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A Training-Free Infant Spontaneous Movement
Assessment Method for Cerebral Palsy

Prediction Based on Videos
Qingqiang Wu , Penglin Qin , Jiachen Kuang , Fan Wei , Zejiang Li , Ruping Bian,

Chengcheng Han , and Guanghua Xu

Abstract— objective: Early diagnosis of infant cerebral
palsy (CP) is very important for infant health. In this
paper, we present a novel training-free method to quantify
infant spontaneous movements for predicting CP. Methods:
Unlike other classification methods, our method turns the
assessment into a clustering task. First, the joints of the
infant are extracted by the current pose estimation algo-
rithm, and the skeleton sequence is segmented into mul-
tiple clips through a sliding window. Then we cluster the
clips and quantify infant CP by the number of cluster
classes. Results: The proposed method was tested on two
datasets, and achieved state-of-the-arts (SOTAs) on both
datasets using the same parameters. What’s more, our
method is interpretable with visualized results. Conclusion:
The proposed method can quantify abnormal brain devel-
opment in infants effectively and be used in different
datasets without training. Significance: Limited by small
samples, we propose a training-free method for quantifying
infant spontaneous movements. Unlike other binary clas-
sification methods, our work not only enables continuous
quantification of infant brain development, but also pro-
vides interpretable conclusions by visualizing the results.
The proposed spontaneous movement assessment method
significantly advances SOTAs in automatically measuring
infant health.
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I. INTRODUCTION

INFANT cerebral palsy (CP) is a permanent impairment of
motor and postural development caused by non-progressive

damage that occurs in the developing fetus or infant’s brain [1].
CP, the most common movement disorder in children, is one
of the major diseases that seriously affects children’s lives [2].
At least 17 million children are currently affected by CP
worldwide. Early detection and recovery during the highly
plastic stage of infants mean a lot to infants. Unfortunately,
most positive children are discovered after they have obvious
symptoms of abnormal brain development (about 18 months
or later), missing the best time for treatment [3].

Studies found that in the early stages of infant brain develop-
ment (before 16 weeks) there is no self-consciousness without
stimulation, so the infant’s spontaneous movements can reflect
the extent of brain development [4], [5]. Therefore, some
scholars [6], [7], [8] have designed touch sensors (such as
accelerometers) to quantify infant movements. However, using
markers to touch the baby’s skin may significantly increase
the baby’s pressure, discomfort and pain. At the same time,
it can affect the baby’s normal movement pattern, which may
be difficult to practice in actual clinical practice. To overcome
these problems, researchers seek new reliable and non-contact
surveillance alternatives, which are mainly based on video
analysis.

General movements assessment (GMA) [9], proposed by
Prechtl, is a typical tool that observes infant movement videos
to predict the risk of infants with CP. In Prechtl’s theory,
the spontaneous movements of normal infants give a com-
plex impression of variable speed and acceleration, while
the spontaneous movements of infants with abnormal brain
development are simple and monotonous [10]. Although GMA
has proven to be an effective tool for the early prediction of CP,
it requires skilled specialists and their time to study the videos
and provide assessments. This makes assessments impossible
or delayed for many infants. Therefore, it is necessary to
develop tools that can automatically assess infant movements
in videos.
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At first, scholars directly made infant movement videos as
input and extracted motion features for classification using
traditional classifiers such as Support Vector Machines (SVM),
and K-Nearest Neighbors (KNN). Adde et al. [11] used the
frame difference method to extract the range of motion of
each limb for direct classification. In [12], [13], Adde et al.
further extended their method to classify by features such
as the centroid of each limb movement. Rahmati et al. [14]
used the movement frequency of each limb as a feature for
classification by the partial least square regression. Stahl et al.
[15] applied optical flow to extract the motion features of
infants. The extraction features of these methods are relatively
rough and easily affected by background noise.

