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IFNet: An Interactive Frequency Convolutional
Neural Network for Enhancing Motor

Imagery Decoding From EEG
Jiaheng Wang , Lin Yao , and Yueming Wang

Abstract— Objective: The key principle of motor
imagery (MI) decoding for electroencephalogram (EEG)-
based Brain-Computer Interface (BCI) is to extract
task-discriminative features from spectral, spatial, and
temporal domains jointly and efficiently, whereas limited,
noisy, and non-stationary EEG samples challenge the
advanced design of decoding algorithms. Methods:
Inspired by the concept of cross-frequency coupling
and its correlation with different behavioral tasks, this
paper proposes a lightweight Interactive Frequency
Convolutional Neural Network (IFNet) to explore
cross-frequency interactions for enhancing representation
of MI characteristics. IFNet first extracts spectro-spatial
features in low and high-frequency bands, respectively.
Then the interplay between the two bands is learned
using an element-wise addition operation followed by
temporal average pooling. Combined with repeated trial
augmentation as a regularizer, IFNet yields spectro-spatio-
temporally robust features for the final MI classification.
We conduct extensive experiments on two benchmark
datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset
and the OpenBMI dataset. Results: Compared with
state-of-the-art MI decoding algorithms, IFNet achieves
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significantly superior classification performance on
both datasets while improving the winner’s result in
BCIC-IV-2a by 11%. Moreover, by conducting sensitivity
analysis on decision windows, we show IFNet attains the
best trade-off between decoding speed and accuracy.
Detailed analysis and visualization verify IFNet can capture
the coupling across frequency bands along with the
known MI signatures. Conclusion: We demonstrate the
effectiveness and superiority of the proposed IFNet for MI
decoding. Significance: This study suggests IFNet holds
promise for rapid response and accurate control in MI-BCI
applications.

Index Terms— Brain–computer interface, motor imagery,
cross-frequency interactions, convolutional neural net-
works, data augmentation.

I. INTRODUCTION

BRAIN-computer interface (BCI) enables direct commu-
nication and control between a brain and a machine [1],

wherein electroencephalogram (EEG) is the mostly used neu-
rophysiological signal modality in noninvasive BCI systems.
There are varieties of EEG-based BCI paradigms wherein
motor imagery (MI) representing a typical type of self-induced
mental activity has been widely investigated for various
purposes [2], [3], [4]. With the fast development of BCI
technology referring to signal acquisition, signal processing,
and machine learning techniques, MI-BCI has shown feasi-
bility and effectiveness for real-world applications such as
post-stroke motor rehabilitation [5], 2D continues control [6],
[7], 3D Quadcopter control [8], and so on. To prop up these
applications, accurate and fast MI decoding plays a vital role
in MI-BCI.

As a common practice in the BCI community, accurate
algorithms for decoding intrinsic brain states are principally
guided by neurophysiological priors along with advanced
machine learning techniques. Considering MI classification,
it is well known that task-specific MI will evoke event-related
desynchronization (ERD) and event-related synchronization
(ERS) of sensory-motor rhythms in distinct frequency bands
and brain areas [9]. Targeting at those neural signatures, tradi-
tional hand-crafted MI features are well designed using diverse
machine learning approaches. For example, common spatial
pattern (CSP) [10] is widely adopted for 2-class MI feature
extraction. Filter-bank common spatial pattern (FBCSP) [11]
further harnesses CSP features in multi-bands together with
mutual information-based feature selection methods. In addi-
tion, Riemannian geometry-based methods provide new tools
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for building simple and accurate classification models [12].
Nevertheless, most traditional approaches have limited capa-
bility to extract spectro-spatio-temporally informative fea-
tures and they are mainly optimized for binary classification.
Besides, they suffer from the high susceptibility to inter-trial
and inter-subject variability. To enhance the utility of decod-
ing models, transfer learning-based approaches are typically
investigated in previous studies [13], [14].

Apart from spectral power variations in response to different
MI tasks, previous studies have suggested cross-frequency
coupling (CFC) might play a functional role in sensory,
motor, and cognitive tasks [15], [16]. CFC represents the
association of multiple frequency neural oscillations, that is,
one frequency band modulates the activity of a different
frequency band [17]. Recent studies have observed CFC
characteristics during movement-related mental tasks [18].
Moreover, strong Phase-Amplitude Coupling between alpha
and high gamma was observed during motor planning and
this feature vanished during motor execution [19]. In another
study, [20] demonstrated the effectiveness of motor-related
CFC features for a 4-class MI-BCI system, suggesting inter-
actions among multi-bands provide an additional way for dis-
criminative representation of MI tasks. To summarize, we refer
to cross-frequency interactions representing complex interplay
across different frequency bands from different electrodes.
Although cross-frequency interactions are widely investigated
to account for neural mechanisms, they have been rarely
considered for MI decoding.

Deep learning-based approaches alleviate the necessity of
hand-crafted features in an end-to-end learning manner [21].
On the one hand, it is of great interest to explore spectro-
spatio-temporal representation in an effective and efficient
manner. On the other hand, limited, noisy, and non-stationary
EEG samples obscure the effective learning of deep learning
models. To that effect, state-of-the-art neural network models
principally share a similar spirit with traditional approaches,
that is, they are inspired by neurophysiological priors and
enjoy the advancement of neural networks [22], [23]. For
example, EEG activities are transformed into a sequence of
topology-preserving multi-spectral images and fed into a deep
recurrent CNN [24]. Due to the local receptive field of the
convolution operator, their network is difficult in capturing
spectral interactions among long-range electrodes. In another
study, [25] proposed a compact CNN as a general-purpose
EEG decoder, namely EEGNet. EEGNet learns frequency
filters entirely by backpropagation, which omits hand-crafted
spectral bands that might be beneficial for mining mutual
spectral information. More recently, channel group attention
was introduced in [26] to deal with filter bank inputs. Different
from the perspective of band interaction, their inter-channel
attention targets scaling the feature channels to improve the
expression ability of representative features in all bands. Yet,
most deep learning models learn cross-frequency interactions
implicitly, resulting in increased susceptibility to the inter-trial
variance of MI tasks.

Lastly, fast MI decoding also plays an important role
in real-world applications. Specifically, a practical MI-BCI
system should respond accurately to users’ mental intentions

while as fast as possible. On the other side of the coin,
a shorter window size commonly results in lower decoding
accuracy due to high intra-trial variance of MI response. Thus,
it is necessary to investigate models’ sensitivity to decision
window length. Apart from accuracy evaluation on different
window sizes, we leverage information transfer rate which
incorporates both speed and accuracy in a single value and
is widely used for measuring communication and control
systems [27].

