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EEG-Channel-Temporal-Spectral-Attention
Correlation for Motor Imagery EEG Classification
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Abstract— In brain-computer interface (BCI) work, how
correctly identifying various features and their correspond-
ing actions from complex Electroencephalography (EEG)
signals is a challenging technology. However, most current
methods do not consider EEG feature information in
spatial, temporal and spectral domains, and the structure
of these models cannot effectively extract discriminative
features, resulting in limited classification performance.
To address this issue, we propose a novel motor-imagery
EEG discrimination method, namely wavelet-based
temporal-spectral-attention correlation coefficient
(WTS-CC), to simultaneously consider the features
and their weighting in spatial, EEG-channel, temporal and
spectral domains in this study. The initial Temporal Feature
Extraction (iTFE) module extracts the initial important tem-
poral features of MI EEG signals. The Deep EEG-Channel-
attention (DEC) module is then proposed to automatically
adjust the weight of each EEG channel according to its
importance, thereby effectively enhancing more important
EEG channels and suppressing less important EEG chan-
nels. Next, the Wavelet-based Temporal-Spectral-attention
(WTS) module is proposed to obtain more significant
discriminative features between different MI tasks by
weighting features on two-dimensional time-frequency
maps. Finally, a simple discrimination module is used for
MI EEG discrimination. The experimental results indicate
that the proposed WTS-CC method can achieve promising
discrimination performance that outperforms the state-of-
the-art methods in terms of classification accuracy, Kappa
coefficient, F1 score, and AUC on three public datasets.

Index Terms— Brain–computer interface (BCI), motor-
imagery electroencephalography (MI EEG), EEG-channel
attention, temporal-spectral attention, wavelet transform,
correlation coefficient.

I. INTRODUCTION

BCI is an advanced technology that establishes a system
that does not need to go through peripheral nerves and

muscles and does not need any body part to move [1], [2], [3].
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Analyzing EEG can infer the subject’s mind, enabling people
to directly communicate with external devices through brain
consciousness and be a communication channel [4], [5], [6].
With the rapid development of technology, MI-EEG is widely
used in BCI research. Suppose these neural activities based on
MI-EEG can be mastered. In that case, it is possible to use
“imagination” to control devices such as computers or robotic
arms, helping improve patients’ quality of life with physical
disabilities or neuromuscular degeneration [7], [8], [9]. How-
ever, physiological signals can produce different results due to
individual differences in subjects, coupled with the instability
of brain activity and low signal-to-noise ratio (SNR) [10],
[11]. These factors may limit the performance of classification.
Therefore, how to extract useful features from complex EEG to
improve the classification accuracy of MI-based BCI systems
is still an important challenge [12], [13].

In various MI-EEG applications, many machine learning
algorithms have been developed. For example, Common Spa-
tial Modeling (CSP) is the most widely used method for
identifying MI-EEG signals, which builds spatial filters and
effectively extracts feature information. Novi et al. [14] pro-
posed Sub-Band Common Spatial Pattern (SBCSP), which
extracts CSP features for each frequency band separately, and
uses Linear Discriminant Analysis (LDA) to extract features
from multiple frequency bands in a fractional fusion manner
for classification. Ang et al. [15] proposed Filter Bank Com-
mon Spatial Pattern (FBCSP), which divides a wide frequency
band into multiple smaller frequency bands, and calculates
the CSP features of these frequency bands to select the
most discriminative features. However, these methods focus
on the energy features of EEG and cannot obtain features
with high discriminative power from the original EEG signal,
thus limiting the decoding performance of MI-EEG [16]. The
advantage of deep learning is that the model can automat-
ically extract features. Compared with traditional machine
learning methods, its nonlinear characteristics can learn more
feature information, which solves the above problems to a
certain extent. Chen et al. [17] proposed a filter-bank spatial
filtering and temporal-spatial convolutional neural network
(FBSF-TSCNN) and designed the FBSF module based on the
traditional FBCSP algorithm to further explore the temporal
information of EEG. Zhang et al. [18] designed a hybrid
network based on spatial and temporal feature extraction.
However, these methods still have some limitations in MI-
EEG discrimination. First, incomplete temporal or spatial
analysis of end-to-end CNN frameworks may destroy EEG
non-stationarity. Second, most methods do not simultaneously
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consider the characteristics of EEG in the frequency, time, and
space domains and lack deeper information.

In the application of BCI, the performance of EEG clas-
sification depends to a large extent on feature extraction
and representation of MI data. An attention mechanism
named Squeeze-and-Excitation (SE) [19], [28] was proposed
to emphasize channel-wise features. Inspired by its advan-
tages, this research exploits the performance of SE to predict
the importance of each EEG channel, thereby enhancing
the extracted features directly. Studies have shown that MI
tasks induce neural activity in corresponding regions of the
brain, resulting in enhancement or inhibition of mu and
beta frequencies in the sensorimotor cortex, a phenomenon
known as event-related synchronization (ERS) and event-
related desynchronization (ERD). If the features are expressed
only in the time domain, ignoring the information in the
frequency domain, the classification accuracy may degrade.
In order to extract more important and valuable features,
it is necessary to span the representation of features into the
two-dimensional time-frequency domain. Wavelet transform
constructs a time-frequency domain signal with good time and
frequency localization. The frequency components contained
in the signal and their corresponding time segments can be
observed to identify the occurrence and localization of the
ERD/ERS phenomenon.