With the development of deep learning, image-based human
pose estimation methods emerge in an endless stream, and
researchers began to extract the baby’s motion for analysis.
At this time, the classifier were still traditional machine
learning classifiers. McCay et al. [16] proposed a classifier that
fuses multiple pose motion histogram features and obtained
satisfactory results after training on different datasets. There
are more and more methods using deep learning as classifiers.
Sakkos et al. [17] fused Convolutional Neural Network (CNN)
and long short-term memory network (LSTM) models to
classify trajectories of 8 joints of infants. McCay et al. [18]
combined the Histogram of Joint Orientation 2D (HOJO2D)
and the Histogram of Joint Displacement 2D (HOJD2D) and
proposed a CNN model for classification. Nguyen-Thai et al.
[19] explored the interpretability of the results, using a Spatio-
temporal Attention-based Model (STAM) with an attention
mechanism to classify pose sequences, and the visualization of
attention weights can highlight the location of normal motion.
Tsuji et al. [20] built an Artificial Neural Network to classify
the dataset into 4 classes. Groos et al. [21] made the joint
points of the human body as nodes and the bones as edges
to construct a graph network, classifying each clip separately.
Since deep learning is currently in a black box state, inter-
pretability is still in the research stage. There are also some
training-free quantitative assessment methods for spontaneous
movement quality. Wu et al. [22], [23] respectively proposed
a complexity-based motion complexity index (MCI) for the
spontaneous movement of infants in 2d and 3d postures.

Nowadays, there are so many excellent AI-assisted assess-
ment methods for CP [24]. Most of them are based on deep
learning for training to obtain binary classification results
of video input. However, these methods have the following
shortcomings. First, limited by a small number of training
samples, it is very likely that the training will be over-fitting,
which makes the reliability of the results worse. Second,
it’s difficult to directly use a unified model for cross-dataset
prediction, that’s to say, different datasets need to be retrained,
which is inconsistent with reality. Third, the development of
infants is a dynamic process, and the degree of abnormal brain
state continuously changes. Current methods can only judge
whether the input video is abnormal or not, but cannot judge
the severity. It is inappropriate to use binary classification
rather than continuous indicators to assess the developmen-
tal extent. Fourth, these methods only provide classification

results and lack interpretability, which makes it impossible to
assist physicians in targeted treatment.

According to GMA theory, normal spontaneous movements
give people a complex and changeable impression. Normal
infant movement videos tend to contain more types of move-
ment patterns, while abnormal spontaneous movements are
often manifested as the absence of fidgety motion or fidgety
motions are simply monotonous, that is, abnormal infant
motion videos contained fewer categories of motion patterns.
Then we propose a method called the affinity propagation clus-
tering model (APCM) to quantify the spontaneous movement
based on the characteristics of the input video itself. Unlike
other classification tasks, our method treats the quantitative
evaluation of spontaneous movements as a clustering task.
First, we divide the input infant pose sequences into many
clips. Then we cluster these clips. The higher the abnormal
movement degree of the infant, the less the number of clusters
of clips.

This proposed method is a training-free method and has no
potential impact on overfitting. At the same time, our method
analyzes each video independently, which can adapt to the
individual development of infants. Further, our results can be
visualized by which clips in the video are repeated. If there
are too many clips of the same type in the input video, these
clips have more possibility of abnormal movement patterns.
At the same time, we separate the limbs of infants for cluster
analysis, which can further demonstrate the motor correlation
and complexity of each limb through interpretable clustering
results, which can assist physicians in targeted therapeutic
interventions.

In this paper, we mainly make the following contributions:
First, we propose a training-free quantization method based

on the characteristics of the infant movement video itself,
which can realize the evaluation of infant self-adaptation and
can be used directly between different datasets.

Second, to the best of our knowledge, this is the first
training-free method with interpretable results, and the pro-
posed method can assist doctors in conducting targeted
interventions;

Third, unlike other methods, the results of our method are
quantifiable indicators that can show how much the infant is
at risk, and can also give hints for some infants with mild
developmental abnormalities.

The rest of the sections of this paper are organized as
follows: Section II shows the proposed infant spontaneous
movement assessment method for CP prediction. Section III
presents experiments and comparisons with SOTAs on two
public infant movement datasets. Section IV discusses the
limitations of our approach and future work, and the last
Section draws out conclusions.

II. METHODOLOGY

In [16] and [19], the authors extracted the motion features
of different subjects for training and classification, focusing
on the feature differences across all samples. The proposed
APCM focuses more on the intrinsic characteristics of each
sample, which is training-free. Compared with other methods,
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Fig. 1. An overview of the proposed method.

our method is training-free, has good portability, and can be
directly applied across different data sets. At the same time,
our method provides visual results, through which doctors can
locate abnormal positions in infant motion videos and further
confirm diagnostic results.

A. The Proposed Method Framework
Fig. 1 shows an overview of the proposed method. First,

we use a current pose estimation algorithm to extract the 2D or
3D skeleton sequence of the supine infant from the input video.
Next, the skeleton sequence is preprocessed, mainly including
interpolation and filter smoothing. We divide the infant’s limbs
into four body parts and cut the four body parts sequences with
a sliding time window to obtain a series of clips. Then, the
histogram features of these clips are extracted, and the affinity
propagation clustering model is applied for clustering. Finally,
the clustering categories of each body part of the infant are
counted, and our movement indicators are proposed.