With the purpose of accurate and fast MI decoding, in this
paper, we propose a lightweight Interactive Frequency Convo-
lutional Neural Network (IFNet) by combing neurophysiolog-
ical priors with efficient convolutional architectures. The main
contributions of this paper are as follows:

• We propose a lightweight Interactive Frequency Convolu-
tional Neural Network (IFNet) to explore cross-frequency
interactions for enhancing spectro-spatio-temporally
robust representation of MI tasks.

• We introduce repeated trial augmentation as a regularizer
to ease overfitting caused by limited and noisy EEG
samples during network training.

• We conduct extensive experiments against state-of-the-
art MI decoding algorithms on two benchmark datasets,
demonstrating the effectiveness and superiority of the
proposed IFNet. Moreover, it achieves the best trade-off
between decoding speed and accuracy. Last but not
least, we verify IFNet learns neuro-physiologically inter-
pretable features.

The code is publicly available at
https://github.com/Jiaheng-Wang/IFNet.

II. RELATED WORKS

A. MI Decoding Algorithms
MI decoding remains a hotspot in the EEG-based BCI field

in past decades. A thorough survey on traditional machine
learning algorithms for MI decoding from EEG can be found
in [28]. Among them, FBCSP was adopted by the winning
entry of BCIC-IV-2a and is widely used for comparison
with deep learning models. Deep learning-based approaches
have shown promising results and consistent progress in
MI-BCI. Among them, EEGNet was first proposed as a
general-purpose lightweight network for a wide range of
EEG-based BCI paradigms. More recently, a novel Filter-Bank
Convolutional Network (FBCNet) [29] achieved the highest
classification accuracy on the BCIC-IV-2a dataset. It employs
a filter bank data representation followed by spatial filtering to
extract spectro-spatially discriminative features. In contrast to
EEGNet, FBCNet abandons temporal filters and completely
extracts spectrally localized signals manually. Both of them
have provided open-source codes for better reproducibility.
Therefore, these two models serve as baseline methods in our
experiments. Additionally, in terms of recent advancements
in network architecture design, multi-path representation and
cross-feature interactions have gained much attention in the
computer vision community [30], [31]. With the above con-
siderations, we propose IFNet targeting cross-frequency inter-
actions in an effective and efficient manner.
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Fig. 1. Architecture of our proposed IFNet implemented with 1D convolution (X: input EEG signals, U: feature maps, C: number of EEG channels,
T: number of time points, F: number of spatial filters, W: temporal pooling size, N: number of classes).

B. Data Augmentation and Regularization

Regularization is a common practice aimed at preventing
overfitting in the training of neural networks. From the point
of view of input data, data augmentation is an explicit form
of regularization by means of artificially enlarging the training
dataset from existing data using various translations. As for
MI-BCI, high intra-class variability in MI signatures, as well
as limited, noisy, and non-stationary EEG samples result in
unstable training and low generalization ability of deep learn-
ing models. Meanwhile, it is difficult to design an effective
data augmentation strategy due to indiscernible task-specific
information incorporated in raw EEG signals. While noise
adding is commonly utilized with neural networks in the BCI
field, the performance is marginal owing to low signal-to-
noise ratio of generated EEG samples. Following the idea
of batch augmentation proposed for image recognition [32],
we introduce repeated trial augmentation consisting of random
cropping and random erasing to strengthen the learning ability
of CNNs for EEG decoding.

III. METHODS

A. Interactive Frequency Convolutional Neural Network

To build an efficient network architecture while incorpo-
rating neurophysiological priors of MI-EEG, we first conduct
a preliminary experiment on a representative network named
EEGNet to guide the compact yet powerful design of IFNet.
Detailed analysis is presented in Appendix A. We empirically
demonstrate the first block is the major determinant of EEGNet
and its learning capability can be strengthened by width scal-
ing. More importantly, in the case of D = 1 in the first block
of EEGNet, we find it can be implemented more efficiently
with 1D convolution by reversing the sequence of temporal
and spatial filtering. Altogether, inspired by the concept of
CFC as well as the efficient design of EEGNet, we propose
IFNet to capture spectro-spatial-temporally discriminative fea-
tures effectively and efficiently. IFNet is composed of three
stages: spectro-spatial feature representation, cross-frequency
interactions, and classification. The architecture of IFNet is

illustrated in Fig. 1 and summarized in Appendix C. In the
following subsections, we will introduce each stage in detail.

1) Spectro-Spatial Feature Representation: Firstly, a single-
trial raw EEG sample can be represented as a 2D map X ∈

RC×T , where C represents the number of EEG channels,
T represents time points. With the aim of explicit band
interaction, we divide EEG signals into two characteristic
frequency bands. Motivated by the fact that brain oscillations
are typically categorized into specific frequency bands (delta:
<4 Hz, theta: 4-7 Hz, alpha: 8-12 Hz, beta: 12-30 Hz, gamma:
>30 Hz), EEG signals are first filtered into low (4-16 Hz) and
high-frequency (16-40 Hz) bands, respectively. The choice of
these two bands covers mu and beta rhythms most relevant to
MI signatures. Other reasonable band segmentation options are
discussed in ablation studies. We denote Xl ∈ RC×T to rep-
resent EEG data filtered in the low-frequency band, and Xh ∈

RC×T to represent EEG data filtered in the high-frequency
band. As discussed in Appendix A, we adopt spatial filter-
ing followed by temporal filtering to learn spectro-spatially
discriminative patterns. Specifically, in our implementation, X
is regarded as a 1D image along the temporal dimension with
multi-channels. Then, spectro-spatial features are produced by:

Ul = F̂t
(
F̂s(Xl)

)
Uh = F̃t

(
F̃s(Xh)

)
(1)

where Fs and Ft are 1D point-wise spatial convolution and
1D depthwise temporal convolution, respectively. Both of
them are followed by a Batch Normalization (BN) layer [33].
In the sequel, Ul ∈ RF×T and Uh ∈ RF×T are the output
representing spectro-spatial features in each band, where F
is the number of spatial filters per band. Note operations in
each band are mathematically equivalent to the first block of
EEGNet with D = 1 except for batch normalization layers, but
computational complexity is significantly reduced and can be
implemented more efficiently using 1D convolution operators.
In the default settings, F is set to 64. The kernel size of
temporal filters k is set to 63 for low-band input to capture
a whole cycle of sinusoidal signal down to 4 Hz at 250 Hz
sampling rate, and we halve the kernel size for the high band.
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2) Cross-Frequency Interactions: To enhance representation
ability of spectro-spatial features, we model the interplay
between different frequency bands. Concretely, we investigate
varieties of interaction operators.