In addition to feature extraction, another important issue
is how to design a method that can effectively classify MI-
EEG. Classification methods currently widely used in BCI
research: linear discriminant analysis (LDA), support vector
machine (SVM), neural networks, etc. LDA provides good
performance for classification under the assumption that the
sample covariance matrices between different classes are sim-
ilar. However, there is often potential noise interference in
EEG signals, so overfitting problems may occur, leading to
the degradation of the classification performance [20], [21],
[22]. To solve this problem, more and more regularization
techniques and classification algorithms are applied to classify
MI tasks. Among them, SVM is a well-known classification
method that maximizes the interval to achieve better gen-
eralization ability. Combined with the CSP method, SVM
provides state-of-the-art performance in related research on MI
task classification [23], [24], [25]. Another method developed
in recent years is sparse representation-based classification
(SRC), which judges the classification results by representing
the CSP features of test samples as a linear combination of
training samples and then detecting the minimum residual
norm [26]. SRC has been successfully applied to the study
of BCI and has also been shown to outperform traditional
LDA in SMR classification [27]. Although these methods are
proven effective under certain conditions, their classification
accuracy depends on the manually extracted features. Since
EEG signals have individual differences in subjects, a small
training set, and a low signal-to-noise ratio, these problems
will affect the classification accuracy of MI-EEG, resulting in
poor classification performance. In this study, the correlation
coefficient, which is relatively simple and can effectively
demonstrate the performance of the proposed method, is used
to compare the feature similarity in different MI tasks to
achieve the effect of accurate classification.

Therefore, in this study, we propose a novel wavelet-based
temporal-spectral-attention correlation coefficient (WTS-CC)
for MI EEG discrimination by simultaneously taking the
features and their weighting into account in spatial, EEG-
channel, temporal and spectral domains. The iTFE module
extracts preliminary important temporal features of original
MI-EEG signals by means of convolution operations of dif-
ferent sizes. The DEC module is then proposed to automat-
ically adjust the weight of each EEG channel according to
its importance, thereby effectively enhancing more important
EEG channels and suppressing less important EEG channels
at the same time. Next, to effectively extract the temporal-
spectral features, the WTS module is proposed to obtain more
significant discriminative temporal-spectral-attention features
on two-dimensional time-frequency maps between different
MI tasks. Finally, a simple discrimination module is used for
MI EEG discrimination. The contributions of this study are
summarized as follows:

1) We propose a novel wavelet-based temporal-spectral-
attention correlation coefficient (WTS-CC) to achieve
more accurate MI EEG discrimination by simultaneously
considering the features and their weighting in spatial,
EEG-channel, temporal, and spectral domains.

2) The Deep EEG-channel-attention (DEC) module is pro-
posed to automatically adjust the weight of each EEG
channel according to its importance, thereby effectively
enhancing more important EEG channels and suppress-
ing less important EEG channels.

3) The wavelet-based temporal-spectral-attention (WTS)
module is proposed to obtain more significant dis-
criminative temporal-spectral-attention features on two-
dimensional time-frequency maps between different MI
tasks.

4) The experimental results indicate that the proposed
WTS-CC method achieves promising performance in
comparison with the state-of-the-art methods in terms
of classification accuracy, Kappa coefficient, F1 score
and AUC on three public datasets.

II. METHODOLOGY

We provide a detailed explanation of the proposed WTS-CC
and introduce each module of our method, including the
iTFE module, DEC module, WTS module and Discrimination
module.

A. Initial Temporal Feature Extraction Module (iTFE
Module)

In MI EEG classification, extracting more feature informa-
tion from EEG signals is important to improving classification
accuracy. EEG signals contain a large number of temporal,
spatial and spectral features that are difficult to define man-
ually [9]. Therefore, the iTFE module extracts preliminary
features by means of convolution operations directly from raw
EEG signals. Fig. 1(a) shows the structure of the iTFE module,
including the shape transformation layer and the temporal
convolution layer. First, the raw EEG signals are converted
from the raw time representation to a 2-dimensional form.
In previous studies, most models use a single-size convolution
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Fig. 1. Network architecture of the proposed WTS-CC method.

kernel for convolution operations, limiting the performance
of partial feature extraction and classification of the model.
Therefore, we design three convolution kernels of different
sizes, 1 × 3, 1 × 5, and 1 × 11, respectively, and perform
convolution operations over time to extract richer feature
information of different sizes.