B. Pose Estimation
We employ the Joint feature coding (JFC) method [25] to

estimate infant poses from color videos. The JFC is used
to estimate infant pose from depth images. Since the JFC
method combines regression and classification tasks, and it
considers different scales of the human body, it is more
suitable for small-scale body (such as an infant) pose esti-
mation. The JFC method has higher pose estimation accuracy
than the commonly used OpenPose algorithm [26]. We transfer
the JFC method to color images and used the MS COCO
dataset [27] for training and got satisfactory results, as shown
in Fig. 2. There are 18 joint points marked in the MS COCO
dataset, while the proposed method APCM mainly accesses the
motion quality of the limbs, so only 12 joints are considered.
To clearly show the shape of the human body, the nose (J1)

is also marked to represent the head in Fig. 1. We define the
Right Arm body part RA = {J3, J4}, Left Arm body part
LA = {J6, J7}, Right Leg body part RL = {J9, J10}, Left Leg
body part LL = {J12, J13}.

C. Data Preprocessing
The JFC method is based on a single image, making the

estimated pose discontinuous or having slight jitter between
adjacent frames. Before extracting features, the pose sequence
needs to be preprocessed. We refer to the steps of [19]
to preprocess the joint sequence {Ji,t} (i represents the

Fig. 2. Some infant pose estimation results using the JFC method.

Fig. 3. An example of the data pre-processing. (a). the original time
sequence of a joint x coordinate with missing data, jitters, and outliers.
(b). the time sequence after interpolation. (c). the time sequence after
median filtering to remove outliers. (d). the data after preprocessing.

i-th joint, and t is the t-th frame), including: (1). coordinate
interpolation. We use linear interpolation to compute the
missing coordinate into each joint time series {Ji,t}. (2) outlier
removal. We remove outliers by median filtering using a
sliding time window with a window length of 15 frames, the
same length as [16], [19]. (3). filter smoothing. We use the
mean filter with a sliding window to smooth the interpolated
joint sequence, and the window length is 15 frames. Fig. 3
shows the preprocessed changes in the x-coordinate sequence
of an infant’s joint.

Due to factors such as the distance or views from the camera
to the infant, the scales of infants vary in different datasets.
In general, normalization for different infant sequences is also
required. However, since we focus on the internal regularity of
the single infant video, we don’t need to normalize different
infant videos.

D. Feature Extraction
1) Clips Generation: For a given joint sequence {Ji,t},

we split the sequence into a set of clips with a certain window
length. To ensure that there are enough clips for clustering,
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Fig. 4. The feature description of each clip, including pose coordinate
Ji,t(x,y), each joint’s velocity vi,t(x,y), and pixel length of each bone di,t.

there is an overlap between each clip. Due to the duration
of different movement patterns of infants are different, the
window length of the clip should be long enough to ensure that
each clip can fully cover the movement. Through experimental
parameter optimization in Section III-H, we set the window
length to 90 frames, and the step size to 40 frames. Then the
overlapping part is 50 frames.

According to [16], [18], [19], and [21], the differences
in infant movement patterns can be reflected in the pose
and velocity of limbs, so we select joint coordinates Ji,t and
velocity vi,t as features. vi,t can be calculated by Equation (1):

vi,t = Ji,t+1 − Ji,t , (1)

where t refers to the t-th frame and i is the i-th joint defined
in Fig. 1, and vi,t represents the velocity of the corresponding
joint.

Pose estimation methods such as JFC and OpenPose can
only get the infant’s 2D pose. In fact, the infant’s spatial
motion is more suitable for analysis. The movement of the
baby’s limbs in the z-axis direction is difficult to describe
with Ji,t(x,y) and vi,t(x,y). To make up for this deficiency,
we introduce a new feature: di,t, the pixel length of each bone
of the limbs. The di,t represents the projection of the z-axis
motion of each limb on the x-y plane and can be calculated
by Equation (2).

di,t = ||Ji+1,t − Ji,t ||2, (2)

Fig. 4 shows the feature description of each clip. For example,
for RA body part, the feature at time t can be expressed as
Xt,RA:

X t,R A = [J3,t(x, y), v3,t(x, y), d3,t , J4,t (x, y), v4,t (x, y), d4,t ],

(3)

2) Clip Normalization: Infants have a limited range of
motion for each limb, and the ranges of joint coordinates vary
from infant to infant. To fully reflect the difference of motions
in the limited range, we normalize the feature sequence {Xb,t|

b = RA,LA,RL,LL} as Equation (4).