1) Summation. I(Ul , Uh) = Ul + Uh .
2) Concatenation. I(Ul , Uh) = [Ul , Uh].
3) Hadamard product. I(Ul , Uh) = Ul ⊙ Uh .
4) Linear projection. I(Ul , Uh) = WlUl + WhUh .
5) Split attention. We adopt Fuse and Select operators

proposed in [34].
Here I(Ul , Uh) denotes the interaction function among multi-
band features. The experiment results for each interaction
operator are discussed in the ablation study. We empirically
demonstrate using an element-wise addition operation yields
the best performance for MI decoding from EEG. Not only
does the summation operator couple features among differ-
ent bands, but also preserves distinct characteristics in each
band with the help of learnable affine parameters in BN
layers before band interaction. Consequently, IFNet deals
with cross-frequency interactions effectively and efficiently,
requiring no extra parameters and a few more floating-point
operations. Then, a GELU [35] activation function is applied
after I(Ul + Uh).

3) Classification: The spectro-spatial features yielded from
the first two stages remain a high-dimensional temporal rep-
resentation. It is necessary to integrate temporal features to
prevent overfitting while retaining characteristics of neural
dynamics. While traditional approaches for MI decoding com-
monly employ variances as temporal characteristics, pooling is
widely used for information aggregation in CNNs. It is known
that pooling mechanisms are effective and efficient for dimen-
sionality reduction and regularizing neural networks. Hence,
we adopt temporal average pooling with a non-overlapping
window size of W to extract robust temporal representation.
By applying temporal aggregation, the output of second stage
U ∈ RF×T is transformed to U ∈ RF×T/W . Since oscillation
rhythms of EEG can be assumed as stationary signals in a
short moment, in this work, W is set to 125 under 250 Hz
sampling rate, representing 0.5-s-long EEG characteristics.
In the end, the flattened spectro-spatial-temporal features are
fed to a fully-connected (FC) layer followed by the softmax
operation, producing the output probabilities of each class.
To help regularize our model, we use the dropout technique
before the FC layer [36]. The dropout probability is set to a
default value of 0.5.

B. Repeated Trial Augmentation
We introduce repeated trial augmentation consisting of

random cropping and random erasing as a regularizer to
stabilize training as well as enhance the generalization of
neural networks in EEG decoding. Briefly speaking, it pro-
duces multiple instances of a sample in a mini-batch with
several data transformations. An illustration of repeated trial
augmentation is shown in Fig. 2.

Consider a mini-batch B with size N × C × T , where
N denotes the number of samples, C and T are number
of channels and time points. For each sample in a batch,

Fig. 2. Illustration of repeated trial augmentation (M: number of
repeated trials, D: length of cropping window.) It produces multiple
instances of a trial in a mini-batch using random cropping followed by
random erasing.

we generate M multiple instances of it by applying simi-
lar data transformations. In particular, random cropping and
random erasing are leveraged to produce multiple views of
a selected sample. Firstly, we perform random cropping to
stochastically crop the desired widow length from task trials
during training, resulting in multiple temporal views of EEG
signals. Concretely, a randomly initialized time point t is used
to crop EEG signals with W window length, yielding Sc =

S [1 : C, t : t + W ]. As for the test, we simply use the fixed
time segment for evaluation. Secondly, random erasing is per-
formed along the temporal dimension acting like disconnecting
abnormality which increases discrimination difficulty during
network training. Moreover, by generating EEG instances with
various levels of occlusion, it enforces networks to focus on
task-specific stationary characteristics while ignoring artifacts
appearing transiently during MI trials. To conduct random
erasing, we randomly initialize the duration of erasing region
to D, wherein D

W is in the range specified by minimum Dl and
maximum Dh . Then, a time point p is randomly initialized
and the localized signals are erased with zero values, i.e.,
Sc

[
1 : C, p : p + D

]
= 0. Finally, an augmented batch with

size M · N × C × W is produced and used for the training
of neural networks in a step. In basic settings, W is set to
3-s-long time points; Dh is set to 1

3 ; and M is set to 5.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols
Two publicly available datasets are utilized in this

paper, which are denoted as the BCIC-IV-2a [37] and the
OpenBMI [38] datasets. A brief description of each dataset
is as follows.

The BCIC-IV-2a dataset is originally used as the official
2a dataset in BCI Competition IV. It aims at improving the
cross-session performance of decoding algorithms for 4-class
MI classification. Specifically, there are four MI tasks, namely
the imagination of movement of the left hand (class 1), right
hand (class 2), both feet (class 3), and tongue (class 4).
The EEG data were recorded from 9 healthy subjects with
22 electrodes sampled at 250 Hz. The training and test data
are from two sessions on different days for each subject. Each
session contains 288 trials with 72 trials per class.
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The OpenBMI dataset is a large benchmark containing
2 sessions of 2-class MI-EEG data from 54 healthy subjects.
Each session consists of training and test phases, and each
phase has 100 trials with balanced right and left-hand MI tasks.
Note the test phase is conducted with online feedback using
a CSP decoding model so that extra inter-phase variability
is brought in the same session. Following the practice in
the original paper, we select 20 electrodes located in the
sensory-motor region and resample the time series to 250 Hz
for compatibility with the BCIC-IV-2a dataset. No additional
preprocessing is applied to both datasets.

We conduct two types of intra-subject performance evalua-
tions, i.e., within-session evaluation and cross-session eval-
uation. The former is conducted on session 1 data of the
OpenBMI dataset. For each subject, MI trials from the training
phase and test phase are served as training data and test
data, respectively. The latter is carried on whole sessions for
both datasets. Training data and test data are from session
1 and session2, respectively. Meanwhile, since repeated trial
augmentation employs random cropping to perform data trans-
formation in the network training stage, 0-4 s post-cue data
are used for training, while 0.5-3.5 s post-cue data are used
for validation and test (corresponding to a 3-s-long cropping
window implemented in random cropping).