B. Deep EEG-Channel-Attention Module (DEC Module)

Although extracting richer features helps classify MI tasks,
these feature messages are usually mixed with many irrelevant
or redundant messages. Considering that the quality of feature
extraction is an important key to the success of EEG classifica-
tion, a variant of the squeeze excitation (SE) mechanism is pro-
posed to emphasize more discriminative feature information
in EEG channels. More specifically, the Deep EEG-channel-
attention (DEC) module is proposed to automatically adjust
the weight of each EEG channel according to its importance,
thereby effectively enhancing more important EEG channels
and suppressing less important EEG channels. Fig. 1(b) shows
the structure of the DEC module. SEC recalibrates the feature
for the input feature map through the “Squeeze” operation.
This part performs Global Average Pooling on the input feature
map of each EEG channel so that the two-dimensional feature
map of each channel is compressed into a global feature to
be represented to achieve the purpose of channel statistical
features. Formally, the statistical output computed by global

average pooling is defined as:

ZC= F sq (uC ) =
1
T

T∑
t=1

uC (i, c, t) (1)

where uc ∈ Ri×c×t represents the input feature map, T is the
time, and ZC is the compressed result. After extracting channel
information from the “Squeeze” operation, the “Excitation”
operation is then used to predict the importance of each
EEG channel. Here, two fully connected layers (FC) and
nonlinear functions, ELU and Softmax, are used. Then, the
generated channel information is applied to the input features
by weighting between the learned channel weights and feature
maps. The output of the SE operation is represented as:

s = Fse (ZC ,W ) = σ (W2δ (W1 ZC )) (2)

where W1 represents the parameters of the first fully connected
layer (squeeze), W2 represents the parameters of the second
fully connected layer (restoration), σ represents the Softmax
function, and δ represents the ELU function. Compared with
the original SE operation [19], we choose to use the Softmax
function instead of the Sigmoid function because Softmax pre-
serves the size information between the input vectors. Finally,
the weight output by the Excitation operation is multiplied
back to the original features to further strengthen the more
important features as the final output of the SE module.

x̃c = Fscale (uc, sc) = sc · uc (3)
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C. Wavelet-Based Temporal-Spectral-Attention Module
(WTS Module)

Electroencephalography (EEG) signals have the character-
istics of time series, and their frequency components will
change over time. If only temporal features are consid-
ered, and frequency information is ignored, the classification
accuracy may be degraded. Wavelet transform is a typical
time-frequency domain method, which can effectively extract
features from transient physiological signals through the local
transformation of time and frequency. To further explore the
information on time and frequency domains, we propose a
novel WTS module to obtain more significant discriminative
features between different MI tasks by weighting features on
two-dimensional time-frequency maps. Fig. 1(c) shows the
structure of the WTS module, including continuous wavelet
transform and independent sample T statistics. In the feature
extraction process, the EEG signal output from the above steps
is first converted into the time-frequency domain by CWT, then
drawn into two-dimensional temporal-spectral feature maps
(TSFMs). In this way, we can easily observe the change in
energy magnitude at a specific frequency or time and estimate
the relative position of the ERS/ERD that is beneficial for MI
analysis by observing the subject’s multiple trials. The wavelet
transform is as follows:

W C
s (a, b) =

∫
f C
s (t)

1
√

a
ψ

(
t − b

a

)
dt (4)

where 1
√

aψ
( t−b

a

)
is the wavelet basis function ψ (t) generated

by the mother wavelet by stretching a and translating b coef-
ficients. f c

s (t) represents the input electroencephalography
(EEG) signal, W c

s (a, b) represents the result after continu-
ous wavelet transform, s represents the motor imagery state
of different tasks, and C represents the channel. In addi-
tion, when selecting the mother wavelet, when analyzing
the non-stationarity of time series, it is generally hoped to
obtain smooth and continuous wavelet amplitude, so a non-
orthogonal wave function is suitable. In this study, we use
the Morlet wavelet, a single-frequency sinusoidal function
under a Gaussian envelope without a scaling function, and
a non-orthogonal decomposition that makes the energy more
concentrated [29]. After completing the CWT, the EEG signals
are converted into representations of TSFMs. In order to
capture more critical features between different MI tasks,
we first merged the EEG channels of the same type of MI
tasks and used the independent sample T statistic to judge
the degree of feature difference between the two groups of
different MI tasks.

The independent sample T statistic is a statistical method
used to judge whether there is a significant difference between
two data groups. Therefore, in this study, the training data is
divided into two groups (group A and group B), and a two-
stage T-statistical experiment is conducted. In the first stage,
the left hand and right hand are divided into group A, and the
feet and tongue are divided into group B. After independent
sample T statistics, a set of T statistics will be obtained to
judge the characteristic differences between the two groups of
MI tasks. When the preliminary results of the first stage are
obtained, the second stage divides the MI tasks of the same

group in the first stage into two groups (group A is the left
hand, group B is the right hand; group A is the feet, and group
B is the tongue), which then leads to the second stage of the T
statistics experiment. The detailed procedure of the T statistic
will be described below.

