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Revised Tunable Q-Factor Wavelet Transform for
EEG-Based Epileptic Seizure Detection
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Abstract— Electroencephalogram (EEG) signals are an
essential tool for the detection of epilepsy. Because of
the complex time series and frequency features of EEG
signals, traditional feature extraction methods have diffi-
culty meeting the requirements of recognition performance.
The tunable Q-factor wavelet transform (TQWT), which is
a constant-Q transform that is easily invertible and mod-
estly oversampled, has been successfully used for feature
extraction of EEG signals. Because the constant-Q is set in
advance and cannot be optimized, further applications of
the TQWT are restricted. To solve this problem, the revised
tunable Q-factor wavelet transform (RTQWT) is proposed
in this paper. RTQWT is based on the weighted normal-
ized entropy and overcomes the problems of a nontunable
Q-factor and the lack of an optimized tunable criterion.
In contrast to the continuous wavelet transform and the
raw tunable Q-factor wavelet transform, the wavelet trans-
form corresponding to the revised Q-factor, i.e., RTQWT,
is sufficiently better adapted to the nonstationary nature
of EEG signals. Therefore, the precise and specific char-
acteristic subspaces obtained can improve the classifica-
tion accuracy of EEG signals. The classification of the
extracted features was performed using the decision tree,
linear discriminant, naive Bayes, SVM and KNN classifiers.
The performance of the new approach was tested by eval-
uating the accuracies of five time-frequency distributions:
FT, EMD, DWT, CWT and TQWT. The experiments showed
that the RTQWT proposed in this paper can be used to
extract detailed features more effectively and improve the
classification accuracy of EEG signals.

Index Terms— Electroencephalogram, epilepsy, Q-factor,
wavelet transform, characteristic subspace.

I. INTRODUCTION

ELECTROENCEPHALOGRAM signals have been widely
applied in the diagnosis of many diseases, including

epilepsy. Epilepsy is the second most common neurologi-
cal disorder of the brain globally, affecting approximately
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50 million people [1]. EEG is a valid and noninvasive
method for recording brain activities and can be used in
epilepsy diagnosis. However, the manual detection of seizures
is time-consuming due to the nonstationary and stochastic
nature of EEG signals. In previous feature extraction methods
for detecting epilepsy, these requirements were ignored or
time-frequency information was not adequately considered.
To reduce the risk of seizures and seizure-related complica-
tions, a rapid and accurate diagnosis of epilepsy is essential
for patients [2], [3], [4], [5]. These restrictions have driven
the design and development of diagnostic systems to classify
epileptic and nonepileptic signals.

With the development of machine learning, intelligent algo-
rithms based feature extraction have been heavily applied to
seizure detection in EEG. These algorithms contain two main
components: feature extraction and classification methods.
Firstly, there are classification methods such as support vector
machines (SVM) [6], [7], naive Bayes (NB) [8], [27], deci-
sion trees [9], linear discriminant analysis [10], [20], neural
network [11] and deep learning methods [4]. Next are fea-
ture extraction methods such as principal component analysis
(PCA) [12], fourier transform (FT) [13], [14], empirical mode
decomposition (EMD) [15], [16], [17], [18], wavelet transform
(WT) [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30] and tunable Q-factor wavelet decomposition
(TQWT) [31], [32], [33], [34], [35]. Feature extraction from
the raw EEG signal to train machine learning classification
models can identify different states of epilepsy. Although there
is a wide range of machine learning-based feature extraction
methods, it is still a challenge to extract effective features of
seizures from a time-frequency.

Extensive research has been carried out to identify epilepsy
from EEG signals, resulting in a number of epilepsy feature
extraction methods. The most commonly adopted feature
that is widely implemented in EEG signal characterization
includes Fourier transform (FT), empirical mode decomposi-
tion (EMD), and wavelet transform (WT) [6], [7], [8], [9], [10].
A Fourier transform decomposes the nonstationary signals into
different frequency parts. The EEG signals are transferred
from the time domain to the frequency domain to extract
the most discriminative features. These features were used to
classify seizure and nonseizure electroencephalograms [13],
[14]. However, EMD is a time-frequency decomposition tech-
nique from a time domain perspective. The intrinsic oscillatory
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modes in EMD depend on the characteristics of the time
scale, which is widely applied in nonstationary signal recog-
nition [15], [16], [17], [18]. To obtain sufficient information
from different bands of wavelets, another method of EEG data
analysis is the wavelet transform. The wavelet transform is an
improved method of implementing the FT that can provide
good localization in the time and frequency domains. WT real-
izes conversion with a set of wavelet basis functions, which
have been widely utilized in automatic seizure detection [19].
Wavelet transform applications are used in three key areas
of EEG: preprocessing signals, feature extraction, and focus
localization. Preprocessing signals in the wavelet transform
include denoising signals, removing artifacts, etc [20], [21].
The extraction of features by wavelet transform is based
on wavelet decomposition and subband coefficients. Many
different features extracted from subband coefficients were
utilized in many classifiers [22], [23], [24], [25], [26], [27].
Focus localization is another application of wavelet trans-
form in EEG classification. The wavelet parameters, including
the basis function, Q-factor, and decomposition levels, are
essential elements of excellent focus localization. There have
been many studies relating to EEG focus localization [28],
[29], [30]. However, traditional constant Q-factor wavelets
such as the continuous wavelet transform, which cannot be
adjusted instantaneously to the Q-factor, limit its application to
non-linear non-stationary signals. For example, in engineering
applications to extract the complex and variable oscillatory
components of machine fault signals or EEG signals, the
constant Q wavelet transform is only able to dimension a single
Q-factor and cannot be flexibly adjusted. This property of the
wavelet creates an obstacle to the accurate extraction of the
transient state components during detection.

Recently, the tunable Q-factor wavelet transform
(TQWT) [31] has been widely used for detection and
feature extraction of epilepsy EEG [32], [33] as well as
filtering and denoising EEG signals [34]. TQWT differs
from most wavelet transforms incapable of adjusting their
Q-factors in that its Q-factor can be tuned. The oscillatory
characteristics of the wavelet vary as its Q-factor varies.
TQWT has emerged as a powerful tool for the oscillations of
EEG signals to be applied [35]. By selecting the appropriate
Q value, nonlinear optimization and intelligence optimization
methods can be employed. An adaptive TQWT based
on particle warm optimization (PSO) [36] and wavelet
entropy [37] was proposed to extract potential signal features.
The TQWT depends on the oversampling rate of a signal
instead of the frequency. Thus, the successful oscillation
feature corresponding to the specific frequency in EEG relies
heavily on the Q-factor related to wavelet characteristics. That
is, sufficient oscillatory information extraction is achieved
using the TQWT with the best-fitting Q-factor.