To validate the superior performance of IFNet regarding the
above evaluation settings, we compare IFNet with three base-
line methods, i.e., FBCSP, EEGNet, and FBCNet. In particular,
FBCNet has reported the best classification accuracy so far
on the BCIC-IV-2a dataset in the cross-session setting. We re-
implement these methods according to their open-source codes
and retain key architectures as suggested by the respective
authors. Furthermore, we perform statistical testing using
Wilcoxon signed-rank test for the BCIC-IV-2a dataset (small
sample size) and paired t-test for the OpenBMI dataset.

B. Training Procedure
We employ cross-entropy loss together with the

AdamW [39] optimizer to update network parameters
during training. To reduce performance variability and
overfitting caused by multiple hyperparameters selection,
we just take learning rates into consideration. Since a unified
learning rate might result in suboptimal performance for
different network architectures, to mitigate optimization
inefficiency caused by inadequate learning rates, we perform
a grid search of 2−8– 2−15 before fine-grained experiments for
each model on each dataset, respectively. The basic learning
rate is selected by yielding superior cross-session accuracy
achieved without repeated trial augmentation. Detailed
settings of learning rates for each model are provided in
Appendix B. To note, the optimal model-specific learning
rates are relatively stable across datasets yet differ with
each other. Other hyper-parameters regarding the AdamW
optimizer and repeated trial augmentation are used in default
settings. The batch size is set to a constant value of 32.

As it is done in [40] and [29], we employ a two-stage
training strategy wherein the training data is further divided
into a training set and a validation set. In the first stage, the

TABLE I
CROSS-SESSION CLASSIFICATION ACCURACY FOR EACH MODEL ON

THE BCIC-IV-2A DATASET

TABLE II
CLASSIFICATION ACCURACY (MEAN±STD) COMPARISON OF

DIFFERENT METHODS ON THE OPENBMI DATASET

network is trained on the training set, and the model which
produces the lowest validation loss is saved. In the second
stage, the entire training data are used for network fine-tuning,
while the optimizer is resumed from the checkpoint selected
in the first stage. We stop stage 2 training when the training
loss reduces below the stage 1 training loss. The maximum
training epochs are set to 1000 and 500 for stage 1 and stage 2,
respectively.

To this end, the training set is split into 5 folds in a
sequential, class-balanced manner wherein each fold serves
as a validation set alternately. In this manner, we perform
network training twice resulting in 2 × 5 evaluation folds
for each subject under specified evaluation settings. The final
classification accuracy is averaged over all folds and all
subjects on respective unseen test data.

C. Comparison With State-of-the-Art Approaches
We compare the performance of IFNet against state-of-the-

art approaches using various evaluation protocols. The same
training procedure and repeated trial augmentation are applied
to all deep learning models.

Firstly, Table I shows the classification results of all meth-
ods on the BCIC-IV-2a dataset. IFNet consistently outperforms
the other methods, and the discrepancy in average classifica-
tion accuracy is statistically significant between IFNet and all
the other methods. Moreover, the highest accuracy for each
subject is achieved by IFNet except a slightly higher accuracy
of FBCNet for subject 7. In particular, IFNet improves the
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Fig. 3. Average classification accuracy and ITR with three win-
dow sizes (1 s, 2 s, and 3 s) for each method on both datasets.
(a) Average cross-session accuracy on the BCIC-IV-2a dataset.
(b) Average cross-session ITR on the BCIC-IV-2a dataset. (c) Aver-
age within-session accuracy on the OpenBMI dataset. (d) Average
within-session ITR on the OpenBMI dataset. We see that, IFNet consis-
tently outperforms the other methods for different window sizes across
extensive performance evaluations.

average accuracy of FBCSP-SVM by 8.34% in the cross-
session evaluation, demonstrating the complex feature learning
ability of deep learning models while keeping robust to deal
with inter-session variability.

Secondly, Table II presents cross-session and within-session
performance of all methods on the OpenBMI dataset. Simi-
larly, IFNet achieves the highest average classification accu-
racy in both evaluation settings. While FBCNet yields the
second-highest average accuracy in the former dataset, it per-
forms worse than EEGNet in this large 2-class classification
dataset. However, IFNet exhibits consistent superiority in
different datasets and evaluation settings. Notably, although
cross-session decoding is considered to be much more difficult
than within-session decoding, all methods achieve comparable
performance with respect to evaluation protocols. This is par-
tially explained by fewer training samples in the within-session
evaluation (100 versus 200), indicating a higher amount of
training data might be beneficial for data-hungry methods like
deep learning models.

Lastly, we scale the network widths of IFNet F ranging
from 16 to 256 to explore the effect of model capacity
on classification accuracy in the case of limited and noisy
EEG samples. The results with different network widths are
shown in Fig. 9 in Appendix E. IFNet effectively makes
use of additional feature channels without serious overfitting
problems. Remarkably, IFNet-256 achieves the highest 78.74%
accuracy for 4-class classification on the BCIC-IV-2a dataset.

D. Sensitivity Analysis on Decision Windows
To further demonstrate the effectiveness of IFNet with

shorter decision window lengths, we conduct sensitivity anal-

ysis on decision windows for all methods on both datasets.
Concretely, window lengths of 1, 2, and 3 s are investigated
while using the same training procedure and repeated trial
augmentation as in previous experiments. In order to train net-
works with different window lengths, we adjust the cropping
window size according to the targeted window length, and
the dimensions of input channels of the FC layer are scaled
proportionally to window size. As for performance evaluation,
0.5-1.5 s and 0.5-2.5 s post-cue data are evaluated under the
1-s-long window and 2-s-long window settings, respectively.
In addition to accuracy evaluation, we leverage information
transfer rate (ITR) as a composite index incorporating both
speed and accuracy. The ITR representing number of transfer
bits per minute is given by,

I T R =
60
D

(
log2 N + P log2 P + (1 − P) log2

1 − P
N − 1

)
(2)

where N denotes number of classes, P denotes classification
accuracy for a subject, and D denotes the duration of a
sample in seconds. Results of this analysis are presented in
Fig. 3. We can draw the following conclusions. First, IFNet
consistently outperforms the other methods for all window
sizes on both datasets in terms of average accuracy and ITR.
In addition, IFNet obtains the same average accuracy for a
1-s-long window as that of FBCSP for a 3-s-long window
on the BCIC-IV-2a dataset, and it also attains competitive
average accuracy for a 1-s-long window as that of state-of-the-
art methods for a 3-s-long window on the OpenBMI dataset.
Second, we observe longer window lengths result in higher
classification accuracy whereas the reverse applies to ITR, and
differences among these windows in terms of average accuracy
and ITR are statistically significant (all p < 0.05) for all meth-
ods on both datasets. It suggests practitioners should take both
accuracy and response speed into consideration depending
on specific circumstances. Third, compared to FBCSP-SVM,
deep learning models achieve superior or comparable average
accuracy and ITR for all window sizes on both datasets,
further manifesting a deep learning-based MI-BCI system is
promising and within reach. Of note, we also conduct the same
analysis without using repeated trial augmentation, where we
gain the similar conclusions except overall lower accuracy
owing to the absence of data augmentation strategies. In sum,
IFNet achieves the best trade-off between decoding speed and
accuracy.