Xb,t =
Xb,t −min{Xb,t }

max{Xb,t } −min{Xb,t }
, (4)

The normalization of other methods [16], [19], [21] is
mainly to ensure that different infants are on the same scale.

Unlike other normalization purposes in preprocessing, we aim
to ensure that the movement ranges are fully reflected in
histogram encoding.

3) Histogram Encoding: In the description of infant motion
features, the authors in [19] directly used joint coordinates and
velocity parameters as the features of STAM for classification,
McCay et al. [16] compared the impact of different feature
combinations on the results. According to their research,
histogram encoding has excellent performance. Therefore,
we also use the histogram to encode our features. Histogram
encoding also brings another benefit: it mitigates the effects
of jitter between adjacent frames in pose estimation results.
Since the feature sequence {Xb,t} contains three parts (Jt,i,
vt,i and dt,i), the bin of the pose part is set to bin1, the bin of
the velocity part is set to bin2, and the bin of the bone length
is set to bin3. In Section III we will experiment with different
combinations of bins.

E. Affinity Propagation Clustering Model
Affinity propagation clustering (APC) was proposed by

Brendan and Delbert [28]. APC selects exemplars by con-
tinuously passing information between different points. The
algorithm does not need to define the number of classes in
advance but continuously searches for appropriate exemplars
in the iterative process, and automatically identifies the loca-
tion and number of exemplars from data points. In our method,
each clip is treated as a data point. We first construct the
similarity matrix s of all data points by Equation (5).

s(m, n) = −||Xb,m − Xb,n||2, m ̸= n (5)

where s(m,n) represents the similarity between points Xb,m and
Xb,n. Xb,m and Xb,n represents two clips in the clips set {Xb,t}.
The larger s, the closer from point m to point n (for simplicity,
we use [m, n] to represent [Xb,m, Xb,n] respectively).

Since the number of exemplars is unknown, each point is
initially treated as an exemplar, and p(m) is used to measure
the possibility of the point n as an exemplar. Due to no prior
information, p(m) is initialized to the median value of the
{s(m,n)} matrix, as shown in Equation (6).

p(m) = s(m, m) = median{s(m, n)}, m ̸= n (6)

We use the responsibility matrix r(m,n) to describe the degree
how the point n is suitable as an exemplar for the point m.
The responsibility r(m,n) can be calculated in Equation (7).

r(m, n)← s(m, n)− max
n′ ,s.t.n′ ̸=n

{a(m, n′)+ s(m, n′)} (7)

where a(m,n’) represents the available value of other points
except the point n to the point m, and be initialized to 0.
s(m,n’) is the similarity of other points to the point m except
the point n. If the value of r(m,n) is greater than 0, it means
that the point n has a strong ability to become the exemplar
of the point m.

The availability matrix a(m,n) is used to describe the
suitability of point m to select point n as its exem-
plar. The availability matrix a(m,n) can be calculated by
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Fig. 5. The affinity propagation clustering model. (a). Responsibility
r(m,n) represents the responsibility value of the point n as the exemplar
of the point m. (b). Availability matrix a(m,n) describes the suitability of
the point m to select the point n as its exemplar.

Equations (8) and (9).

a(m, n)← min{0, r(n, n)+
∑

m′,s.t.m′ /∈{m,n}

max{0, r(m′, n)}},

(8)

a(n, n)←
∑

n′,s.t.n′ /∈n

max{0, r(n′, n)}, (9)

where r(m’,n) represents the responsibility value of the point
n as the exemplar of other points except the point m. It means
point n is supported by the other points except for the point m
with responsibility value greater than 0. The algorithm model
is shown in Fig. 5. Fig. 5a shows the transmission from point
m to the candidate exemplar point n, which reflects the degree
how the point n is suitable as the exemplar of the point m after
considering other potential exemplar point n’. Fig. 5b shows
the transmission from the candidate exemplar point n to the
data point m, reflecting the suitability of the point m to select
point n as the exemplar after considering the support of other
point n’.

During affinity propagation, availabilities and responsibil-
ities of every point can be combined to identify exemplars.
When {a(m,n) + r(m,n)} takes the maximum value, the point n
can be used as the exemplar of the point m. We update
availability matrix a and responsibility matrix r iteratively,
count the number of all exemplars, and end the iteration when
the result remains unchanged for 10 iterations.

We implemented the above APC model using the Matlab
toolkit [29]. And got the final numbers of clustered categories
for 4 body parts {Nb| b = RA, LA, RL, LL}.