In short, the Q-factor of the wavelet cannot be flexibly
adjusted in the constant wavelet transform. In the case of
the TQWT, evaluation criteria for the Q-factor are lacking.
To address this issue, we propose a revised tunable Q-factor
wavelet transform (RTQWT) based on the weighted normal-
ized entropy to detect the EEG signals for epilepsy detection.
The method consists of an adaptive measurement to select

TQWT parameters with distinctive subbands. The weighted
normalized entropy of wavelet subbands is a criterion for the
selection of the TQWT parameters. The entropy minimization
corresponds to the best-fit parameters for TQWT oscillations.
The energy ratio distribution is then developed to select the
best subbands for the construction of new features that are
utilized as the input to the different classifiers. Finally, the
RTQWT-based EEG features are trained by five classifiers
(decision tree, linear discriminant, naive Bayes, SVM and
KNN). The classification accuracy of each classifier is used
as a performance evaluation for identifying epilepsy. The
contributions of this paper can be briefly summarized as
follows:

(1) A criterion of TQWT parameters based on a weighted
normalized entropy is proposed. This entropy measures the
degree of completion of EEG signal decomposition and pro-
vides guidance for the selection of TQWT parameters suitable
for EEG oscillations.

(2) The EEG is decomposed using the revised TQWT
parameters, and specific and common characteristic subspaces
are distinguished from the decomposed subbands. The most
representative features of the epileptic EEG signals are con-
structed by selecting the appropriate subbands from the energy
distribution criteria of the feature subspace. This subband
selection criterion eliminates redundant and nonvaluable time-
frequency information.

(3) The feature signals constructed by combining specific
feature subspaces and common feature subspaces are applied
to different classifiers to detect epilepsy. The results show that
RTQWT can be used to extract sufficient information from the
specific feature space to complete the detection of epilepsy.
The effectiveness and robustness of RTQWT is also verified
by the recognition performance of different classifiers.

II. PROPERTIES OF WAVELET TRANSFORM

In this section, we review the process of wavelet decom-
position and properties of wavelet transform. A novel idea of
tunable Q factor is proposed in a recent study by Selesnick [31]
which we combined this tunable Q-factor wavelet with mul-
tiresolution analysis theory in the field of EEG signals.
We generally distinguish a few of the most commonly used
feature extraction methods. These methods process signals
in the time-frequency domain. Time-frequency features are
typically calculated to contain the frequency information, but
also the features of signal in time domain have been preserved.

A. Wavelet Transform
To trade off the characteristics of nonstationary signals in

time and frequency domain, wavelet transform has been widely
applied in EEG signal analysis. The wavelets transform herein
contain discrete wavelet transform (DWT) and continuous
wavelet transform (CWT).

The DWT can be described as a decomposition procedure
of input signals into sets of wavelet subbands by scaling and
shifting the parameters of mother wavelet function. An exam-
ple is the Haar wavelet transform. Yet, the main weakness
of the DWT is that it does not solve the problem of how to
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approximate continuous functions because of the discontinuity
of the DWT [38]. The CWT is composed of a family of
parametric wavelet atoms ψm,n(t), which possesses similar
continuous and localization properties as the DWT [39]. The
mother wavelet of CWT can be described as,

ψm,n(t) =
1

√
n
ψ(

t − m
n

). (1)

where m and n are the scaling and translating parameters.
The mother wavelets ψm,n(t) are required with zero mean

to the well-localization in time. The decomposition procedure
of input signals X (t) is implemented by the convolution
between X (t) and ψm,n(t). The wavelet coefficients of CWT
are expressed as,

CW T =< X (t), ψm,n(t) >=
1

√
n

∫
+∞

−∞

X (t)ψ∗(
t − m

n
)dt.

(2)

where ∗ denotes complex conjugate. The wavelet function
ψm,n(t) is obtained from the scaling function φ(t). The
relation between wavelet function and scaling function can
be described as,

ψ(t) = φ(2t)− φ(2t − 1). (3)

The scaling functions {φ(2 j t − i), i, j ∈ R} forms the
subspaces {V j , j ∈ Z}. This space {V j , j ∈ Z} is compactly
supported constant function space. And the family of wavelet
function ψm,n(t) forms the wavelet subspace {W j

m,n,m, n, j ∈

Z}. The W j is the orthogonal complement of V j in V j+1.
So, the subspaces {V j , j ∈ Z} and {Wm,n,m, n ∈ Z} can be
constituted to the complete signal space. In general, the pro-
cedure of signal decomposition with wavelet provides analysis
in the multiresolution subspaces. The signals are mapped into
different resolution subspaces so that specific features can be
extracted. According to the [40], the multiresolution analysis
(MRA) is defined as,

Definition 1: MRA: If the subspaces {V j , j ∈ Z} satisfies,
1. V j

⊂ V j+1,
2. ∪V j = L2(R),
3. ∩V j

= 0
4. f (x) ∈ V j , if and only if f (2− j x) ∈ V 0

5. φ ∈ V 0, {φ(x − k), k ∈ Z} is the standard orthonormal
basis of V 0.
where {V j , j ∈ Z} is a MRA of scaling function φ. {V j , j ∈

Z} is called as the approximation subspace. Besides, the W j

is the orthogonal complement of V j in V j+1. So, the signals
space L2(r) can be expressed as,

L2(R) = · · · ⊕ W −1
⊕ W 0

⊕ W 1
⊕ · · · (4)

where the ⊕ represents the orthogonal relationship.
Based on the (4), any signal function f (x) in L2(R) can

be expressed to the
∑

−∞

+∞
wk . In other words, the family of

wavelet function {ψ j,k, j, k ∈ Z} is the standard orthonormal
basis of the signal space L2(R). The {ψ j,k, j, k ∈ Z} is
called the wavelet subspace. Following the definition of MRA,
we verify that the wavelet functions in the DWT and CWT
satisfy this standard. The family of wavelet functions in

DWT and CWT are constructed to themselves multiresolution
wavelet subspaces. Signals with the decomposition by the
multiresolution wavelet subspaces are mapped to multi-scaling
frequency subspaces. We analyze the time-frequency feature
in depth through the decomposition results. The oscillations
of the signals are interpreted from multiple perspectives.

A very important property in the wavelet transform that
measures wavelet fluctuations is the Q-factor of the wavelet.
Specifically, the Q-factor of wavelet is defined by the ratio of
the center frequency to the bandwidth.

Q =
ωc

B
. (5)

where ωc and B are center frequency and bandwidth of the
wavelet function. TThey are eligible for MRA for the wavelet
functions in DWT and CWT. However, a drawback of these
wavelet functions is the fact that the Q factor of these wavelets
is fixed once these wavelets are determined. The oscillations of
the wavelets are also determined, which reduces the sensitivity
to different fluctuations in the signal.

Due to the constant Q-factor in DWT and CWT, the
oscillations of signals are extracted inadequately. To solve
this obstacle, the tunable Q-factor wavelet transform (TQWT)
is proposed. TQWT is also a wavelet transformation that
satisfies the restrictions of MRA. The elements and associated
properties of the TQWT are described below.

