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Unsupervised Feature Representation Based on
Deep Boltzmann Machine for Seizure Detection

Tengzi Liu , Muhammad Zohaib Hassan Shah , Xucun Yan, and Dongping Yang

Abstract— The Electroencephalogram (EEG) pattern of
seizure activities is highly individual-dependent and
requires experienced specialists to annotate seizure
events. It is clinically time-consuming and error-prone to
identify seizure activities by visually scanning EEG signals.
Since EEG data are heavily under-represented, supervised
learning techniques are not always practical, particularly
when the data is not sufficiently labelled. Visualization of
EEG data in low-dimensional feature space can ease the
annotation to support subsequent supervised learning for
seizure detection. Here, we leverage the benefit of both the
time-frequency domain features and the Deep Boltzmann
Machine (DBM) based unsupervised learning techniques
to represent EEG signals in a 2-dimensional (2D) feature
space. A novel unsupervised learning approach based on
DBM, namely DBM_transient, is proposed by training DBM
to a transient state for representing EEG signals in a 2D fea-
ture space and clustering seizure and non-seizure events
visually. The effectiveness of DBM_transient is demon-
strated on a widely-used benchmark dataset from Bonn
University (Bonn dataset) and a raw clinical dataset from
Chinese 301 Hospital (C301 dataset), with a large fisher
discriminant value, surpassing the abilities of other dimen-
sionality reduction methods, including DBM converged to
an equilibrium state, Kernel Principal Component Analysis,
Isometric Feature Mapping, t-distributed Stochastic Neigh-
bour Embedding, Uniform Manifold Approximation. Such
feature representation and visualization can help physi-
cians to understand better the normal versus epileptic brain
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activities of each patient and thus enhance their diagnosis
and treatment abilities. The significance of our approach
facilitates its future usage in clinical applications.

Index Terms— Seizure detection, electroencephalogram
(EEG), Deep Boltzmann Machine (DBM), discrete wavelet
transform (DWT), Fisher’s discriminant function.

I. INTRODUCTION

AROUND 1% of the world population suffers from
epilepsy, which brings huge trouble to patients, even life-

threatening, while one-third of the patients are drug-resistant,
requiring physical intervention [1], [2]. The Electroencephalo-
gram (EEG) signals have been used as the ground truth for
epileptic seizure detection for years to find the focal point
of seizure and treat the injured brain tissues with medication
and/or surgery. EEG signals carry informative features which
can explain most of the normal and abnormal brain activities,
especially epileptic seizures but require experienced specialists
to annotate seizure events [3]. Clinically, visual scanning of
EEG signals to identify seizure activities is time-consuming
and error-prone, with low consistency among physicians [4].

In the literature, many supervised learning techniques have
been developed as classifiers for seizure detection, achiev-
ing relatively higher accuracy, e.g., support vector machine
(SVM), multi-layer perceptual (MLP) neural networks, deep
neural networks (DNN), convolution neural networks (CNN),
and so on [5], [6]. However, supervised seizure detection
techniques require extensive monitoring and physicians’ time-
consuming evaluation to label EEG signals, which are com-
monly heavily under-represented and sometimes not sufficient
enough to learn the seizure detection models with a large
number of parameters [7]. Moreover, the disease of epilepsy
can progress rapidly, and the corresponding EEG footprint
patterns evolve, making the trained model impractical [8].

This issue can be naturally avoided by unsupervised learn-
ing, which explores the structure of complex data in extracting
the essential latent properties and consequently reduce the
dimension [7], [9]. It can lead to a better representation
of complex data. Once a good representation is found, the
inferred latent variables, rather than the data vector itself, can
solve subsequent supervised learning tasks for seizure identifi-
cation [9]. Furthermore, visualization of high-dimensional data
in low-dimensional and visible feature space can help physi-
cians to observe the disease progression and understand better
the normal versus epileptic brain activities of each patient.
Thus enhancing their diagnosis/treatment abilities [10].
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To this end, we propose to leverage the benefits of both the
spectral-temporal features and the Deep Boltzmann Machine
(DBM) [11] based unsupervised data processing techniques
in achieving a 2-dimensional (2D) representation and visual-
ization of EEG signals for clustering seizure and non-seizure
events visually.

Firstly, we extract informative features in the time-frequency
domain, which carry sufficient and powerful information on
seizure activities [12], [13], [14]. Continuous wavelet trans-
forms (CWT) or discrete wavelet transforms (DWT) are
generally used to extract spectral-temporal features of EEG
signals as data preprocessing [15], [16], [17]. In our previous
work [16], we have discovered significant low-dimensional
spectral-temporal features of EEG signals and extracted their
compact statistical information for seizure detection, achieving
more reliable seizure detection performance in comparison to
other features, e.g., frequency-domain features and intrinsic
mode functions from empirical mode decomposition (EMD).