F. Spontaneous Movement Index
As we all know that the longer the video is, the more

clips there are, then the more categories tend to exist.
To unify different durations, we obtained the mean ratio k by
Equation (10).

k = mean{Kb,i/Nb,i }, (10)

where Kb,i , Nb,i refer to the number of clips, and the
number of clustered categories of i-th infant’s b-th body part,
respectively.

We counted the number of categories of all normal samples
in the RVI-38 dataset and got the mean ratio of k = 3.12.

Fig. 6. The {Pb} spider chart of 2 samples. (a) abnormal infant.
(b) normal infant.

Then we define the level of the infant’s b-th body part motion
pattern as Pb. Pb can be calculated by Equation (11).

Pb = k
Nb

Kb
, (11)

where Kb is the number of clips of input infant’s b-th body
part. Through Equation (11), the {Pb} of 4 body parts can
be obtained respectively. We set the threshold th to limit the
normal movement probability. When Pb < th, it means that this
body part movement is abnormal. To increase the robustness
of the indicators, we set that when there is more than 1 body
part movement abnormality, the global spontaneous movement
of the baby is abnormal, that is, the baby has a high risk of CP.
Fig. 6 shows the 4 body parts {Pb} spider chart of different
infants. The significant difference between the {Pb} of normal
and abnormal infants can be seen in Fig. 6.

III. EXPERIMENTS AND RESULTS

To test the effect of the proposed method, we verified our
method on 2 datasets. The detailed experimental process and
results are as follows.

A. Dataset
1) MINI-RGBD: The MINI-RGBD dataset [30] contains

12 infants. A color video and a depth video were recorded for
each baby. The videos were collected from the local children’s
hospital during the half year of their life. In this paper, we use
color videos as our input. The resolution of the color videos is
640 × 480. Each video contains 1000 frames, and the video
frame rate is 30 frames per second (FPS). To protect the
infants’ privacy, the dataset adopts the Skinned Multi-Infant
Linear model to hide the baby’s identity and facial information.
The dataset has been labeled by experienced experts (including
4 abnormal babies, and 8 normal babies).

2) RVI-38 Dataset: The RVI-38 dataset [16] is a real patient
video dataset collected at the Royal Victoria Infirmary (RVI),
containing 38 baby samples, each with a color video captured,
for a total of 38 videos. All infants were aged from 3 to
5 months post-term. The videos were recorded with a handheld
Sony DSC-RX100 advanced compact premium camera. The
resolution of the videos is 1920 × 1080. The duration of each
video is not fixed. The shortest is 40 seconds, and the longest is
5 minutes. The average duration is 3 minutes and 36 seconds.
To protect infants’ privacy, the videos have been processed
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by OpenPose to get 38 skeleton sequences. The dataset was
independently classified by two experienced evaluators using
GMA (contains 32 normal samples, and 6 abnormal samples).

B. Detailed Implementation
The original data provided by the two datasets are different.

For the MINI-RGBD dataset, we use the JFC method for
pose estimation to reduce errors. For the RVI-38 dataset,
the dataset has estimated pose using OpenPose in advance,
resulting in many fatal errors, and it’s a more challenging
dataset. Although the frame rates of the two are different,
we did not delve into the effect of the capture frame rate on
the results. Both datasets take the same parameters.

The implementation parameters of the pose estimation part
are the same as [25]. From preprocessing to the end, it is
implemented in the Windows 10 system. The experimental
environment is Matlab r2020b, 6xCPU (i5-11400f@2.6GHz).
The GPU is not involved in subsequent computations.

C. Performance Metrics
Consistent with [16], [18], [19], we also use the accuracy

(Acc for short), sensitivity (Sen), and specificity (Spe) evalua-
tion metrics to access the performance of the proposed method.
The metrics are calculated by Equations (14), (13), and (14).

Acc =
T N + T P

T N + F N + T P + F P
, (12)

Sen =
T P

T P + F N
, (13)

Spe =
T N

T N + F P
, (14)

where TN is short for true negative and means healthy infants
are correctly classified as healthy infants. TP is short for true
positive and represents the case in which abnormal infants are
correctly classified as unhealthy infants. FN is short for false
negative and stands for abnormal infant incorrectly as healthy
infants. FP is short for false positive, which means healthy
infants are incorrectly classified as abnormal infants.

We also use the receiver operating characteristic (ROC)
curve to evaluate our model, which is the most popular method
to measure the model’s preference.