B. Tunable Q-Factor Wavelet Transform
The TQWT is composed of a Fourier transform and a

two-channel filter bank, which can be implemented by radix-2
FFT algorithm. In practical implementation of the algorithm,
TQWT is easier and faster than CWT. The subbands of
TQWT decomposition are another way of composing signal
space that line with the standard defined in (4). The signals
mapped to multiresolution wavelet subspaces are easier to
discover the details in multiscaling. Each subspace of multires-
olution spaces represents specific characteristic information.
The following investigates the TQWT decomposition and the
influence of TQWT parameters on wavelet properties.

The parameters of Q-factor, redundancy and decomposi-
tion level can be tuned, which is the unique characteristic
of TQWT [31]. The TQWT decomposition of level J is
illustrated in Fig. 1, where the parameters of α and β are
the low-pass and high-pass filter scaling parameters, respec-
tively. These contain the high-pass production of each level
{h1, h2, . . . , h J } and the J low-pass output lJ (n). The rela-
tionship between (Q, r, Jmax ) and (α, β) is described as

Q =
2 − β

β
. (6)

r =
β

1 − α
. (7)

Jmax = ⌊
log N

4(Q+1 )

log Q+1
Q+1−2/r

⌋. (8)

where ωc and B represent the center frequency and bandwidth
of subband respectively. The N is the length of the signal.
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Fig. 1. The decomposition and reconstruction of TQWT with level J.

1) TQWT Filter Banks: In each decomposition level, the
low-pass filter H0(ω) with α and the high-pass filter H1(ω)

with β are constituted to the filter banks [31]. The filter banks
are designed to meet the criteria H2

0 (ω) + H2
1 (ω) = 1. So,

H0(ω) and H1(ω) are defined as

H0(ω) =


1 | ω |< (1 − β)π

θ(
ω + (β − 1)π
α + β − 1

) (1 − β)π ≤| ω |< απ

0 απ ≤| ω |< π

(9)

H1(ω) =


0 | ω |< (1 − β)π

θ(
απ − ω

α + β − 1
) (1 − β)π ≤| ω |< απ

1 απ ≤| ω |< π

(10)

where the θ(·) represents the Daubechies frequency response
function with 2π period. Specifically, the function is given
by θ(ω) = 0.5(1 + cosω)

√
2 − cosω, | ω |≤ π . Due

to this function satisfying θ2(ω) + θ2(π − ω) = 1 in
the transition bands, the perfect reconstruction condition is
fulfilled.

The low-pass filter banks represent the subspace of V j

and high-pass banks represent the subspace of W j . And the
filter scaling is constrained by the requirement of 0<α ≤ 1
and 0<β ≤ 1 to guarantee that TQWT is not redundant.
Meanwhile, zero-padding is required in the actual signal
decomposition [31]. So, the filter banks must be oversampled.
The filter scaling must be strictly satisfied with the condition
of α+β>1 so that TQWT is perfectly reconstructed and fulfils
the definition of MRA.

Fig. 2 presents all the TQWT filter banks and their subbans,
where the parameters of TQWT are set as Q = 2, r = 3,
J = 10. Fig. 2(a) represents all filter response frequencies and
their magnitudes. Fig. 2(b) shows all subbands in 100 samples.
It is worth mentioning that the oscillation of different subbands
is unsimilar. The distinction indicates that the energy contained
in subbands is unique, which is a highly marked characteristic
compared to the constant wavelet transform.

Fig. 2. The filter banks of TQWT with Q = 2, r = 3, J = 10.

2) Center Frequency and Bandwidth of TQWT: From (6)
and (7), the scaling parameters (α, β) are transformed by
(Q, r) as

β =
2

Q + 1
. (11)

α = 1 −
2

(Q + 1)r
. (12)

These subbands corresponding to the center frequency and
bandwidth present the wavelet identical oscillatory char-
acteristics [37]. For the level j high-pass filter bank,
the frequency response interval is [(1 − β)α j−1π, α j−1π ].
The interval is represented by Q-factor and redundancy,

[
Q−1
Q+1 (

(Q+1)r−2
(Q+1)r ) j−1π, ( (Q+1)r−2

(Q+1)r ) j−1π ]. Based on this inter-

val if the input sampling rate is fs , the level j center frequency
ω

j
c and bandwidth B j can be obtained by,

ω
j
c =

[(Q + 1)r − 2]
j−1 Q fsπ

(Q + 1) jr j−1 (13)

B j
=

[(Q + 1)r − 2]
j−1 fsπ

(Q + 1) jr j−1 (14)

The level j center frequency ω j
c and bandwidth B j are related

to the low-pass scaling α and high-pass scaling β. The variety
of center frequency and bandwidth, related to wavelet subband,
would lead to altering the oscillations of wavelet.

III. REVISED TUNABLE Q-FACTOR
WAVELET TRANSFORM

As the Q-factor and redundancy have a significant effect
on wavelet waveform, the following introduces a selection
criterion of parameters to revise TQWT. This method is
called revised tunable Q-factor wavelet transform (RTQWT).
RTQWT determines the optimal Q-factor and redundancy for
signal decomposition and distinguishes between specific and
common characteristic subspaces to improve the performance
in signals identification. The procedure comprises three sig-
nificant steps and is elaborated in the following subsections,

(1) The optimal parameters of Q-factor and redundancy are
revised with weighted normalized entropy to achieve the better
signal decomposition. The subbands decomposed by RTQWT
contain more detailed information about signals.

(2) Features are constructed with the distinctive sub-
bands corresponding to the specific characteristic subspace
decomposed by the optimal parameters of revised TQWT.
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Fig. 3. Frequency response and waveform for varying (Q, r, J).

These features include the oscillations specific information
without other confusion patterns.

(3) The constructed signals containing specific and common
characteristic subspaces are identified by various classification
methods. The effectiveness and robustness of RTQWT feature
extraction are verified in different machine learning methods.

A. Analysis for Parameters of TQWT
Based on (13) and (14), the center frequency and bandwidth

are associated with the Q-factor, redundancy and decompo-
sition level. Fig. 3 depicts the TQWT frequency responses
and waveform in various TQWT parameters. Fig. 3 illustrates
the frequency response and waveform of TQWT for various
choices of the parameters Q, r , and J . As the Q-factor
can be tuned in continuously, the waveform and response
change simultaneously. The following discussion clarifies the
effect of Q-factor, redundancy and decomposition level on the
characteristics of the wavelet.

1) Q-Factor: According to (13) and (14), the center fre-
quency equals bandwidth when Q-factor equals one, which
means that the wavelet is no oscillation [37]. In fact, Q-factor
must be satisfied with the restriction of Q ≥ 1 and adapted the
input signal. The high Q-factor of TQWT is more appropriate
for the oscillatory movement. To further investigate the relation
of Q-factor and wavelet oscillation, the partial derivatives of
ω

j
c and B j with Q-factor are formulated as respectively,

∂ω
j
c (Q, r)
∂Q

=
[(r + 2 j − 2)Q + r − 2][(Q+1)r − 2]

j−2 fsπ

(Q + 1) j+1r j−1

(15)

∂B j (Q, r)
∂Q

=
[2 j − (Q + 1)r ][(Q + 1)r − 2]

j−2 fsπ

(Q + 1) j+1r j−1

(16)

where the equation (15) is an increasing function. However,
the bandwidth of (16) has a zero point Q0, which Q0 is 2 j

r −1.
So, the equation (16) is increasing function with Q-factor in
lower than Q0 and decreasing function in higher than Q0,
which is illustrated in Fig. 4.