Secondly, a novel unsupervised learning approach based
on DBM, trained to a transient state (DBM_transient) is
employed to obtain the essential 2D latent features for data
representation, visualization, as well as clustering seizure
and non-seizure events. Unsupervised learning, such as
Restricted Boltzmann Machine (RBM) or auto-encoder, using
high-dimensional statistical space, acts as feature repre-
sentation, from which the desired output can be robustly
extracted by a linear readout and thus intuitively clus-
tered [18]. Recently, Unsupervised learning techniques have
also received much attention in signal analysis, e.g., Kernel
Principal Component Analysis (KPCA) [19], Isometric Feature
Mapping (Isomap) [20], t-distributed Stochastic Neighbour
Embedding (t-SNE) [21], Uniform Manifold Approximation
(UMAP) [22], Deep Boltzmann Machine (DBM) [11], Deep
Belief Networks (DBN) [23], Kernel DBN [24], Generative
adversarial networks (GAN) [25], and so on. Both DBM and
DBN have shown a powerful ability for dimension reduction
and served as highly effective methods to pre-train the deep
network for supervised learning or reconstructing the data,
e.g., the MNIST handwritten dataset and the Olivetti face
dataset [18]. However, both of the methods require fine-
tuning, which employs supervised back-propagation of error
derivatives to achieve better representations [26]. Up till now,
it remains elusive whether DBM without fine-tuning can
show better representations of EEG signals and then facilitate
clustering seizure and non-seizure events, particularly on the
raw clinical EEG data [16].

Finally, the performance of our method is tested on both
the widely used small-size benchmark dataset from Bonn
University (Bonn dataset) [27] as well as a large-size raw
clinical dataset from Chinese 301 hospital (C301 dataset) [16],
and evaluated by Fisher’s discriminant function [28] and
classification accuracy of a subsequent linear SVM. Although
the scope of this study is to achieve superior visualization
in 2D feature space, our method is also comparable with the
compared other methods in the classification performance with
a subsequent linear SVM for both datasets.

The results demonstrate the effectiveness of our proposal
in the 2D feature representation and clustering, in comparison
to DBM trained to a converged state (DBM_converged), and

Fig. 1. EEG signals of 5 sets: A, B, C, D and E from Bonn dataset.

TABLE I
EXPERIMENT CASES ON BONN DATASET

other commonly used dimensionality reducing methods, e.g.,
KPCA [19], Isomap [20], t-SNE [21], and UMAP [22]. More
significantly, the proposed DBM_transient can cluster seizure
and non-seizure events clearly in a 2D feature space on
both datasets, beyond the abilities of the compared methods.
Therefore, the low-dimensional feature representation by the
proposed DBM_transient is significant for the identification of
seizure activities visually, indicating its future usage in clinical
applications.

II. DATASETS

In order to verify the general representation ability of
DBM_transient, two datasets are used; one small-size credible
and clean dataset–the widely-used benchmark Bonn dataset
with only 500 samples, and the other large-size raw clinical
dataset–C301 dataset of absence seizure with 10749 samples.

A. Description of Bonn dataset
The dataset, available in [27], is recorded by attaching

electrodes to the surface of awake subjects, using 10-20 inter-
national standard systems with a 128-channel amplifier [29].
It consists of seizure and non-seizure EEG signals, divided into
five subsets (A - E) (see Fig. 1). Each subgroup is collected
with a sampling frequency of 173.61 Hz [27], having 100 sam-
ples each with a duration of 23.6s (4096 data points) [30]. The
data is denoised through a bandpass filter with a frequency
band between 0.53 Hz and 40 Hz [27].

Subsets A and B were collected from the control group with
eyes open and closed, respectively. Subsets C, D, and E were
recorded from epileptic patients. The subsets C and D were
collected in the epileptogenic interval, which is seizure-free.
Data in subset E was acquired in lateral and nasal regions
of the neocortex when a seizure occurs [27]. Seven common
cases are explored in this work, with their details listed in
Table I.

Subset C was collected by recording the signals in the
hippocampal formation in the opposite hemispheres to the



1626 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 2. Samples of EEG signals of 4 patients from C301 dataset. Pink shadows indicate seizure regions marked by physicians.

TABLE II
DATA INFORMATION OF C301 DATASET. TMIN AND TMAX DENOTE

RESPECTIVELY THE MINIMUM AND MAXIMUM SEIZURE DURATIONS OF

SEIZURE EVENTS OF EACH SUBJECT

epileptogenic zones. While subset D was from the epilep-
togenic zones [29]. Their local hippocampal formation was
resected to make their epilepsy completely controllable. The
resection area was confirmed to be the Epileptogenic focus by
clinical verification.

B. Description of C301 dataset
C301 dataset was recorded on 19 absence seizure subjects,

using 19 channel electrodes attached to the scalp with a
sampling frequency of 256 Hz [16]. Only one of 19 channel
electrodes is selected for processing, due to high spatial coher-
ence of absence seizure EEG signals. The data information
of each subject is summarized in Table II, where the seizure

event numbers vary from 1 to 53 over different subjects, and
the seizure duration is widely distributed. For each subject,
the seizure-free time is generally dozens (around 17 times
in average) of the seizure time, leading to a larger data-size
unbalance for different classes than that of Bonn dataset.
Classifying or clustering seizure and non-seizure data events in
a highly unbalanced C301 dataset is extremely challenging for
supervised or unsupervised training techniques, respectively.