E. Ablation Studies
In this section, to validate the effectiveness of data aug-

mentation, band segmentation, and band interaction, we ablate
important design elements in the proposed IFNet using
cross-session analysis on the BCIC IV-2a dataset. We adopt
the same training procedure for all ablation models.

1) Ablation on Data Augmentation: To evaluate the effect
of repeated trial augmentation on enhancing the generaliza-
tion of neural networks, we conduct an ablation study on
data augmentation methods utilized in this paper. Table III
summarizes the average classification accuracy achieved with
different combinations of data augmentation methods for all
investigated CNN models. Note in this context, repeated trial
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TABLE III
AVERAGE ACCURACY OF DEEP LEARNING MODELS WITH DIFFERENT

COMBINATIONS OF DATA AUGMENTATION STRATEGIES ON THE

BCIC-IV-2A DATASET

augmentation refers to generating M = 5 multiple instances
of a sample with any predefined data transformations. From
Table III, we have the following observations: (1) All data aug-
mentation methods consistently improve performance against
a naive training mode across all models, indicating the effec-
tiveness of proposed data augmentation in the context of
MI-EEG decoding. (2) Combinations of different methods
outperform a single one in most cases. Particularly, IFNet
and FBCNet achieve the highest accuracy with repeated trial
augmentation compromising random cropping and random
erasing. EEGNet attains the best accuracy in the specific case
that M = 1 in single instance repeated trial augmentation. (3)
Random erasing improves accuracy marginally for FBCNet,
which can attribute to no temporal filters to be regularized
in FBCNet. (4) While repeated trial augmentation moderately
strengthens the generalization of IFNet and FBCNet, it is
detrimental to the performance of EEGNet. Considering more
diverse training instances produced in a batch as well as a
relatively low capacity of EEGNet, it would be better to use
multiple instances repeated trial augmentation for models with
an ample capacity.

2) Ablation on Band Segmentation: We investigate
cross-frequency interactions explicitly by means of multi-band
inputs of EEG signals. While there exist various band
segmentation means, we ablate on neuro-physiologically
significant spectral bands, following the common design
philosophy regarding MI decoding. Accordingly, four band
segmentation options are investigated in Table IV. The
option without band segmentation represents raw EEG input
which is the same as the input fashion of EEGNet. The
option corresponding to the maximum number of band
segments is similar to the division of theta, alpha, beta, and
gamma frequency bands. It can be observed that the network
without band segmentation is inferior to the other multi-band
network architectures, demonstrating the effectiveness of band
segmentation in our IFNet. Besides that, compared to IFNet
proposed in this paper, further division of frequency bands
decreases the classification performance significantly. On the
one hand, more narrow frequency bands result in a linearly
increasing number of parameters, hence the network tends to
overfit due to the scarcity of training data. On the other hand,
the first stage of IFNet incorporates temporal filters acting
like frequency filters, hence IFNet is capable of learning

TABLE IV
RESULTS OF IFNET WITH DIFFERENT BAND SEGMENTATION OPTIONS

ON THE BCIC-IV-2A DATASET

TABLE V
RESULTS OF IFNET WITH DIFFERENT INTERACTION OPERATORS ON

THE BCIC-IV-2A DATASET

spectrally localized features from a broad frequency band.
In conclusion, low and high-band segmentation is preferable
to achieve high performance and efficiency.

3) Ablation on Interaction Operators: The second key com-
ponent of IFNet lies on the efficient band interaction operation.
As described in Section III-A.2, we employ five diverse inter-
action functions to explore cross-frequency interactions. The
results in Table V indicate a simple yet effective element-wise
addition operation is preferable to MI decoding from EEG.
It outperforms the second-highest operator with an improve-
ment of 1% on the BCIC-IV-2a dataset. In particular, the
concatenation operator exerts the least interaction between two
band features while the corresponding model still outperforms
FBCNet with an improvement of 1%. More significantly,
by applying a decent interaction operation, extra discrimi-
native interactions can be mined to gain statistically signif-
icant improvement (p < 0.05 between summation operator
and concatenation operator). It is noted that the summation
operation is one of the solutions covered by linear projec-
tion. However, the large margin between these two methods
indicates overfitting problems faced by linear projection due
to limited and noisy EEG samples. Apart from parameter-
free operators, we also manage to exploit a channel-wise
attention operator. Although it has shown success in image
recognition, it does not transfer well in MI decoding. Further
investigation on attention mechanism might help facilitate
EEG feature representation [26]. In conclusion, the summation
operator deals with cross-frequency interactions effectively
and efficiently.

F. Interpretability Analysis
To gain insight into how IFNet extracts

neuro-physiologically sound features, we present
interpretability analysis from two perspectives on the
BCIC-IV-2a dataset.

1) Relation With CFC: To understand how IFNet works with
cross-frequency interactions, we analyze the output produced
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Fig. 4. Subject-level channel-wise absolute correlation coefficient
between low and high-frequency bands averaged over all trials of each
MI task for subject 3 on the BCIC-IV-2a dataset. (a) Channel-wise abso-
lute correlation coefficient of input signals. (b) Channel-wise absolute
correlation coefficient of output features produced by the first stage in
IFNet. We can observe large discrepancies of correlation coefficients
between input signals and extracted features, verifying IFNet captures
coupling across frequency bands for complementary and discriminative
feature representation.

by the first stage in IFNet. Since a CFC signature is typically
described as a high correlation of features between two differ-
ent frequency bands, we inspect the channel-wise correlation
of features between low and high-frequency bands in IFNet.
Specifically, given an input sample [Xl , Xh], IFNet produces
[Ul , Uh] through the first stage, where Ul ∈ RF×T , Uh ∈

RF×T , and F is the number of output channels. We compute
the Pearson correlation coefficient for each channel, yielding
C ∈ RF . Then subject-level C is averaged over all trials of
each MI task for a subject. For comparison, C is also cal-
culated between input band signals of samples. Fig. 4 shows
the average channel-wise absolute correlation coefficients for
subject 3. High correlation can be observed between a por-
tion of output features from low and high-frequency bands,
whereas nearly zero correlation is observed for input signals.
This demonstrates IFNet holds similar characteristics of CFC
and verifies IFNet is capable of capturing coupling across
frequency bands from raw EEG signals. Furthermore, as for a
specific channel, there exists a correlation discrepancy across
different MI tasks. This is consistent with observations that
different behavioral tasks evoke different CFC signatures [41].
We assume such correlation discrepancies contribute to com-
plementary and discriminative feature representation.