Fig. 4. Center frequency and bandwidth of the varying Q-factor.

TABLE I
CENTER FREQUENCY AND BANDWIDTH WITH VARYING Q-FACTOR

The specific values of center frequency and redundancy are
shown in Table I. With increasing the Q-factor and values
at Table I, the center frequency of all subbands keeps ris-
ing in Fig. 4(a), but the bandwidth has a turning point in
Fig. 4(b) which is a maximum point varying with subband.
The different oscillations of wavelets at level 5 with varying
Q-factor in depth are shown in Fig. 3. The wavelet waveform,
in contrast to Figs. 3(b) and 3(f), has more oscillations with
Q-factor increasing. The response frequency moves to the high
frequency at the same time in Figs. 3(a) and 3(e).

2) Redundancy: The redundancy r in (7) is the oversam-
pling rate of the TQWT wavelets estimating the sum of
oversampling rates of all subbands [39]. However, the set
redundancy r does not equal oversampling rate of the actual
decomposition because the radix-2 FFT algorithm is applied
to TQWT implementation. Particularly, the parameter r is set
to three or more to be sufficient for TQWT decomposition
in practice [37]. The following investigates the relationship
between redundancy and wavelet characteristics of the center
frequency and bandwidth. To further analyze the effect of
wavelet waveform and frequency difference by varying the
redundancy, the partial derivatives of ω j

c and bandwidth B j

with redundance are formulated as respectively,

∂ω
j
c (Q, r)
∂r

=
2( j − 1)[(Q + 1)r − 2]

j−2 Q fsπ

(Q + 1) j−1r j (17)

∂B j (Q, r)
∂r

=
2( j − 1)[(Q + 1)r − 2]

j−2 fsπ

(Q + 1) j−1r j (18)

Obviously, the equations (17) and (18) are the increasing
function. The trend of redundancy is consistent with the
variation of center frequency and bandwidth. The increase
of redundancy causes the center frequency and bandwidth in
the wavelet subband to grow as well, affecting the fluctuation
characteristics of the wavelet.
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For further analysis the wavelet waveform, contrasting
Fig. 3, the oscillatory wavelet characteristics are nothing
changed, but the width of the wavelets becomes narrower
with redundancy rising in Figs. 3(d) and 3(f). The primary
influence of varying redundancy is the adjustment of wavelet
oscillations extent and the spectral overlap between the adja-
cent filter banks.

3) Decomposition Level: The additional parameter of
TQWT is the decomposition level J , which is defined as the
number of iterations of two-channel filter banks in TQWT.
The more the decomposition level is, the more complicated
the subband interprets. The maximum decomposition level is
defined as (8). Relating to Fig. 3 with different decomposition
level, the TQWT wavelet is just the increasing of subband.
The shape of wavelet is maintained in Figs. 3(f) and 3(h).
Increasing decomposition levels predominantly affect the num-
ber of subbands and the details of decomposition signals in
Figs. 3(e) and 3(g). There is no influence on the wavelet
oscillatory characteristics with increasing decomposition level.

B. Revised Tunable Q-Factor Wavelet Transform
According to the analysis of the TQWT parameters, the

Q-factor and redundancy have a strong influence on the
oscillatory behavior of the wavelets. Therefore, appropriate
TQWT parameters are crucial for the decomposition of EEG
signals. In particular, EEG signals containing many disorder
fluctuations of epilepsy seizures are not sufficiently detected
in the wavelet transform with a constant Q-factor. In contrast,
the waveform and frequency response of the TQWT wavelets
can be adjusted to match transient oscillations by tuning the
Q-factor and redundancy. However, there is a lack of criteria
for selecting the optimal Q-factor and redundancy. To address
this problem, we propose the revised tunable Q-factor wavelet
transform based on a new criterion of parameter selection.

1) The Optimized Criterion of Q-Factor and Redundancy:
Wavelet entropy is the criterion of selecting wavelet parame-
ters, which has been successfully applied for the selection of
the optimal Morlet wavelet parameters [41], [42]. The sparsity
of wavelet coefficients can be estimated with wavelet entropy.
The sparsest wavelet coefficients of the signal correspond
to the optimal center frequency and bandwidth parameters
of Morlet wavelet, which is the effectiveness of wavelet
entropy [37]. The wavelet entropy of subband coefficients
bk(n) defined as,

pk
i =

| bk(i) |∑N k

j=1 | bk( j) |

. (19)

Ek
= −

N k∑
i=1

pk
i log pk

i . (20)

where k represents the k-th subband and N k is the length of
k-th subband coefficients bk(n), n represents the n-th sampling
point, pk

i is the probability of the bk(i) in bk(n). The k-th
subband wavelet entropy Ek is a suitability measurement of
wavelets and signals.

However, there are two problems with wavelet entropy.
First, unlike the constant Q-factor wavelet, subbands of

different lengths that undergo TQWT decomposition have their
own importance to each other. The k-th subband wavelet
entropy Ek only considers the significance of the sparsity of its
own subband coefficients and ignores the effects on other sub-
bands [37]. Second, different scales of subbands are obtained
from the TQWT decomposition, while the wavelet entropy Ek

ignores the influence of different subband scales, which may
lead to an incorrect assessment of the wavelet coefficients.
More importantly, the normalized entropy of [37] has been
used to mitigate the effects of different scales. Nevertheless,
the weights assigned to the entropy values consider only the
energy of the subbands. The neglect of the effect of wavelet
subband scales leads to a bias in the results. Thus, the weighted
normalized entropy is developed to revise the wavelet entropy,
which determines the optimal Q-factor and redundancy and
the corresponding wavelet basis function for decomposing the
epileptic EEG signal.