After dividing the training data into MI tasks of group A
and MI tasks of group B, the average (such as Eq. (5)) and
standard deviation (such as Eq. (6)) of the two groups of MI
tasks are calculated, respectively,

πc
s (b) =

1
Ns

Ns∑
n=1

πC,n
s (b) (5)

σ 2 (b) =
1

Ns − 1

Ns∑
n=1

(
πC,n

s − πC
s (b)

)2
(6)

where s represents the state of different MI tasks, Ns repre-
sents the total number of trials of different MI tasks, and C
represents the channel. The result is then used to calculate the
values of the T statistic,

tc
s1s2

(b) =

∣∣∣πC
s1
(b)−πC

s2
(b)

∣∣∣√
(Ns1−1)σ 2c

s1
(b)+(Ns2−1)σ 2c

s2
(b)

Ns1+Ns2

(7)

where s1 and s2 represent motor imagery in group A and
motor imagery in group B, respectively, Ns1 and Ns2 represent
the total number of motor imagery trials in group A, and the
total number of motor imagery trials in group B, respectively,
and C here is the state after the channel is merged. The
obtained T statistic tc

s1s2
(b) provides the degree of difference

between the two groups of MI tasks, as well as represents the
difference between the two groups of MI tasks at different
time points b and different frequencies. Specifically, the point
where tc

s1s2
(b) is a local maximum indicates that there will be

the most significant feature difference between the two sets of
MI tasks. tc

s1s2
(b) is taken as the weight of the time-frequency

feature, and the TSFMs of each trial are multiplied by their
corresponding weight to obtain t-statistic-weighted temporal-
spectral feature maps (tTSFMs), and the t-statistic-weighted
average temporal-spectral feature maps of the MI groups A
and B are plotted, as a benchmark for subsequent evaluation
of different MI task classifications.

D. Discrimination Module
After the WTS module is performed, we obtain the average

tTSFMs of two different MI tasks (i.e., A and B), which are
used as classification benchmarks for these two groups. Unlike
the state-of-the-art approaches and deep learning models, the
Discrimination module uses the correlation coefficient for MI
EEG discrimination by evaluating the correlation between the
tTSFMs of each test trial and the average tTSFMs of these
two MI tasks. Fig. 1(d) shows the structure of the correlation
coefficient-based discrimination module. The correlation coef-
ficient is a statistical indicator used to reflect the closeness of
the correlation between the data. This research compared the
correlation coefficients between the tTSFMs of each EEG test
and the average tTSFMs of the A and B groups, respectively.
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The larger the value of the correlation coefficient, the closer
the relationship between the data. The correlation coefficient
is as follows:

rs =

∑Ns
i=1 (si − s)(yi − y)√∑Ns

i=1 (si − s)2
∑Ns

i=1 (yi − y)2
(8)

where Ns represents the total number of trials, s represents the
t-statistic-weighted average temporal-spectral feature maps for
different motor imagery tasks, and y represents the t-statistic-
weighted temporal-spectral feature maps for each trial. The rs
obtained above represents the degree of correlation between
the tTSFMs of a trial and the average temporal-spectral feature
maps of the two groups of MI tasks weighted by T statistics.

More specifically, the tTSFMs of a certain experiment
were calculated with the average tTSFMs of group A, and
the correlation coefficient obtained was rs1. The correlation
coefficient calculated with the average tTSFMs of group B was
rs2. Then, rs1 and rs2 are compared with each other, and the
MI task with a greater correlation between the two indicates
that the trial is more similar to this type of MI task and is
regarded as the predicted classification result. In other words,
if rs1 > rs2, the trial is predicted to be a group A motor
imagery, and conversely, if rs2 > rs1, the trial is predicted to
be a group B motor imagery.

III. EXPERIMENTAL RESULTS

In the experiments, three public BCI Competition datasets
were used to validate the effectiveness of the proposed
WTS-CC method for MI EEG discrimination.

A. EEG Datasets
In this study, the same time interval [−0.5s, 5s] (relative to

the onset of motor imagery cues) is used for the EEG signals
of each trial. Before training and testing, the raw signals are
filtered to 8-30Hz by a third-order Butterworth low-pass filter,
which can minimize less-correlated artifacts. In addition, the
original training set for each subject is divided into ten equal
parts (nine for training and one for validation).

1) BCI Competition IV Dataset 2a: The BCI IV 2a [24]
dataset was derived from EEG signals obtained from a trial
of 9 subjects, covering four different MI tasks (left hand,
right hand, feet, and tongue). Each subject will have two
sessions, each session consists of 6 runs, and each run will
have 48 trials, for a total of 288 trials (12 for each MI task, for
a total of 72 trials). There are a total of 25 Ag/AgCl electrodes
in the experiment, of which 22 electrodes are used to record
EEG signals, and the other three electrodes are responsible for
recording eye movement signals (not used in the experiment).
All collected signals will be processed by a 0.5 to 100Hz
bandpass filter and a 50Hz notch filter, and the sampling
frequency is 250Hz.

2) BCI Competition IV Dataset 2b: The BCI IV 2b [24]
dataset was derived from EEG signals obtained from a trial
of 9 subjects, including two different MI tasks (left-hand and
right-hand). The third training set of the dataset was used,
with 80 trials for each MI task for each subject, for a total of
160 trials. In the experiments, three electrodes were used to

record EEG signals (C3, Cz, and C4). All the collected signals
were processed by bandpass filters of 0.5 to 100 Hz and notch
filters of 50 Hz, and the sampling frequency was 250 Hz.

3) 2020 International BCI Competition Dataset Track#1:
Dataset “Track#1 Few-shot EEG learning” [32] aimed to
classify subject-specific MI data using minimal training data
based on few-shot learning. The Track#1 dataset came from
the EEG signals obtained from experiments conducted by
20 subjects, including two different MI tasks (left hand and
right hand). Each subject performed ten trials of each MI
task for 20 trials. 62 Ag/AgCl electrodes were used in the
experiment, and the sampling frequency was 1000 Hz.