D. Compare With SOTAs on MINI-RGBD Dataset
The classification performance of the MINI-RGBD dataset

is presented in Table I. As can be seen from Table I, our
method achieves an accuracy of 91.67%, a sensitivity of 100%,
and a specificity of 87.5%.

In terms of accuracy, our method is lower than the Pose&Vel
method [16]. But it is worth noting that the MINI-RGBD
dataset only includes 12 samples. Only one sample out of
the actual 12 samples was misclassified with our method.
Overall, the training-based methods are generally better than
the training-free methods, but the possibility of overfitting
cannot be ignored because of the small dataset size.

In the sensitivity metric, our method achieves 100%, which
means that all positive babies can be screened. It shows that
APCM can meet the needs of screening. In terms of specificity,

TABLE I
CLASSIFICATION PERFORMANCE OF THE MINI-RGBD DATASET

TABLE II
CLASSIFICATION PERFORMANCE OF THE RVI-38 DATASET

our method is lower than the Pose&Vel method [16] about
12.5%. Only one sample was misclassified.

In the comparison of training-free methods, our results are
consistent with the MCI [23], but our method can provide
more visual information, which will be shown later.

E. Compare With SOTAs on the RVI-38 Dataset
Table II presents the classification results of the RVI-38

dataset. On the RVI-38 dataset, our method achieved an
accuracy of 94.74%, a sensitivity of 83.33%, and a specificity
of 96.88% when th = 0.104. In terms of accuracy, our method
is 2.63% lower than the Pose&Vel method [16] with one more
sample classification error. Although the size of the RVI-38
dataset has increased compared to the MINI-RGBD dataset,
it is still a small sample dataset.

Compared with the MINI-RGBD dataset, the accuracy
of most training methods is reduced, indicating that the
size of the dataset has a great impact on training. How-
ever, the accuracy of our method has improved, because
the interference of small sample accidental phenomena is
excluded, and the accuracy is more accurate. Notably, all
training methods are retrained on the RVI-38 dataset, while
our method uses the same parameters as the MINI-RGBD
dataset.
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Fig. 7. T-SNE result of {Pb} of RVI-38 dataset.

In terms of sensitivity, our method achieves the SOTAs
when th = 0.104. When we increase the threshold th to 0.5293,
we can achieve 100% sensitivity, at the cost of sacrificing
some accuracy. Different th leads to different performance
of the proposed method, we use ROC curve to optimize th,
and the specific discussion will be presented in Section III-G.
It explains that all positive babies can be screened at this
threshold.

Different infants have different fidgety motion trajectories,
limited by the size of the dataset, and unbalanced samples
of two class movements, resulting in a serious decrease
in the sensitivity of the STAM method [19] compared to
MINI-RGBD. It shows that the STAM has a strong depen-
dence on the dataset and weak generalization ability. In terms
of specificity, the training-free methods are still lower than
training-based methods. Because the positive samples are
much lower than the normal samples (the proportion is 3:16),
in extreme cases, if all 38 samples are classified as normal
samples, it can also reach 84.21% accuracy and 100% speci-
ficity. Therefore, for screening, sensitivity is more important
than specificity.

Because we use 4 body parts and do more detailed quan-
tification, our indicators are better than MCI in the training-
free protocol. As the threshold th increases, the sensitivity
increases, but the accuracy and specificity decrease.

To further demonstrate our results, we visualize the
results using the t-Distributed Stochastic Neighbor Embedding
method (t-SNE) [31]. Since the weights of the 4 body parts
are the same, we sort the {Pb} of each sample and then use
t-SNE for visualization. Fig. 7 shows the t-SNE visualization
result. We can see that all the abnormal samples (blue dots)
are clustered together, while the normal samples (red dots) are
clustered into 2 groups. This is because, in normal samples,
some infants’ 4 limbs have uniform spontaneous movements,
while other infants have one limb to show abnormal movement
patterns. Nonetheless, there is a good distinction between
normal and abnormal samples. This also proves that our
training-free method can effectively quantify the different
qualities of infant spontaneous movement.

When the threshold is more stringent, the results of our
method in MINI-RGBD and RVI-38 are very close, which
shows that our method has good generalization ability.

Fig. 8. Visualization of two samples’ clustering results. (a) abnormal
sample. (b). normal sample. Each row corresponds to a body part
and each cell corresponds to a clip. The same color in the same row
indicates the same category.