Assuming that the coefficients of wavelet subbands using
TQWT parameters Q, r are obtained by {C1,C2, . . . ,C Jmax },
where the composition level is set to the maximal level Jmax .
To address the ignorance of the subband length in weight
of energy, wavelet entropy is weighted by ωk(Q, r), and the
probability of subband coefficients pk

i (Q, r) is redefined as,

ωk(Q, r) =

∑N k

i=1 ∥Ck
i (Q, r)∥2

N k . (21)

pk
i (Q, r) =

ωk(Q, r) | Ck
i (Q, r) |∑Jmax +1

k=1
∑N k

j=1 ω
k(Q, r) | Ck

j (Q, r) |

. (22)

where ωk(Q, r) is the weight of the k-th wavelet coefficients
Ck . N k is the length of the k-th subband. The pk

i (Q, r)
estimates the probability of the i-th element of the k-th wavelet
coefficients Ck

i (Q, r). Therefore, the weighted normalized
entropy (WNE) is defined as,

E
k
(Q, r) = −

N k∑
i=1

pk
i (Q, r) log pk

i (Q, r). (23)

W N E(Q, r) =

∑N k

k=1 E
k
(Q, r)

max
1≤k≤Jmax +1

E
k
(Q, r)

. (24)

E
k
(Q, r) denotes the weighted wavelet entropy of the k-th

subband when the TQWT parameters is Q, r in (23).
{ max
1≤k≤Jmax +1

E
k
(Q, r)} in (24) is the maximal weighted

wavelet entropy of all subbands. The maximum normalized
entropy enhances the contrast at different subbands. Thus,
WNE provides a measure of the integrity of the signal decom-
position and guides the selection of the optimal Q-factor and
redundancy.

Assuming the Q-factor and redundancy range of [Q0, Q1],
[r0, r1] respectively, it calculates the weighted normalized
entropy to select the optimal Q-factor and redundancy in
the range. The minimum weighted normalized entropy cor-
responds to the optimal TQWT parameters {Q̃, r̃},

{Q̃, r̃} = arg min
Q∈[Q0,Q1],r∈[r0,r1]

{W N E(Q, r)}. (25)
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where min{·} represents the minimum function. Due to the
weighted normalized normalized entropy corresponding to the
completeness of wavelet decomposition, the minimum means
that TQWT extracts the matched fluctuations at different
frequencies from the signal. So, the result matching the
wavelet characteristics relates to the minimal loss of TQWT
decomposition and the maximal oscillations of the signal.

2) The Selection of Optimal Sub-Bands Based on the
Distribution of Energy Ratio: The optimal TQWT parameters
{Q̃, r̃} are determined by weighted normalized entropy to
obtain the basis functions of the TQWT. This set of basis
functions is applied to decompose the epileptic EEG signal,
which results in a number of different frequency subbands.
The energy of the wavelet subbands is a key feature when
measuring the number of components at each frequency.
Thus, for epileptic signals containing different fluctuations at
specific frequency, the energy of wavelet subbands consisting
of the decomposed wavelet coefficients reveals the response
frequency ratio of the signals. The distribution of energy ratio
implies the distribution of response frequencies and guides the
selection of the appropriate subbands.

Assuming the subbands are {C̃1, C̃2, . . . , C̃ Jmax }, the k sub-
band energy is defined as two-norm of the wavelet coefficients
∥C̃k

∥2. The k energy ratio of subbands is defined as,

E Rk
=

∑N k

i=1 ∥C̃k
i ∥2∑Jmax +1

k=1
∑N k

i=1 ∥C̃k
i ∥2

. (26)

where C̃k
i is the i-th element of the k-th wavelet coefficients,

N k is the length of the k-th subband, the decomposition
level of TQWT corresponds to the optimal parameters {Q̃, r̃}

by (25). The energy ratio calculates the significance of the
subband in the specified frequency domain. Based on the sub-
band energy ratio, the distribution of energy ratio is described
as,

F(E R) = {E Rk, 1 ≤ k ≤ Jmax + 1}. (27)

where F(E R) is the distribution of subband energy ratio.
Following this, according to the distribution, the threshold
value required for selecting subbands is determined. To ensure
that the dimensionality of the constituent feature signals was
consistent, We use the energy of a certain percentage of the
subbands in the energy ratio of the subbands in the respective
category as the threshold value. The values associated with
this subband energy ratio are specified as,

t = {E Ri , E Ri
= Max p{F(E R)}}. (28)

where Max p represents the top p major elements of the set.
This p is 7% in our algorithm.The threshold value of (28)
determines the minimum energy ratio of the subbands to pick
in the experiments. It neither selects the most characteristic
subbands while neglecting other frequency, nor causes the
selection to useless frequency subbands. Then, the subbands
are selected by the following criterion,

{C̃} = arg
1≤k≤Jmax +1

{C̃k
|E Rk > t}. (29)

Applied to the criterion of (29), the optimal subbands are
selected based on the WNE. These subbands represent specific

information containing raw signals. Following this, subbands
energy is calculated as the elements of feature vectors. The
construction of feature vector is defined as,

F̃ = {E(C̃i ), i = |C̃ |}. (30)

where |C̃ | is the cardinal number of the set {C̃}. The features
F̃ extracted by WNE represents the core of specific and com-
mon characteristic subspaces. Following the subband selection
based on the distribution of energy ratio, the selected subbands
are retained and the other subbands are removed by setting the
wavelet coefficients to zero. The additional frequency informa-
tion in EEG signals is deleted, and the frequency subbands
most conducive to distinguishing are retained. Finally, the
features extracted by the RTQWT are constructed to classify
signals by various machine learning methods. The algorithm
is described as,

Algorithm 1 Feature extraction based on revised tunable
Q-factor wavelet transform for epilepsy EEG classification

Input: The epilepsy EEG signals X = {X1, X2, · · · , Xn
},

the corresponding label Y = {y1, y2, · · · , yn}

Output: The identified labels Y ′
= {y′

1, y′

2, · · · , y′
n}.

1: Determining the range of Q-factor and redundancy to
EEG signals X i .
2: Calculating the W N E(Q, r) of subbands
{C1,C2, · · · ,C Jmax }.
3: Selecting to the optimal (Q̃, r̃) with the criterion in (20).
4: Decomposing the EEG with (Q̃, r̃) of RTQWT to obtain
{C̃1, C̃2, · · · , C̃ Jmax }.
5: Calculating the energy ratio {C̃1, C̃2, · · · , C̃ Jmax } to
obtain the F(E R) = E Rk, 1 ≤ k ≤ Jmax + 1.
6: Maintain the subbands {C̃} satisfied with {C̃k

|E Rk > t}.
7: Reintegrating {C̃} to form feature vector F̃ .
8: The F̃ as the input, and the Y ′

= {y′

1, y′

2, · · · , y′
n} as the

output.
9: Train classifiers in the ten-fold cross validation and
classify the epilepsy states of test samples.

IV. EXPERIMENTAL VERFICATION

The performance of the proposed RTQWT feature extractor
is analyzed in terms of different databases. Moreover, five
other feature extractors were deployed in this work: Fourier
transform (FT), empirical mode decomposition (EMD), dis-
crete wavelet transform (DWT), continuous wavelet transform
(CWT) and tunable Q-factor wavelet transform (TQWT).
According to the subband selection based on the distribution
of the energy ratio, the extracted feature vector consists of
6 elements. The frequency bands corresponding to the selected
wavelet subbands in the wavelet transform are calculated as
the features of FT and EMD in terms of the average frequency
band energy.