B. Evaluation Metrics
MI-EEG data is tested for classification using ten-fold cross-

validation in all experiments. The data of each subject is
divided into ten equal disjoint subsamples of the same size.
One is used as a test sample, and the other nine are used as
a training sample. This process is repeated until each aliquot
of subsamples is tested (i.e., ten sets of results are obtained),
and the average is used as the final average classification rate.
In the experiments, we use classification accuracy (ACC) [25],
Cohen’s Kappa coefficient (K) [17], F1-score (F1) [27], and
area under the curve (AUC) [9] to evaluate the performance
of the proposed WTS-CC. In addition, two-way ANOVA and
multiple comparison tests are also performed to verify whether
the results of different methods are significantly different.
Here, Cohen’s kappa coefficient is represented as:

kappa =
Accuracy − pe

1 − pe
(9)

pe =
(T P+F N ) (T P+F P)+(F P+T N ) (F N +T N )

T otal2

(10)

where the numerator is the sum of the row and column ele-
ments of the confusion matrix, and the denominator represents
the square of the sum of all elements in the confusion matrix.
That is, the sum of the “products of actual and predicted
numbers” for all types, divided by the square of the total
number of samples.

C. Comparisons With the State-of-the-Arts
To verify the performance of the proposed WTS-CC

method, the state-of-the-art models are compared in three
public BCI Competition datasets. These compared models are
described briefly below,

1) Shallow ConvNet [30]: A deep learning model consist-
ing of two convolutional layers and an average pooling
layer.

2) Deep ConvNet [30]: This model is more complex than
Shallow ConvNet and uses three convolutional layers in
the temporal dimension.

3) CP-MixedNet [31]: This model uses multi-scale EEG
features generated from multiple convolutional layers,
each layer extracting EEG temporal representations from
different scales.
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TABLE I
MI CLASSIFICATION ACCURACIES (ACC (%)), COHEN’S KAPPA COEFFICIENT (K), F1-SCORE (F1) AND AUC ON BCI COMPETITION IV DATASET

2A. FOR EACH SUBJECT, THE BEST RESULT IS MARKED IN BOLDFACE

4) TS-SEFFNet [28]: This model consists of a
deep-temporal convolution block, a multi-spectral
convolution block, and a squeeze-and-excitation feature
fusion block.

5) SS-MEMDBF [33]: The multichannel EEG signals are
decomposed into a set of multivariate intrinsic mode
functions (MIMFs) to extract the filter range for subject-
specific MEMDs.

6) MEMDBF-CSP [34]: The MEMDBF method is used as
preprocessing, and the CSP function is implemented to
enhance the performance of two-class MI BCI tasks.

7) TS-TL [35]: Combining SS-MEMDBF preprocessing
and TS-TL classification, the sample covariance is used
as feature sets to enhance the performance of two-class
MI BCI tasks.

8) LR-TSTL [36]: The features of MI-EEG are determined
by a tangent space method, and the derived features are
used for classification as input to a logistic regression
model.

9) SGRM [20]: The model uses inter-subject infor-
mation to improve the effect of MI classifica-
tion through intra-group sparsity and group sparsity
constraints.

10) clsSRC [22]: The model proposes a clustered-group
sparse representation to overcome using only a limited
amount of EEG trials.

11) clsSRC2 [21]: The model proposes a sparse represen-
tation classification scheme that extends current sparse
representation schemes by exploiting the group sparsity
of relevant features.

12) This model is based on power spectral density (PSD)
feature extraction and discriminates MI tasks with the
SVM classifier.

13) This model is derived from the filter bank CSP fea-
tures using the regularized linear discriminant analysis
(RLDA).

Considering deep EEG-channel attention and wavelet-based
temporal-spectral attention, the proposed WTS-CC is an effec-
tive method for MI-EEG classification. To evaluate the effec-
tiveness, we compare the proposed WTS-CC with the state-
of-the-art models. TABLE I lists the comparison results of MI
classification accuracy (ACC (%)), Cohen’s kappa coefficient
(K), F1-score (F1), and AUC on BCI competition IV dataset
2a. The experimental results indicate that the proposed WTS-
CC method achieves the best average classification accuracy,
Kappa coefficient, F1-score, and AUC, which is better than all
state-of-the-art models.

In addition, TABLE II lists the comparison results between
the current state-of-the-art methods and ours on BCI compe-
tition IV dataset 2a in terms of classification accuracy (ACC
(%)) and Cohen’s kappa coefficient (K). SS-MEMDBF [33]
and MEMDBF-CSP [34] are filtering methods based on
decomposition. This decomposition extracts multi-channel
EEG signals and transforms them into intrinsic mode functions
(IMFs) to reduce the within-subject and subject-specific effects
of EEG signals. The average accuracies are 79.93% and
79.19%, respectively, due to the influence of non-stationarity
among the subjects. TS-TL [35] and LR-TSTL [36] are trans-
fer learning classification models based on tangent space, with
average accuracy rates of 75.52% and 78.95%, respectively.
In contrast, our method, which simultaneously considers the
features and their weighting in spatial, EEG-channel, temporal,
and spectral domains, achieves an average classification accu-
racy of 81.45% and an average kappa coefficient of 0.752.
Therefore, the results indicate that the proposed WTS-CC
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TABLE II
MI CLASSIFICATION ACCURACIES (ACC (%)), COHEN’S KAPPA COEFFICIENT (K), F1-SCORE (F1) AND AUC ON BCI COMPETITION IV DATASET

2A. FOR EACH SUBJECT, THE BEST RESULT IS MARKED IN BOLDFACE

TABLE III
MI CLASSIFICATION ACCURACIES (%) ON BCI COMPETITION IV DATASET 2B. FOR EACH SUBJECT, THE BEST RESULT IS MARKED IN BOLDFACE

performs better than all the state-of-art methods in all metrics
on BCI competition IV dataset 2a.