2) Attribution Analysis on Input Signals: It is of great interest
to understand what EEG features that IFNet learns to pay
attention to during diverse MI tasks. Meanwhile, to ensure
that the classification performance is driven by task-specific
features as opposed to noise or artifacts in the data, we adopt
a gradient-based method called Integrated Gradients [42] to
attribute predictions of IFNet to its input signals. Briefly, in an
EEG decoding network, it could tell us which sample points of
the EEG signals are responsible for a certain label (task) being
picked. On implementation, Integrated gradients aggregate the
gradients along the straightline between the baseline (usually
zero scores) and the input, and can be computed easily
using a few calls to the gradient operation. The analyses are
performed on IFNet models for subject 3 and subject 7 on the
BCIC-IV-2a dataset. Concretely, integrated gradients are first
calculated on each input sample, yielding Gl ∈ RC×T , and
Gh ∈ RC×T . Next, we average absolute integrated gradients
along the temporal dimension, yielding channel attributions
Gl ∈ RC , and Gh ∈ RC . Then subject-level attributions are
calculated by averaging channel attributions for each band
respectively over all trials of each MI task for a subject.
Finally, normalized spectro-spatial attributions are mapped to
the corresponding electrode locations, resulting in attribution
patterns that associate with brain regions and frequency bands
for each MI task. Attribution patterns for subject 3 and subject
7 are shown in Fig. 5 (a) and (b).

As for subject 3, large attributions mainly lie in the high-
frequency band. Meanwhile, channel attributions mostly con-
centrate on the right, left, and middle sensorimotor areas for
left-hand, right-hand, and both-feet MI, respectively. These
characteristics are closely associated with the well-known MI-
related brain activation patterns. On the other hand, large attri-
butions are observed on the low-frequency band for subject 7.
This could be explained by the fact that discriminative features
lie on subject-specific frequency bands. Also, the most relevant
features focus on contralateral brain regions with regard to
MI tasks. Apart from spectro-spatially localized activation
patterns, as explored in this paper, cross-frequency interactions
can also be utilized and complement discriminative MI fea-
tures. In short, our IFNet learns neuro-physiologically sound
features and can in turn provide complementary insights on
neurophysiological bases of mental tasks by explainable AI
techniques.

V. DISCUSSION

In this paper, a lightweight IFNet architecture is designed
to extract spectro-spatio-temporally robust features for MI
decoding from EEG. Guided by neurophysiological priors
along with efficient convolution operations, IFNet achieves fast
and accurate MI decoding in the presence of limited, noisy,
and non-stationary EEG samples. Moreover, we validate the
effectiveness of repeated trial augmentation as a regularizer
for better generalization of neural networks. The extensive
experiment results and ablation studies suggest the inclusion of
neurophysiological priors while designing an efficient network
can lead to nontrivial improvements in decoding performance,
which corroborates with findings in previous studies [29],
[43]. On the other hand, previous studies rarely report effect
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Fig. 5. Subject-level spectro-spatial attribution patterns averaged over
all trials of each MI task for a subject on the BCIC-IV-2a dataset.
(a) Attribution patterns for subject 3. (b) Attribution patterns for subject
7. We see that large attributions lie in task-specific brain regions and
distinctive frequency bands, which are closely associated with the
known MI signatures.

of decision windows on performance of MI decoding algo-
rithms whereas it is not trivial in practical MI-BCI utilization.
Through sensitivity analysis on different decision windows,
we manifest the competitive ability of IFNet for a 1-s-long
window as that state-of-art models for a 3-s-long window,
indicating the superiority of decoding speed of IFNet while
providing comparable accuracy. Consequently, IFNet increases
ITR significantly and has shown a promising tool for online
MI-BCI systems. As a final point, we show neurophysiological
signatures of MI are effectively captured by IFNet, providing
insights of knowledge learned by neural networks.

Concerning model size and training complexity, as shown
in Table VI, IFNet has moderate size while demanding
less training time compared to other deep learning models.
As stressed in Section III-A.1, IFNet is implemented with
1D convolution and the computation complexity is reduced
substantially as contrasted with EEGNet. In particular, using
a NVIDIA GTX1080Ti graphic card, the training time of
IFNet is 1.23 and 1.20 times faster than EEGNet and FBCNet,
respectively. The results indicate potential advantage of IFNet
for fast deployment in online MI decoding. In inference
mode, i.e. predicting a single trial, the model requires less
than 10 ms running on a CPU device, which is suitable for
computation-intensive continuous control tasks.

There remain several limitations to be further explored in
future work. Firstly, all evaluations performed in this work are
offline analyses following the common practice in previous
studies. As the aim of MI-BCI is to establish real-time
direct commutation and control between a human brain and a
machine, the proposed method necessitates further validation
in online settings [44]. Moreover, the online co-adaptation
between a user and algorithm will exert an additional effect on

TABLE VI
MODEL SIZE AND TRAINING TIME PER FOLD

the online performance of MI-BCI systems. Secondly, since
IFNet is a general neural network architecture targeted at
efficient processing of EEG signals, it can be investigated on
other EEG measurements, such as emotion recognition and
sleep staging. Thirdly, although repeated trial augmentation is
utilized to prevent overfitting, IFNet is still data-hungry and
its capacity can be easily enlarged by width scaling. We con-
sider transfer learning as a potential solution to perform fast
calibration using fewer targeted samples [45], [46]. Finally,
while recent studies have leveraged attention mechanisms
in other mental tasks [47], [48], we observe deteriorated
performance of IFNet using different attention operators in
our unreported experiments. We conjecture that limited EEG
samples obscure the generalization of learned attention, and
further investigation on attention mechanism might guide the
effective utilization of attention for MI-EEG decoding.