We obtain the performance of RTQWT to evaluate the
effectiveness of this algorithm in real epilepsy EEG sig-
nals. The epilepsy EEG signals are from the Bonn database.
The database are publicly available and are widely used by
researchers [28], [30], [32], [33], [36]. The real epilepsy
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TABLE II
THE EPILEPSY STATES OF BONN DATABASE

database of Bonn [43] is used to verify the effectiveness and
robustness of our algorithm. The Bonn database consists of
five subsets, as shown in Table II. Subsets A and B are
the data collected from the five healthy subjects. Subsets A
and B represent the EEG signals of healthy individuals with
eyes opened and closed, respectively, and the distribution of
the acquisition electrodes is an international 10-20 system.
Subsets C, D, and E are EEG signals acquired from five
patients with preoperatively diagnosed epilepsy. Subset C
comprises EEG signals collected during the interictal period
on the contralateral side of the epileptic focus, and subset D
contains interictal EEG signals collected at the epileptic focus.
In subsets C and D, deep electrodes and lateral and low area
strip electrodes located in the neocortical layer were used, and
their data were acquired from intracranial electrodes during the
seizure phase signal.

Each subset comprises data from 100 trials, each of which
is a 128 channel EEG signal with a sampling frequency
of 173.61 Hz and an acquisition duration of 23.6 seconds.
These EEG signals are all cut from the acquired long-range
multichannel EEG with the muscle movement artifacts and eye
movement artifacts removed. A tenfold cross-validation of the
data is performed in the experiment, and the experiment is
repeated 50 times. Finally, the mean of all the results is taken
as the final recognition accuracy of the epilepsy EEG signals,
and the standard deviation of the accuracy is given.

A. The Analysis of Epilepsy by TQWT and RTQWT
The Bonn database as in Table II contains five states of

EEG signals. Here, we consider subsets A and B as the normal
EEG signals, subsets C and D as the interictal signals, and
subset E as the seizure EEG signals. A random sample of the
data set for each state is shown below.

Fig. 5 shows the data for the three different states over
time. The complexity and nonlinearity of the epileptic states
makes it impossible to directly discern the particular fluctu-
ating nature of epilepsy. In order to analyse and fully extract
this fluctuating characteristic, we decomposed the samples in
dataset E using the TQWT and RTQWT methods, respectively.
The TQWT method was used directly for the analysis, and due
to the lack of criteria for parameter selection only the TQWT
was selected empirically according to [32], TQWT parameters
setting to Q = 1, r = 3. For the RTQWT method proposed
in this paper, the quality of the RTQWT signal decomposition
was evaluated using the WNE criteria, and the parameters of
the RTQWT for the Bonn database were finally determined to
be Q = 2.5, r = 3, respectively.

The frequency response of each subband of these two
wavelets can be plotted according to the parameters Q = 1
and r = 3 for the TQWT and Q = 2.5 and r = 3 for

Fig. 5. The three states of epilepsy signals in Bonn database.

Fig. 6. The response frequency and wavelet function of TQWT
and RTQWT.

the RTQWT. The frequency responses of these two wavelets
are shown in Figs. 6(a) and 6(c), respectively. The functions
of these two wavelets can be plotted using the Fourier inverse
transform, corresponding to Figs. 6(b) and 6(d), respectively.
In the comparison of Figs. 6(a) and 6(c), it can be seen that
the wavelet frequency response under the TQWT for this
parameter is more concentrated in the range 0 to π

4 , but
the wavelets better corresponding to different high-frequency
parts are not refined. However, the RTQWT not only refines
the frequencies of each subband in the low frequency part
[0, π4 ] but also allows for a better frequency response in
the high frequency part. In addition, direct observations of
the waveform characteristics of the two wavelets are shown
in Figs. 6(b) and 6(d), respectively. The wavelets under the
RTQWT have more complex and diverse fluctuation charac-
teristics than those under the TQWT, and it is easier to identify
different fluctuation characteristics of the signal.

To further enhance the feature representation capability of
the RTQWT, the individual subspaces of the wavelet decom-
position were selected. The most representative common and
unique subspaces for different epileptic states were selected.
The feature subspaces under TQWT correspond to the wavelet
subband space {W i , i = 4, 5, 6}. The wavelet feature subspace
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Fig. 7. Comparison of the original epileptic signal, the reconstructed
signal by TQWT, and the reconstructed signal by RTQWT.

chosen for the decomposed wavelet subbands of this paper
under the constraint of (29) is {W i , i = 7, 8, 9, 11, 12, 13}.
To further analyse the completeness of the signal decompo-
sition by TQWT and RTQWT, the signal was reconstructed
using the selected wavelet feature subspace, and the compar-
ison between the reconstructed signal and the original signal
is shown in Fig. 7.

Figs. 7(b) and 7(d) show the signal reconstructed by the
TQWT and RTQWT, respectively, while Figs. 7(a) and 7(c)
show the TQWT reconstructed signal against the original
signal and the RTQWT reconstructed signal against the orig-
inal signal, respectively. Here, we have only taken the first
200 sampling points of the signal for ease of analysis. The
TQWT reconstructed signals in Figs. 7(a) and 7(b) are quite
different from the original signal, losing much fluctuation
detail information, and the decomposition of the original signal
is not sufficiently complete. The overall fluctuation character-
istics of the RTQWT reconstructed signal and the original
signal in Figs. 7(c) and 7(d) remain consistent, indicating
that the wavelets obtained by RTQWT match the fluctuation
characteristics of the original signal. There are also no opposite
fluctuation periods between the RTQWT reconstructed signal
and the original signal, and the fluctuation information of
the epileptic EEG signal is extracted sufficiently. It provides
a more accurate feature subspace for subsequent epilepsy
recognition and improves the robustness and accuracy of the
epilepsy recognition process.

Fig. 7(e) shows the original signal, TQWT reconstructed
signal and RTQWT reconstructed signal on the same plot. It is
more obvious from the figure that the RTQWT reconstructed
signal fits the original signal more closely than the TQWT
reconstructed signal. The original signal fluctuates more in
the sampling intervals of [40, 60] and [120, 140], and the
fluctuations of the TQWT reconstruction signal differ more
from the original signal. The waveforms of the RTQWT recon-
struction signal in these fluctuation intervals are consistent
with the original signal, and the fluctuation characteristics of
the original signal are extracted completely.

B. Bonn Experiment
Bonn signals are decomposed by RTQWT to determine the

best subbands corresponding to the specific wavelet subspaces.

Fig. 8. The weighted normalized entropy in Q ∈ [1,10], r ∈ [3,10].

TABLE III
WEIGHTED NORMALIZED ENTROPY IN BONN DATABASE (Q ∈ [1, 10])

The weighted normalized entropy is applied to select the
optimal TQWT parameters. Due to epilepsy with lots of
fluctuations, the ranges of Q-factor are [1, 40] at first, and
the subsequent search range is narrowed to [1, 10]. Meantime,
the redundancy is fixed in [3, 10]. Decompose the signal
using TQWT under different combinations of Q-factor and
redundancy, and then calculate its corresponding weighted
normalized entropy. The results for the entropy in Q ∈

[1, 10], r ∈ [3, 10] are illustrated in Fig. 8.
1) Revised Tunable Q-Factor Wavelet Transform to Bonn

Datasets: The optimal range of the Q-factor is about [1, 10]

in Fig. 8. In this investigation, the step of different Q-factor
sets to 0.25, and the content of Q-factor sets to [1, 10]. The
weighted normalized entropy is calculated in varying Q-factor
and redundancy. According to the change of this indicator,
we can determine that the optimal parameters for decomposing
the signal are Q = 2.5 and r = 3. In detail, the value of
entropy is shown at Table III.