The comparison results of MI classification accuracy (%)
on BCI competition IV dataset 2b are listed in TABLE III.
The experimental results indicate that the proposed WTS-CC
method performs better than all state-of-the-art approaches in
average classification. Therefore, it demonstrates the capability
of our method in MI-EEG discrimination.

Insufficient training data and individual differences among
subjects are a major challenge in MI-EEG classification
research. Few-shot learning aims to develop models using less
training data, and it is a method that allows models to learn to
adapt quickly to new tasks. To evaluate the effectiveness of the
proposed WTS-CC, we conduct experiments on the “Track#1
Few-shot EEG learning” dataset in 2020 International BCI
Competition. TABLE IV lists the experimental results of
WTS-CC for MI-EEG classification accuracy (ACC (%)),
Cohen’s kappa coefficient (K), F1-score (F1) and the AUC.
The results indicate that the proposed WTS-CC performs well
even on the few-shot learning dataset with an average accuracy
of 83.31%.

Moreover, to further investigate the importance of the com-
ponents of the proposed WTS-CC, we performed ablation
studies.

D. Performance Evaluation of the DEC Module
The DEC module mainly learns the correlation between

each EEG channel, filters out the attention for the EEG
channel, and obtains a one-dimensional vector with the same
number of channels as the weight to represent the correlation
between the channel and the important feature information,

TABLE IV
MI CLASSIFICATION ACCURACIES (ACC (%)), COHEN’S KAPPA

COEFFICIENT (K), F1-SCORE (F1) AND AUC ON 2020
INTERNATIONAL BCI COMPETITION DATASET #TRACK1

which will affect the final classification result. First, we con-
sider the adopted activation functions in the DEC module.
TABLE V lists the comparison of classification accuracy
between four different activation functions, including ReLU,
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TABLE V
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN DIFFERENT

ACTIVATION FUNCTIONS. THE BEST RESULT IS MARKED IN BOLDFACE

TABLE VI
ABLATION STUDIES ON DEC MODULE. THE BEST RESULT IS MARKED

IN BOLDFACE

Tanh, Sigmoid, and Softmax. The results denote that using
Tanh as an activation function gives the worst average accuracy
while using Softmax as an activation function achieves the
highest average accuracy, which indicates that choosing an
appropriate activation function is very important.

To evaluate the performance of the DEC module, we com-
pare WTS-CC with and without the DEC module, as listed in
TABLE VI. The results indicate that the proposed WTS-CC
achieves an average accuracy of 81.45%, which is higher than
that without the DEC module. The DEC module can help
alleviate the heterogeneity of redundant features and enhance
the more discriminative features. Therefore, only the feature
information extracted from convolution operations of different
sizes is insufficient for MI-EEG discrimination. The DEC
module can judge the importance of each EEG channel and
adjust the weighting according to its importance, which can
effectively improve classification performance.

E. Performance Evaluation of the WTS Module
In addition to feature information analysis with the DEC

module, the WTS module also greatly influences the dis-
crimination results. The concept of the WTS module is to
capture significant time-frequency features. We use CWT
and independent sample t-statistics to judge whether the dif-
ference between the time-frequency maps of two-group MI
tasks is significant or not and find the most discriminative
features to further improve the classification accuracy. Next,
t-statistic-weighted temporal-spectral feature maps (tTSFMs)
are established by multiplying their corresponding MI aver-
aged TSFMs.

To evaluate the effectiveness of the WTS module, the
results of WTS-CC with and without the WTS module are
shown in TABLE VII. The results indicate that compared
with WTS-CC with the DEC module, WTS-CC without the
WTS module leads to a more obvious drop in classification
accuracy, with only an average accuracy of 55.49%, which
is much lower than the proposed WTS-CC. The WTS module
indeed helps capture the features that are significantly different
between the two groups of MI-EEG signals and enhances the
feature information with large differences. Therefore, the WTS
module can effectively enhance the characteristics of different

TABLE VII
ABLATION STUDIES ON WTS MODULE. THE BEST RESULT IS MARKED

IN BOLDFACE

MI tasks, thereby significantly improving the classification
performance by distinguishing the state of different MI tasks.

F. Performance Evaluation of Subject-Dependent and
Subject-Independent

In many BCI studies, EEG signal single-subject identifica-
tion models based on various machine learning algorithms can
achieve high accuracy, but this requires a large amount of EEG
data for training, and the obtained models are only effective for
specific subjects after training. They cannot be directly applied
to cross-subject MI-EEG classification tasks. Therefore, many
current studies have tried to create a more effective general
model for multiple subjects, called the subject-independent
model [38].

