill-poseness of E/MEG source
imaging problem, prior constraints are of great importance to
acquire meaningful solution in the context of neurophysiology.
It has been widely accepted by previous studies [36], [37]
that cortical activations enjoy spatial coherence and local
homogeneity. With the employment of Bayesian modeling,
the sources are factorized into multiple ingredients which
can be imposed prior knowledge with distinct attributes.
Many conventional source imaging methods can be framed
into this schema, such as MNE, LORETA, and VB-GLM.
When hyper parameters introduced in the prior distribution
are released to be updated, the algorithm is transformed

within empirical Bayesian framework, which has the prefer-
ence for sparse estimations, like Champagne and SI-STBF.
The Bayesian modeling based algorithm constructs the proba-
bilistic model with explicit mathematical formulas. However,
the more sophisticate model we derive, the more difficultly
we can obtain the posterior distribution of latent variables.
In most cases, it is even intractable to acquire the true posterior
and we can merely achieve the approximate estimation via
variational inference, which always has high computational
cost and slight use for real-time applications. On the contrary,
DNN-based methods, such as ConDvid, SIFNet, and DST-
DAE, avoid the iteration and hence reduce the computation
time in each single inference process. Additionally, prior
assumptions are implicitly imposed through the synthesized
training data, instead of constructing the probabilistic graphical
model.

In this paper, we proposed a novel framework termed
SI-SBLNN, which combines sparse Bayesian learning and
deep neural network, and implemented an algorithm with
SI-STBF as the backbone for training data synthesis and
source estimation. As demonstrated in Table III, the pro-
posed algorithm had the availability for different cortices and
corresponding head models. Meanwhile, the plots in Fig. 2
depict that SI-SBLNN was robust against SNRs and acquired
superior imaging performance than the benchmarks under low
SNRs (≤ 5 dB). Furthermore, as shown in Section III-D,
SI-SBLNN was capable to duel with the cases where mul-
tiple sources were activated. On the contrary, the DNN-based
method proposed in [14] was limited in single dipole recon-
struction. In [18], individual models are required to be
trained to acquired promising results for different scenarios.
In Section III-E, we demonstrated that SI-SBLNN was capable
to produce plausible imaging results for realistic E/MEG
recordings, even though it was merely trained with synthesized
data.

For the Bayesian learning algorithms with complicated
graphical structures where latent variables are heavily cor-
related, variational inference is widely used to acquire the
approximation of the posterior distribution, such as mean field
assumption. However, the decomposition over variables can
induce severe deviation from the true correlation. Besides,
the error is readily accumulated and amplified through the
alternate updates in VB-EM process. On the contrary, the pro-
posed method directly extracts the relationship between mea-
surements and essential latent variables from the synthesized
training data, which in principle reduces the bias caused by the
user-specified approximate posterior and the iterative update
process. Therefore, compared to the backbone algorithm,
it makes sense for SI-SBLNN to obtain the more accurate
estimation of precision parameters and acquire the superior
imaging performance in multiple scenarios as presented in
Fig. 2 and 4. Moreover, in SI-SBLNN, the computational cost
of variational inference are tremendously compressed using
the trained neural network. As shown in Table S5 of the
supplementary material, across Monte-Carlo simulations, the
average inference time for SI-SBLNN was around one-thirtieth
that of SI-STBF.
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Compared to the purely DNN-based methods, the proposed
algorithm has the main distinctions in following aspects. First,
rather than generating the training data in heuristic man-
ner, we employed SI-STBF as the backbone, which consists
of probabilistic graphical model with explicit mathematical
expressions, to derive the training data by conducting the
top-down sampling procedure. Second, rather than making
estimations in the source space with huge dimensionality like
SIFNet and DST-DAE, the proposed algorithm reconstructs the
precision parameters with enormously less dimensions thanks
to the matrix factorization in SI-STBF, which implies the spa-
tial coherence of cortical activations. It substantially alleviates
the difficulty in network training. In the supplementary docu-
ment, we compared the performance for different head models
between SI-SBLNN and SIFNet. As shown in Table S4,
SIFNet acquired the superior results for ICBM152 and FsAv-
erage, which consist of relatively small number of dipoles.
For the head model with most discretized voxels over the
cortex, the source detection sensitivity and localization accu-
racy of SIFNet significantly degraded. In contrast, SI-SBLNN
was capable to obtain consistently satisfactory results among
different head models with tolerable additional computational
cost. As depicted in Table S5, the inference time of SI-SBLNN
and SIFNet are essentially of comparable magnitude.

In this paper, rather than deriving a specific source imag-
ing algorithm which outperforms the benchmarks, the main
contribution is that we proposed a flexible framework, which
combines the sparse Bayesian learning and deep neural net-
work and is allowed to achieve different realizations with
slight modification in many aspects. Specifically, the proposed
strategy can be applied to other algorithms within empirical
Bayesian framework in addition to SI-STBF. For instance,
we can choose BESTIES [38] as backbone and the map-
pings are formulated from measurements to both precision
parameters and the learnable scale in spatial smoothing kernel.
Additionally, a variety of network architectures can be used to
construct the mapping. Graphical convolutional neural network
[39] is a reasonable option because of its inherent compatibil-
ity to face connectivity over the cortical mesh. Furthermore,
we can build up the network by unrolling the iteration in
variational inference [40]. The network is composed of stacked
modules with the same architectures but different learnable
parameters, where the architecture is elaborately designed to
match the update procedure in single epoch. LSTM layer can
be employed to get rid of the constraint of fixed-size temporal
dimensions [14].

To the best of our knowledge, current DNN-based algo-
rithms, including the proposed algorithm in this study, have
to train individual neural networks for distinct head models.
It restricts the clinical applications owing to the long train-
ing time for subject-specific models. In the future, we will
concentrate on the design of network architecture and collab-
orative algorithm towards the generalizability across different
head models, which eliminate the network training phase for
new subjects and sensor configurations. It will significantly
improve the practicality of DNN-based algorithm for source
imaging.

V. CONCLUSION

The current study presented a novel E/MEG source imaging
framework termed SI-SBLNN, in which the neural network is
incorporated into a source imaging algorithm based on sparse
Bayesian learning through constructing the straightforward
mapping from measurements to latent sparseness encoding
parameters. We achieved an implementation with SI-STBF
as the backbone and employed MLP, EEGNet and ResNet
to formulate the mappings. In numerical simulations, MLP
performed poorly among the comparison and ResNet obtained
better imaging performance than EEGNet with abundant train-
ing data. The proposed algorithm validated its availability for
different head models and robustness against distinct inten-
sities of noise. Meanwhile, it acquired superior performance
compared to SI-STBF and several benchmarks in a variety of
source configurations. Additionally, in real data experiments,
SI-SBLNN produced the concordant results with the prior
studies when it was trained with synthesized data merely.
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