From Table III, the optimal parameters Q-factor and redun-
dancy of TQWT based on the trend of the table may be
between Q = 1.0, r = 3 and Q = 4, r = 3. The actual
optimal parameters are indeed among them. Through further
refine the Q-factor based on WNE in (24), we determined the
optimal parameters of TQWT are Q = 2.5, r = 3 for Bonn
database.

Applying the RTQWT with the parameters of Q = 2.5,
r = 3, the Bonn epilepsy signals are decomposed to subbands.
For finding the remarkable specific and common characteristic
subspaces, we calculate the energy ratio to each subband.
And the distribution of these ratios in the Bonn database is
represented in Fig. 9. This distribution shows the characteristic
distribution of the normal signal, the interictal signal, and
the ictal signal over the frequency range of each subband.
Further, we can select the most representative subbands as the
specific characteristic subspace of this type of signal through
this distribution.
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Fig. 9. The distribution of subbands energy ratio in the Bonn database.

Each signal possesses its own peak of subband energy
ratio in Fig. 9. The normal EEG subbands energy ratio
in Fig. 9 is relatively even, and the peak of distribution
appears near at 9, 10 subbands, which implies the informa-
tion of EEG is in 9, 10 subband, and the corresponding
response frequency is 10.9 ∼ 13.3H z. For the interictal
EEG energy ratio distribution in Fig. 9, the peak of energy
ratio is in 20, 21 subbands. Specifically, the subband 20, 21
holds the most fluctuating information, and the relative
response frequency is 1.3 ∼ 1.5H z. Consequently, the
fluctuation of interictal EEG is predominantly localized at
1.3 ∼ 1.5H z, and the oscillation features of interictal are
distributed around there. The ictal EEG energy ratio distri-
bution in Fig. 9 is not the same as the two signals. Because
its distribution has two peaks, subbands 8 and 13, respectively.
These multi-peaks correspond to the complicated oscillations
in the Bonn epilepsy EEG. These subbands corresponding
response frequencies are 16.2H z and 6.1H z. So, it means
that the epilepsy characteristics are mainly in the 16.2H z and
6.1H z at most.

The remarkable subbands of three states of epilepsy
EEG are drawn on Fig. 9. Thus, according to the stan-
dard defined in (27) and (29), we obtain the selected sub-
bands 7, 8, 9, 11, 12, 13. These subbands based on the peak of
energy ratio distribution determine the specific characteristic
subspace to each state signal. Moreover, in one state signals,
the other subbands except for the energy ratio peak corre-
sponding represent the common characteristic subspace to this
state. Each state signal is reconstructed by inverse TQWT with
the specific and common subspace characteristic subspaces.
The initial and reconstructed signal samples are represented
in Fig. 10.

With regard to these five reconstructed signals in
Fig. 10, the signals in the normal state have hardly
changed at all, and the fluctuations before and after
reconstruction are not very different. However, in
Figs. 10(g) and 10(h) and 10(k) and 10(j), the oscillations of
the interictal and ictal signals have been different. This means
that the key fluctuations of the interictal and ictal signals
have been extracted and useless frequency fluctuations have
been removed. In Figs. 10(e) and 10(g), a specific pattern of
interepisode oscillations in the time domain can be found, and
in Figs. 10(f) and 10(h), both reconstructed signals fluctuate

Fig. 10. The contrast to the raw(left) and reconstruction(right) of Bonn
database.

above and below the zero value. However, the oscillations of
the interictal state in Figs. 10(j) and 10(k) are irregular and
wider in amplitude than the others. At the same time, these
oscillations are more complex than those in the interictal
period. Undeniably, our method extracts specific features of
episodic EEG.

2) Revised Tunable Q-Factor Wavelet Transform of Bonn
Database in Different Classifiers: Following this, the features
of the signal are extracted by selecting suitable subbands
based on the distribution of subband energy ratios as a
criterion. The subbands {7, 8, 9, 11, 12, 13} selected for the
BONN epileptic EEG signals correspond to a specific epileptic
wavelet subspace {W i , i = 7, 8, 9, 11, 12, 13}. For comparison
with other methods of feature extraction, the dimensionality
of the features extracted is kept consistent. In these feature
extractors, the energy of subband is extracted to constitute the
feature vector. Five classifiers are used to train these feature
data. The classifier accuracy is a performance evaluation.
Using the A-C-E experimental group as an example, six
feature extractor are compared in the Bonn database. Fig. 11
shows the performance of these feature extractors in different
classifiers.

In detail, the designated evaluation values for the A-C-E
experimental groups are shown in Table IV. Our proposed
RTQWT was compared with five feature extractors, FT, EMD,
DWT, CWT and TQWT. Among these feature extractors,
EMD and FT achieved the worst performance in detecting
epilepsy, indicating that the decomposition of the epileptic
EEG signal by the EMD and FT methods was not suf-
ficient and the detailed features of epilepsy were incom-
pletely extracted. In the wavelet feature extractor, the proposed
RTQWT excelled in all cases and was also able to distinguish
epileptic states under all five different classifiers. In particular,
among the DT classifiers, the RTQWT had the highest epilepsy
classification performance of 97.7%. For the other wavelet
feature extractors, DWT and CWT were limited by a constant
Q-factor and the oscillations of the wavelets were not compat-
ible with the different fluctuations of epilepsy. For the TQWT
wavelets, similar results were observed due to the lack of a cri-
terion for Q-factor. As a result, DWT, CWT and TQWT gave
slightly inferior results to RTQWT. The successful application
of RTQWT in these classifiers illustrates the effectiveness and
superiority of RTQWT in identifying epilepsy.
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Fig. 11. The accuracy of six feature extractors with five classifiers in Bonn database.

TABLE IV
CLASSIFICATION ACCURACY (IN%) OF VARIOUS MODELS OBTAINED FOR THE BONN DATABASE

Except for the A-C-E experimental group, the other four
groups in the Bonn database are tested to prove the effective-
ness of our proposed method. The results of the four groups
are presented in Table IV. In these four experimental groups,
the most predominant result is achieved using our proposed
RTQWT method. From the values in Table IV, we obtain
several conclusions:

1) To compare the six feature extractors, we compare the
accuracy of the feature data after feature extraction using five

different classifiers. Table IV shows that the best performance
is achieved using the RTQWT. With respect to the training
of five different datasets, the best results on all datasets
are achieved using the RTQWT, which generally has better
accuracy than the other feature extractors by 1%. Among
the six feature extractors, the worst performance results, with
accuracy rates that are significantly lower than those of the
other methods, are obtained using the EMD and FT. For
the wavelet transform methods, the accuracy of the CWT
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is higher than that of the DWT by 1.4% ∼ 4% due to the
continuity of CWT wavelets. However, the constant Q-factor
hinders the decomposition of epileptic EEG signals by the
DWT and CWT, so the DWT and CWT are less effective
than the RTQWT. Overall, all the results reflect that the
RTQWT method is superior to the other five methods in
decomposing epileptic EEG signals, reflecting the superiority
of the RTQWT.