The subject-dependent results are shown in TABLE I.
We use the proposed WTS-CC for the MI EEG classification
of each subject and perform model training based on the
experimental data of each subject, achieving an average clas-
sification accuracy of 81.45%. In order to evaluate the impact
of individual differences among subjects on WTS-CC, we also
conduct subject-independent experiments. We first combine
the experimental data of multiple subjects as the input for
the training model and evaluate the MI-EEG classification for
different subjects. The average classification accuracy obtained
is 62.05%.

The comparison results of subject-dependent and subject-
independent for our method are listed in TABLE IX.
As we can observe, compared to subject-dependent, subject-
independent significantly leads to a decrease in classification
accuracy, with only an average accuracy of 62.05%. This may
be due to the fact that MI-EEG signals have characteristics
of inter-subject variability and brain activity instability, which
may limit the classification performance when dealing with
the distribution of data from different subjects.

G. Number of Parameters and Inference Time
The number of parameters and inference time between the

state-of-the-art models and the proposed method are shown
in TABLE X. In general, it is desirable for a model to have
as few learnable parameters as possible to ensure its strong
generalization [9]. To evaluate the computational cost of the
proposed method during model training, we calculate our num-
ber of parameters and then compare it with other models. The
results indicate that the proposed method is compact (i.e., has
less number of parameters), which is efficient and sufficient
to perform the MI-EEG classification task. Moreover, we also
evaluate the model inference time, which is the time for a
trained model to classify an MI-EEG trial. The average result
is provided over all subjects for each dataset. The results
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TABLE VIII
COMPARISON OF UNWEIGHTED AND WEIGHTED T-STATISTIC

TIME-FREQUENCY PLOTS FOR CORRELATION COEFFICIENT. THE BEST

RESULT IS MARKED IN BOLDFACE

denote that the proposed method needs the least inference
time.

IV. DISCUSSIONS

A. Comparisons With the State-of-the-Arts
The comparison results of the state-of-the-art models and

the proposed WTS-CC on BCI competition IV dataset 2a
are listed in TABLE I in terms of classification accuracy
(ACC (%)), Cohen’s kappa coefficient (K), F1-score (F1),
and AUC. The experimental results denote that the proposed
WTS-CC method achieves the best average classification
accuracy, which is significantly better than all state-of-the-
art models (i.e., Shallow ConvNet (p < 0.05), Deep ConvNet
(p < 0.01), CP-MixedNet (p < 0.01), and TS-SEFFNet (p
< 0.05)). In addition, WTS-CC also outperforms all the
state-of-the-art approaches in average Kappa coefficient, F1-
score, and AUC. Therefore, the proposed WTS-CC is an
effective MI-EEG classification method considering both deep
EEG-channel attention and wavelet-based temporal-spectral
attention.

Moreover, TABLE II lists the comparison results among the
current state-of-the-art approaches and the proposed WTS-
CC on BCI competition IV dataset 2a in terms of clas-
sification accuracy (ACC (%)) and Cohen’s kappa coef-
ficient (K). SS-MEMDBF [33] and MEMDBF-CSP [34]
are decomposition-based filtering methods, which extract
multi-channel EEG signals and transform them into IMFs to
reduce within-subject and subject-specific effects of EEG sig-
nals, while TS-TL [35] and LR-TSTL [36] are tangent space-
based transfer learning classification models. The experimental
results indicate that the proposed WTS-CC method achieves
the best average classification accuracy (81.45%), which is
significantly better than all state-of-the-art models (i.e., TS-
TL [35] (p < 0.05) and LR-TSTL [36] (p < 0.05)), and the
best average Kappa coefficient (0.752), which is significantly
better than all state-of-the-art models (i.e., SS-MEMDBF [33]
(p < 0.01)). Accordingly, the proposed WTS-CC method
achieves the best performance because it simultaneously con-
siders the features and their weighting in spatial, EEG-channel,
temporal and spectral domains.

TABLE III lists the comparison results of the state-of-the-
art models and the proposed WTS-CC on BCI competition
IV dataset 2b in terms of MI classification accuracy (%). The
experimental results show that the proposed WTS-CC method
significantly outperforms all state-of-the-art approaches in
terms of average classification accuracy (SGRM [20] (p <

TABLE IX
COMPARISON OF SUBJECT-DEPENDENT AND SUBJECT-INDEPENDENT

FOR OUR METHOD. THE BEST RESULT IS MARKED IN BOLDFACE

TABLE X
COMPARISON OF NUMBER OF PARAMETERS AND INFENCE TIME. THE

BEST RESULT IS MARKED IN BOLDFACE

0.05), clsSRC2 [21] (p < 0.05), and clsSRC [22] (p < 0.05)).
Thus, it also demonstrates the capability and power of deep
EEG-channel attention and wavelet-based temporal-spectral
attention in our MI-EEG discrimination method.