VI. CONCLUSION

In this work, we propose IFNet to further advance MI
decoding accuracy, which shows significantly improved per-
formance on two benchmark MI datasets as compared with
state-of-the-art methods. Besides, it achieves the best trade-off
between decoding speed and accuracy. We also introduce a
data augmentation strategy named repeated trial augmentation
to improve the generalization of neural networks. IFNet is
compact while powerful to extract spectro-spatio-temporally
robust features, which is also neuro-physiologically inter-
pretable. The proposed IFNet could be beneficial for MI-based
BCI applications, and other BCI paradigms for feature-less
decoding.

APPENDIX

A. Preliminary Experiment on EEGNet
EEGNet is powerful for various EEG decoding tasks while

remaining compact as much as possible. To reveal the key
to the success of EEGNet, we conduct a pilot experiment
on EEGNet regarding model width and depth. Concretely,
EEGNet consists of two blocks. The first block contains F
temporal filters and each of which is followed by D spatial
filters. The second block adopts depthwise-separable convo-
lution to further process spectro-spatial features along with
temporal dynamics. We question whether these two blocks
contribute equally to effective feature extraction from EEG.
Moreover, as a matter of fact, width and depth are two essential
dimensions for network scaling. Therefore, we investigate
width scaling and depth scaling on EEGNet.

With the above considerations, three baseline networks
with different depths but the same width and capacity are
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TABLE VII
IFNET ARCHITECTURE

TABLE VIII
AVERAGE SUBJECT-SPECIFIC CLASSIFICATION ACCURACY

Fig. 6. Scaling network width with three EEGNet variants of different
depths. Each dot in a line represents a model with a different width
coefficient w, corresponding to 1, 2, 3, 4, respectively.

constructed. The first employs only the first block of EEGNet
with F = 16, D = 1. The second is set to F = 8,
D = 2 with two activation layers, which corresponds to the
original EEGNet. The third employs one first block followed
by two second blocks using F = 4, D = 4. All of them yield
the same width of features fed to the fully-connected layer but
differ in network depth. Next, as for each baseline network,
we modify the width coefficient w denoting the multiplier
of F filters. We scale w to 1, 2, 3, 4. The training and

Fig. 7. Cross-session accuracy of each model with different learning
rates on the BCIC-IV-2a dataset.

evaluation procedures are elucidated in Section IV-B and IV-A.
The experiment results on the BCIC-IV-2a dataset are shown
in Fig. 6. On the one hand, shallow networks outperform
deep networks in a large margin for the decoding of MI
from EEG. On the other hand, all networks benefit from
width scaling while the first is more computation-efficient.
Consequently, we empirically demonstrate the first block is
the major determinant of EEGNet and its learning capability
can be strengthened by width scaling.
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Fig. 8. Cross-session accuracy of each model with different learning
rates on the OpenBMI dataset.

Fig. 9. Cross-session accuracy of IFNet with different network widths
on the BCIC-IV-2a dataset.

Based on these findings, we leverage the first baseline
model to guide the efficient design of our networks. More
importantly, thanks to a one-to-one correspondence between
temporal filters and spatial filters, we put them reversely so
that the computational complexity can be reduced significantly

by roughly
k

k + 1
≈ 1, where k is the kernel size of temporal

filters.

B. Selection of Learning Rates
We conduct learning rate selection ranging from 2−15 to

2−8 for each model on both datasets. Notably, we do not
apply repeated trial augmentation that exerts additional effect
on network training. Cross-session evaluations on two datasets
are shown in Fig. 7 and Fig. 8, respectively. Accordingly,
as for the BCIC-IV-2a dataset, we use learning rates of 2−12,
2−11, 2−11 for IFNet, FBCNet, EEGNet, respectively. Also,
we select learning rates yielding superior accuracy for each
model on the OpenBMI dataset. 2−13, 2−9, 2−10 are selected
for IFNet, FBCNet, EEGNet, respectively. The above learning
rates are fixed through the entire experiments.

C. IFNet Architecture
Here we present implementation level specifications of

IFNet in Table VII

D. Evaluation Results
The summary results of classification accuracy achieved

by baseline methods and IFNet along with the statistical
significance are provided in Table VIII

E. Effect of Network Widths
The results of IFNet with different network widths are

shown in Fig. 9. It is observed that scaling up network width
consistently improves classification accuracy.

REFERENCES

[1] D. J. McFarland and J. R. Wolpaw, “Brain-computer interfaces for
communication and control,” Commun. ACM, vol. 54, no. 5, pp. 60–66,
2011.

[2] B. He, B. Baxter, B. J. Edelman, C. C. Cline, and W. W. Ye, “Nonin-
vasive brain-computer interfaces based on sensorimotor rhythms,” Proc.
IEEE, vol. 103, no. 6, pp. 907–925, Jun. 2015.

[3] D. Xu and Q. Wang, “Noninvasive human-prosthesis interfaces for
locomotion intent recognition: A review,” Cyborg Bionic Syst., vol. 2021,
pp. 1–14, Jan. 2021.

[4] Y. Wang, W. Li, S. Togo, H. Yokoi, and Y. Jiang, “Survey on main drive
methods used in humanoid robotic upper limbs,” Cyborg Bionic Syst.,
vol. 2021, pp. 1–12, Jan. 2021.

[5] F. Pichiorri et al., “Brain-computer interface boosts motor imagery prac-
tice during stroke recovery,” Ann. Neurol., vol. 77, no. 5, pp. 851–865,
2015.

[6] Y. Li et al., “An EEG-based BCI system for 2-D cursor control by
combining mu/beta rhythm and P300 potential,” IEEE Trans. Biomed.
Eng., vol. 57, no. 10, pp. 2495–2505, Oct. 2010.

[7] B. J. Edelman et al., “Noninvasive neuroimaging enhances continuous
neural tracking for robotic device control,” Sci. Robot., vol. 4, no. 31,
Jun. 2019, Art. no. eaaw6844.

[8] K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, and B. He,
“Quadcopter control in three-dimensional space using a noninvasive
motor imagery-based brain-computer interface,” J. Neural Eng., vol. 10,
no. 4, Aug. 2013, Art. no. 046003.

[9] G. Pfurtscheller and F. H. L. da Silva, “Event-related EEG/MEG
synchronization and desynchronization: Basic principles,” Clin. Neuro-
physiol., vol. 110, no. 11, pp. 1842–1857, 1999.

[10] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41–56, Jan. 2008.

[11] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a
and 2b,” Frontiers Neurosci., vol. 6, p. 39, Mar. 2012.