2) Comparing the results of the models of the different
classifiers in Table IV with those of the RTQWT feature
extractor, it can be found that the best performance under
different databases is generally achieved using the DT clas-
sifier. On these five experimental databases, an improved
accuracy of 1.0 ∼ 8.0% is obtained using the DT classifier
over the other classifiers. Compared to the NB classifier, the
recognition process of epileptic features is optimized on the
A-C-E, A-D-E and AB-CD-E databases, and the accuracy is
improved by 3.7 ∼ 10.6%. Similarly, it is observed that the
DT outperformed the other three classifiers with respect to
the classification results. Thus, the decision tree classifier can
further improve the classification of epileptic EEG features
extracted by the RTQWT.

3) The RTQWT generally outperforms the other feature
extractors in the identification of different epileptic EEG signal
datasets. However, we note that all six feature extractors
perform poorly on the AB-CD-E database. This may be due
to the uneven distribution of the number of epilepsy data
in the three Bonn categories. However, the highest accuracy
is still achieved using the RTQWT with the other feature
extraction methods. For the AB-CD-E database, higher results
are obtained using the RTQWT feature extraction method
than the other feature extractor methods by 1.2 ∼ 18.4%.
The excellent performance of the RTQWT feature extraction
method for epilepsy EEG signal identification on different
databases has validated the robustness of this feature extractor.

According to the results of each classifier on different Bonn
datasets in Table IV and Fig. 11, the decision tree was the
best for classification of epilepsy EEG signals after RTQWT
reconstruction. To further validate the superiority of RTQWT
in epilepsy EEG signal feature extraction, RTQWT was com-
bined with other tree models to conduct experiments on these
five datasets. The tree models used in the experiments included
gradient boosting decision tree(GBDT) and eXtreme gradient
boosting(XGBoost), and the experiments were validated using
a ten-fold crossover and repeated 50 times, and the mean
and standard deviation of all the results were taken as the
evaluation metrics of the models. Table V shows the results
of the models combining RTQWT with decision trees, GBDT
and XGBoost for classification on five different datasets from
Bonn. The following conclusions can be drawn from the
results in Table V.

1) RTQWT performs best on Bonn database under differ-
ent tree models. The accuracy of RTQWT combined with
DT, GBDT and XGBoost models is improved by 1.0% to
22.0% over the other five feature extraction methods com-
bined with tree models. The superior results of RTQWT
combined with GBDT and XGBoost models indicate that
the RTQWT feature extraction method can be combined

TABLE V
CLASSIFICATION ACCURACY (IN%) OF VARIOUS MODELS

OBTAINED FOR THE BONN DATABASE

with different tree models to fully achieve good recognition
results.

2) The RTQWT method combined with different tree mod-
els works best among all feature extraction methods for differ-
ent datasets. For the A-D-E and AB-CD-E datasets, XGBoost
works the best among all classifiers, with improvements of
0.1% to 4.6% compared to DT and GBDT. For the B-C-E
dataset, the best accuracy of 97.7% is achieved using the DT
classifier. For the other two datasets, GBDT performs better,
with an accuracy improvement of 1.5% ∼ 2.5% compared to
DT and XGBoost, respectively.

3) For different tree models, DT, GBDT and XGBoost
combined with RTQWT all outperform the other feature
extraction combined models in terms of classification. For the
B-C-E dataset, the best classification result is achieved using
DT; GBDT is more suitable for the A-C-E and A-D-E datasets.
The XGBoost combined with RTQWT model performs well
on all datasets, especially on the first four datasets.

V. CONCLUSION

In this paper, a new revised TQWT method for epilepsy
feature detection is proposed and successfully applied to the
Bonn database. The TQWT parameters of the Q-factor and
redundancy are optimized on the basis of a new weighted
normalized entropy. The reconstructed signals are obtained by
the selection of unique and common feature subspaces with
energy ratio distributions. These signals are passed through the
classifier for epilepsy detection. In this process, the weighted
normalized entropy of the minimized TQWT subbands cor-
responds to the minimum loss of the TQWT signal decom-
position. Then, for the subbands obtained from the RTQWT
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decomposition, the most discriminative subbands are selected
according to the energy ratio distribution, extracting the unique
and common feature subspaces between different types and
removing redundant information at the same time. Finally,
these signals are recognized with different classifiers to verify
the effectiveness and robustness of the RTQWT. Our proposed
method is validated using five experimental groups from both
Bonn databases. For the A-C-E dataset, the maximum accuracy
of identifying the Bonn signals with the decision tree is 99.8%
with a standard deviation of 0.53%.

The major innovative features of the proposed methods are
listed as follows:

(1) The TQWT is applied to decompose nonlinear signals
with the new proposed weighted normalized entropy to opti-
mize the Q-factor and redundancy. This method ensures that
the signal decomposition is sufficient.

(2) The distribution of the energy ratio presents the optimal
subbands of various signals and contributes to mining for
specific and common characteristic subspaces. The signals
containing these characteristic subspaces are more conducive
to subsequent classification.

(3) The feature extractor RTQWT combined with the clas-
sifier of the decision tree can further optimize the process
of signal identification. The specific characteristics in signals
are extracted via RTQWT. The decision tree based on the
nonlinear structure identifies the specific features extracted by
the RTQWT.

The highest accuracy with the lowest standard deviation for
the five experimental groups is achieved using the RTQWT
with DT. The accuracy is improved by 4.8% ∼ 18.6%
compared to the FT, EMD, DWT, CWT and TQWT. Satis-
factory classification results for different datasets are achieved
using the RTQWT with other tree models. Among them,
the RTQWT model combined with XGBoost shows the best
performance, with an accuracy above 95% on the four datasets
and the highest accuracy of 89% on the AB-CD-E dataset. The
effectiveness and robustness of the algorithm are confirmed via
extensive experiments with different classifiers and databases.

VI. FUTURE WORK

The revised tunable Q-factor wavelet transform method is
utilized for epileptic EEG signal detection in this paper. This
method accurately extracts the fluctuating post-reconstruction
signal of the epileptic signals, and it significantly improves
the detection rate of epileptic seizures. We attempt to extend
the approach of this paper to detection tasks with different
patient seizure types and varying degrees of artifacts. This will
allow RTQWT to cope with different seizure types. Future
work considers extending the universality of RTQWT for
detecting epilepsy. The ability of RTQWT to detect many
different seizures is enhanced by embedding RTQWT into
deep learning.
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