TABLE IV lists the experimental results of the proposed
WTS-CC method for each subject on the “Track#1 Few-shot
EEG learning” dataset in 2020 International BCI Competition
in terms of classification accuracy (ACC (%)), Cohen’s kappa
coefficient (K), F1-score (F1) and the AUC. Since insufficient
training data is a challenge in MI-EEG classification studies,
few-shot learning is important, aiming to develop models using
less training data, which is a way for models to learn to quickly
adapt to new tasks. The experimental results indicate that the
proposed WTS-CC method performs well even on the four
metrics in the few-shot learning dataset (“Track#1 Few-shot
EEG learning” dataset in 2020 International BCI Competition).

B. Discussion of the DEC and WTS Modules
To evaluate the effectiveness of the DEC module,

TABLE VI lists the results of WTS-CC with and without the
DEC modules. The results denote that the proposed WTS-CC
with the DEC module is better than that without the DEC
module. It is because the DEC module can help alleviate
the heterogeneity of redundant features and enhance the more
discriminative features. Accordingly, only the feature informa-
tion extracted from convolution operations of different sizes
is insufficient for MI-EEG discrimination. The DEC module
can effectively judge the importance of each EEG channel and
adjust the weighting according to its importance, which can
further improve classification performance.

In addition to the DEC module, the WTS module also
greatly influences the discrimination results. To evaluate the
effectiveness of the WTS module, TABLE VII lists the results
of WTS-CC with and without the WTS modules. The results
indicate that compared with WTS-CC with the DEC module,
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Fig. 2. The first stage (left hand and right hand in group A; feet and
tongue in group B) (a) Average TSFMs of Group A, (b) Average TSFMs
of Group B, (c) Standard deviation TSFMs of Group A, (d) Standard
deviation TSFMs of Group B, (e) t-statistics TSFMs, (f) tTSFMs of Group
A, (g) tTSFMs of Group B.

WTS-CC without the WTS module leads to a more obvious
drop in classification accuracy (average 55.49%), which is
much lower than the proposed WTS-CC. The WTS module
indeed helps capture the features that are significantly different
between the two groups of MI-EEG signals and enhances the
feature information with large differences. Accordingly, the
WTS module can effectively enhance the characteristics of
different MI tasks, thereby significantly improving the clas-
sification performance by distinguishing the state of different
MI tasks.

C. Space and Time Complexity
For the training data of each subject in all the datasets,

the initial important temporal features of MI EEG signals
are extracted by the iTFE module. The DEC module is then
proposed to automatically adjust the weight of each EEG
channel according to its importance. Next, Next, the Wavelet-
based Temporal-Spectral-attention (WTS) module is proposed
to obtain more significant discriminative features between
different MI tasks. The two-dimensional time-frequency maps
of different MI tasks (such as left and right MI tasks) have
been obtained, respectively. It does not undergo any training
process. Therefore, the proposed WTS-CC method is fast and
effective, which has significantly less number of parameters
and needs less inference time, as listed in TABLE X.

Fig. 3. The Second stage (left hand of group A, right hand of group
B) (a) Average TSFMs of group A, (b) Average TSFMs of group B,
(c) t-statistics TSFMs, (d) tTSFMs of group A, (e) tTSFMs of group B.

D. Advantages, Limitations, and Future Studies
The advantages of the proposed method are that WTS-CC

can achieve fast, effective, and more accurate MI EEG dis-
crimination by simultaneously considering the features and
their weighting in spatial, EEG-channel, temporal, and spectral
domains.

Although our proposed WTS-CC can effectively classify MI
EEG signals, our method is still subject to some limitations.
Our method uses independent sample T statistics to evaluate
the degree of feature differences between two classes of dif-
ferent MI tasks. Independent sample T statistics is a statistical
method used to judge whether there is a significant difference
between two classes of data. Specifically, each experiment
must be carried out with two classes of MI data in order to
correctly calculate the T statistic and obtain the weight of the
time-frequency feature. This method can be used to judge two
or four classes of MI EEG studies, but it cannot be directly
applied to distinguish three classes of studies, which can be
further solved by the one-versus-one method.

Finally, our method uses the correlation coefficient to assess
the degree of correlation between the test data and the mean
time-frequency maps of different MI tasks, which is a simple
and convenient classification method. In future studies, we can
conduct with the classifiers, which may further improve the
performance of MI EEG signal classification.

V. CONCLUSION

In this study, a novel WTS-CC model is proposed to
effectively improve MI-EEG discrimination by simultane-
ously taking into account the features and their weighting
of spatial, EEG-channel, temporal and spectral domains. The
initial important temporal features are extracted by means
of the iTFE module. The DEC module effectively enhances
more important EEG channels and suppresses less important
ones simultaneously by automatically adjusting each EEG
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channel’s weight according to its importance. The WTS mod-
ule obtains more significant discriminative temporal-spectral
features between different MI tasks, which can further help the
discrimination module enhance the classification. The exper-
imental results indicate that the proposed WTS-CC method
achieves promising discrimination performance outperforming
the state-of-the-art methods in terms of classification accuracy,
Kappa coefficient, F1 score, and AUC on three public datasets.
In future work, we intend to study how the WTS-CC model
can be modified to develop and apply to adaptive discrim-
ination. The model is helpful in BCI applications due to
the nature of time-varying EEG signals. In addition, we will
extend our method with transfer learning to design an effective
BCI system.
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