[12] M. Congedo, A. Barachant, and R. Bhatia, “Riemannian geometry for
EEG-based brain-computer interfaces; a primer and a review,” Brain-
Comput. Interface, vol. 4, no. 3, pp. 155–174, Mar. 2017.

[13] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “Weighted
transfer learning for improving motor imagery-based brain–computer
interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 7,
pp. 1352–1359, Jul. 2019.

[14] W. Zhang and D. Wu, “Manifold embedded knowledge transfer for
brain-computer interfaces,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 28, no. 5, pp. 1117–1127, May 2020.

[15] R. T. Canolty et al., “High gamma power is phase-locked to theta oscilla-
tions in human neocortex,” Science, vol. 313, no. 5793, pp. 1626–1628,
Sep. 2006.

[16] O. Jensen and L. L. Colgin, “Cross-frequency coupling between neu-
ronal oscillations,” Trends Cognit. Sci., vol. 11, no. 7, pp. 267–269,
Jul. 2007.

[17] A. Hyafil, A.-L. Giraud, L. Fontolan, and B. Gutkin, “Neural cross-
frequency coupling: Connecting architectures, mechanisms, and func-
tions,” Trends Neurosci., vol. 38, no. 11, pp. 725–740, Nov. 2015.



WANG et al.: IFNet: AN INTERACTIVE FREQUENCY CONVOLUTIONAL NEURAL NETWORK FOR ENHANCING MI DECODING 1911

[18] D. Gwon and M. Ahn, “Alpha and high gamma phase amplitude cou-
pling during motor imagery and weighted cross-frequency coupling to
extract discriminative cross-frequency patterns,” NeuroImage, vol. 240,
Oct. 2021, Art. no. 118403.

[19] E. Combrisson et al., “From intentions to actions: Neural oscillations
encode motor processes through phase, amplitude and phase-amplitude
coupling,” NeuroImage, vol. 147, pp. 473–487, Feb. 2017.

[20] N. Feng, F. Hu, H. Wang, and M. A. Gouda, “Decoding of voluntary and
involuntary upper-limb motor imagery based on graph Fourier transform
and cross-frequency coupling coefficients,” J. Neural Eng., vol. 17, no. 5,
Oct. 2020, Art. no. 056043.

[21] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for elec-
troencephalogram (EEG) classification tasks: A review,” J. Neural Eng.,
vol. 16, no. 3, Jun. 2019, Art. no. 031001.

[22] Y. Hou, L. Zhou, S. Jia, and X. Lun, “A novel approach of decoding
EEG four-class motor imagery tasks via scout ESI and CNN,” J. Neural
Eng., vol. 17, no. 1, Feb. 2020, Art. no. 016048.

[23] G. Dai, J. Zhou, J. Huang, and N. Wang, “HS-CNN: A CNN with hybrid
convolution scale for EEG motor imagery classification,” J. Neural Eng.,
vol. 17, no. 1, Jan. 2020, Art. no. 016025.

[24] P. Bashivan, I. Rish, M. Yeasin, and N. Codella, “Learning representa-
tions from EEG with deep recurrent-convolutional neural networks,” in
Proc. ICLR, 2016, pp. 1–15.

[25] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

[26] J. Chen, W. Yi, D. Wang, J. Du, L. Fu, and T. Li, “FB-CGANet: Filter
bank channel group attention network for multi-class motor imagery
classification,” J. Neural Eng., vol. 19, no. 1, Feb. 2022, Art. no. 016011.

[27] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and
T. Vaughan, “Brain-computer interfaces for communication and control,”
Clin. Neurophys., vol. 113, no. 6, pp. 767–791, 2002.

[28] F. Lotte et al., “A review of classification algorithms for EEG-based
brain–computer interfaces: A 10 year update,” J. Neural Eng., vol. 15,
no. 3, Jun. 2018, Art. no. 031005.

[29] R. Mane et al., “FBCNet: A multi-view convolutional neural network
for brain-computer interface,” 2021, arXiv:2104.01233.

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[31] H. Zhang et al., “ResNeSt: Split-attention networks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2022,
pp. 2735–2745.

[32] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry,
“Augment your batch: Improving generalization through instance repeti-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 8126–8135.

[33] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc.
32nd Int. Conf. Mach. Learn., vol. 37. Lille, France, 2015,
pp. 448–456.

[34] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 510–519.

[35] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958,
2014.

[37] M. Tangermann et al., “Review of the BCI competition IV,” Frontiers
Neurosci., vol. 6, p. 55, Jul. 2012.

[38] M.-H. Lee et al., “EEG dataset and OpenBMI toolbox for three BCI
paradigms: An investigation into BCI illiteracy,” GigaScience, vol. 8,
no. 5, May 2019, Art. no. giz002.

[39] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Proc. ICLR, 2019, pp. 1–19.

[40] R. T. Schirrmeister et al., “Deep learning with convolutional neural
networks for EEG decoding and visualization,” Hum. Brain Mapping,
vol. 38, pp. 5391–5420, Nov. 2017.

[41] R. T. Canolty and R. T. Knight, “The functional role of cross-frequency
coupling,” Trends Cognit. Sci., vol. 14, no. 11, pp. 506–515, Nov. 2010.

[42] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proc. ICML, 2017, pp. 3319–3328.

[43] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619–5629,
Nov. 2018.

[44] J. R. Stieger, S. A. Engel, D. Suma, and B. He, “Benefits of deep learning
classification of continuous noninvasive brain-computer interface con-
trol,” J. Neural Eng., vol. 18, no. 4, Aug. 2021, Art. no. 046082.

[45] F. Fahimi, Z. Zhang, W. B. Goh, T.-S. Lee, K. K. Ang, and C. Guan,
“Inter-subject transfer learning with an end-to-end deep convolutional
neural network for EEG-based BCI,” J. Neural Eng., vol. 16, no. 2,
Apr. 2019, Art. no. 026007.

[46] K. Zhang, N. Robinson, S.-W. Lee, and C. Guan, “Adaptive transfer
learning for EEG motor imagery classification with deep convolutional
neural network,” Neural Netw., vol. 136, pp. 1–10, Apr. 2021.

[47] E. Su, S. Cai, L. Xie, H. Li, and T. Schultz, “STAnet: A spatiotem-
poral attention network for decoding auditory spatial attention from
EEG,” IEEE Trans. Biomed. Eng., vol. 69, no. 7, pp. 2233–2242,
Jul. 2022.

[48] E. Eldele et al., “An attention-based deep learning approach for sleep
stage classification with single-channel EEG,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 809–818, 2021.