F. Results Visualization
In the STAM [19], the authors train the network using

attention encoding, and finally visualize the attention weights,
highlighting body parts and frames that contain discrimina-
tive information about normal fidgety movements. There are
obvious differences between attention weights and real labels,
and the association performance of different joints is not clear.
Inspired by them, we visualize the clustering results, as shown
in Fig. 8. Fig. 8a shows the clustering results of an abnormal
infant with 4 limbs. We can see that the entire sequences of RA
and LA body parts have few clustering categories, indicating
that the movements are relatively simple and there are obvious
abnormalities. For the RL part, the yellow part may have
abnormal movement patterns. The location of the yellow clips
can assist experts in locating the time sequence location for
further analysis. Fig. 8b shows the clustering results of the
limbs of a normal infant. It can be seen from Fig. 8b that
the movements of the limbs of normal infants are relatively
complex, and most of the categories contain 3 clips, which is
close to the ratio k value (k = 3.17) in Section II-F. Further,
there is a certain correlation in the first half of the clips of the
four limbs, and the correlation of the latter half of the clips
are weak in Fig. 8b, which explains that infant movements are
random and complex.

G. ROC Curve on RVI-38 Dataset
The selection of the threshold th affects the accuracy, sensi-

tivity, and specificity of the results. To choose an appropriate
threshold, we investigated the relationship between sensitivity
and specificity under different thresholds using the ROC curve
as shown in Fig. 9. As can be seen from Fig. 9, when th =
0.1040, the accuracy rate is 94.74%, and the sensitivity is
less than 1. After increasing the threshold, the accuracy rate
is reduced to 89.47%, and the sensitivity is 100%. Since
the purpose of our method is for large-scale mass screening,
to ensure that there is no missed diagnosis, we choose a stricter
threshold to build the model.

H. Ablation Study
Important parameters affecting the accuracy of APCM are

the number of bins of histogram encoding, step length, and
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Fig. 9. ROC curve of the APCM on RVI-38 dataset.

TABLE III
BINS OPTIMIZATION RESULT

window length of the sliding window in clip generation.
To simplify parameter optimization, we use the experience
to initialize and fix other parameters to optimize specific
parameters. The first is the optimization of bins.

1) Bins Optimization: In [18], the authors optimized the
parameters with bins = 8 and 16. Based on their experiments,
when bins = 8, the differences in movements cannot be
characterized. We choose 16 and 32 as the candidate for
[bin1, bin2, bin3] to perform experiments. Table III shows the
experimental results of different bins configuration.

As we adopt the similar feature description with [18],
many experiments were done on the optimization of bins
of [18]. Therefore, we also refer to the similar configuration
of [18] on the selection of bins. The difference is that [18]
chooses 8 and 16 as candidates, we use 16 and 32 as our
candidates. We found that when bins = 8, different features
[Ji,t(x,y), vi,t(x,y), di,t] have great interference. In our feature
descriptors, bin1 is the coordinate segmentation, bin2 is the
velocity segmentation, and bin3 is the bones segmentation.
Different bins can affect the weight and precision of the three
features. Since both velocity and bone length are calculated
by coordinates, the estimation errors of coordinates will be
transferred to the two features. Taking small values in bin2
and bin3 can reduce the influence of error and improve the
accuracy. It can be seen from Table III that when (bin1, bin2,
bin3) = (32, 16, 16), the result can reach the optimal solution.

2) Sliding Window Step Length Optimization: The step length
affects the number of clips and then affects the results of the
cluster. We choose (30, 40, 50, and 60) as the candidate to
perform experiments, and the accuracy is shown in Fig. 10.

From Fig. 10, we can see that when step length = 40
frames, the result is optimal. When the step length is too
short, there are too many overlapping parts in adjacent clips,
making the results of the APCM of abnormal infants and
normal infants similar. However, when the step is too long,

Fig. 10. The accuracy results on the RVI-38 dataset with different step
lengths.

Fig. 11. The trend of accuracy and number of cluster classes Nb
with clip length increasing. (a). the accuracy of the RVI-38 dataset
with different clip lengths. (b). Nb of normal and abnormal sample with
changes in the length of the clip.

the number of clips is too small, resulting in inaccurate cluster
results.

3) Sliding Window Length Optimization: The infants’ move-
ment velocities are diverse. The too short window length
isn’t enough to include a complete infant movement process,
while too long window lengths will cause too much overlap.
Fig. 11a presents the accuracy with different clip lengths on
the RVI-38 dataset. As shown in Fig. 11a, with the window
length increases, the accuracy of classification is the first
improved and then decreased. The best clip length is 90.

To study the influence of different window lengths on
the final clustering number, we selected some samples, and
normalized them to the same proportion, then obtained the
results of Fig. 11b. From Fig. 11, we can see that with the
increase in clip length, both Nb of the normal and abnormal
sample have decreased, but the reduction of the normal infant
is slow, and abnormal infant is reduced relatively fast. This
is because the movements of abnormal infants are relatively
monotonous and simple, and the small window length is
enough to include all movements mode. While the spontaneous
movements of the normal infant are complicated, the large
window length can still maintain the diversity of the clips.

IV. DISCUSSION

Monitoring infants, especially premature infants, are essen-
tial to evaluate the health status of the baby and early brain
development state. However, we found that there is currently
a lack of quantitative assessment of infant brain development.
This is mainly due to the lack of current monitoring technology
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and information processing. The current mainstream diagnosis
relies on the subjective visual judgment of clinicians on the
side of the crib. Of course, some methods use wearable sensors
(such as acceleration meters) or automated GMA. The wear-
able sensor may have a certain stimulus on the baby, affecting
the spontaneous motion mode of the baby. For automated
GMA methods, most of the evaluations are completed as
classification tasks, which is limited by the current small
sample datasets. Most of the classification training models
may have problems with over-fitting or generalization ability.
Infant movement using data-driven indeed is one of the future
development trends, but the current small sample dataset is not
enough to support the establishment of perfect models. And
just doing the binary classification of the input videos cannot
meet the needs of fine quantification.

Compared with other methods [13], [14], [16], [18], [19],
our method is training-free. After optimizing model parameters
with RVI-38 dataset, we directly apply the optimized parame-
ters model to MINI-RGBD dataset and obtained SOTA result,
indicating that the proposed method has good portability.

In our study, we are committed to adopting the training-
free method to cluster single infant movement video essential
features. Unlike other classification tasks, our method has
implemented a fine quantitative assessment of infant four limbs
movements.

In terms of the accuracy of the two public datasets, although
our method has not reached the optimal, it is only one sample
that is different from the optimal result. Note that our method
is training-free, and no parameters are adjusted separately in
the two datasets. All model parameters are the same across the
two datasets. This ensures the reliability of the model and the
huge prospect of a migration to actual clinical applications.

In terms of sensitivity, by adjusting a stricter threshold, our
method achieves 100% sensitivity in both datasets. In other
words, our method can ensure that all babies with high risk
can be screened. Further testing for high-risk infants can avoid
misdiagnosis.

In terms of explanation of results, our method can directly
display the different states of the four limbs through the
final visualization of the clustering result. At the same time,
the quantitative indicators {Pb} are given. The higher the
{Pb}, the higher the probability of normal limb movement,
and the higher the probability of the normal baby’s normal
brain development visualization results, experts can directly
locate the corresponding limbs and corresponding moments
of abnormal motion in the baby’s movement video, and it can
assist the experts for personalized intervention.

With the help of advanced machine learning theory and deep
learning methods, digital information of infants can be used
to assist the early diagnosis of cerebral palsy in infants. In our
previous study [23], complexity can be used to describe the
quality of spontaneous movement in infants, but this evaluation
is not comprehensive. By APCM, the self-clustering idea can
be used to clarify the regularity of the same movement pattern
in the infant movement, and then visualize the quality of the
infant’s spontaneous movement. Because the APCM method
can realize the movement evaluation of different limbs, it can

be used to further quantify the developmental processes of
different limbs in infant brain development.

The proposed method still has some limitations. First, the
proposed method relies on the accuracy of pose estimation
of input infant video. Most of the current pose estimation
algorithms are based on a single image, which will introduce
noise or identification errors. We can improve the accuracy of
recognition through multiple image postures between continu-
ous frames in the future. Second, the APCM method has only
analyzed the number of cluster classes, and the distribution of
each category has not yet been analyzed. In the future, it will
consider analyzing the cluster distribution of 4 body parts and
propose a more specific evaluation plan. The third limitation is
the lack of data. At present, due to the privacy of infants and
other factors, there are few public available data sets. In the
later stage, we will build our own private dataset to further
verify our method.

V. CONCLUSION

We have proposed a new training-free video-based sponta-
neous movements assessment method for infant CP screening.

This method uses JFC to estimate infant pose, then split
the joint sequences into clips, use the APCM cluster class and
form multi-dimensional assessment indicators. By testing on
the two public datasets, the effectiveness and generalization
ability of the method is verified. The main discoveries of this
article are: (1). Converting traditional classification ideas into
clustering can get rid of the dependence on the dataset size.
(2). The number of categories of clustering can quantify the
quality of infant spontaneous movement. (3). Visualization of
clustering results can explain the exception in the input infant
video.
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