Fig. 2 shows 4 samples of clinical EEG signals with seizure
regions red-shaded by physicians. EEG signals of both seizure
and non-seizure activities are diverse and complicated. Their
durations and wave patterns of seizures vary from subject to
subject, and non-seizure EEG patterns are diverse as well.
It can be seen that the seizure activities in Fig. 2 show
non-stereotyped wave patterns as well as stochastic and non-
stationary characteristics. Furthermore, the clinical EEG sig-
nals often interfered with physiological artifacts (e.g., induced
from ECG, pacemaker, eye movements, and sniffing) or
non-physiological artifacts (e.g., from bed or chair movements
and dropped electrodes) [16], [31], [32].

III. METHODOLOGY

The above two EEG datasets are extracted, segmented,
and labeled in Sec. III-A, and preprocessed by DWT to get
meaningful statistics as input features in Sec. III-B. DBM is
introduced in detail in Sec. III-C. Two methods evaluating
clustering performance are introduced in Sec. III-E: Fisher’s
discriminant function and classification accuracy of a subse-
quent linear SVM.

A. Data Preparation
For Bonn dataset, each sample with a duration of 23.6s

is already prepared in the original data. In contrast, for C301
dataset, the continuous EEG recordings are segmented as usual
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Fig. 3. Divisions of a signal x[n] into different frequency bands by
DWT, resulting in 5-level half down-sampled wavelet coefficient sets:
A1, D1, A2, D2, A3, D3, A4, D4, A5 and D5. The signal x[n] can be
fully described by D1, D2, D3, D4, D5 and A5.

into half-overlapping 4s samples. As listed in Table II, there
are many short sections of seizure activities with the duration
less than 4s. To make a clean dataset without ambiguous
segments with mix periods of seizure and non-seizure events,
all samples are scanned visually. As a result, 10794 samples
are picked out, where 9992 non-seizure samples are labeled
as 0 and 757 seizure samples are labeled as 1.

B. Data Preprocessing
Joint spectral-temporal features are believed to contain suf-

ficient and powerful information about seizure activities [33].
The information in both time and frequency domains should be
captured simultaneously using Wavelet transform techniques,
which can effectively extract arbitrary signal bands by chang-
ing the size and position of the time window described as
follows:

xω( j, k) = 2− j/2
∫

+∞

−∞

x(t)ψ
(

t − k2 j

2 j

)
dt, (1)

where 2 j and k2 j represent the scale and time location
or shifting parameters respectively, and ψ(t) is the mother
wavelet, set as Daubechies order-4 (db4) wavelet here [34].

CWT is employed to obtain the time-frequency images
with high-dimension features, which are quite complicated and
involves redundant information, leading to large training time
and likely over-fitting. The essential low-dimensional infor-
mation of these images has been discovered in our previous
work [16]. One alternative is DWT, which uses low-pass and
high-pass filters to select dynamic scales and positions without
the redundant information obtained from CWT [34]. DWT
divides a signal x[n] with a sampling frequency f s through the
low pass (LP), and high pass (HP) filters into an approximate
coefficient (A1) within a lower-frequency band [0, f s/2]

and a detail coefficient (D1) within a higher-frequency band
[ f s/2, f s], respectively. A1 can be subdivided similarly into
A2 and D2. In this way, as shown in Fig. 3, the signal
x[n] can be divided by DWT through 5 levels to obtain
5 wavelet coefficient sets: A1, D1, A2, D2, A3, D3, A4, D4,
A5, and D5, having frequency bands [0, f s/2], [ f s/2, f s],
[0, f s/4],[ f s/4, f s/2], [0, f s/8], [ f s/8, f s/4], [0, f s/16],
[ f s/16, f s/8], [0, f s/32] and [ f s/32, f s/16], respectively.
After each division, the resulting coefficient sets are half-down
sampled from the preceding coefficients, as indicated in circles
in Fig. 3. Consequently, the signal x[n] can be completely
represented by the following wavelet coefficients: D1, D2, D3,
D4, D5, and A5.

TABLE III
FREQUENCY RANGE OF THE DECOMPOSED SIGNAL FROM

BOTH DATASETS

Fig. 4. DBM with five layers (left) as a stack of four RBMs (right).
The vector v has 14 input units; h(i) represents the unit vector of the
i-th hidden layer, whose unit number are set to 100, 50 and 25 for
1st, 2nd and 3rd hidden layer, respectively; The output vector o only
has two units for feature representation; The matrix W(i) represents
the connection weights of the ith RBM. Open and shadowed circles in
DBM (or rectangles in RBM) represent linear-valued and binary units,
respectively.

Only D3, D4, D5, and A5 are employed for further process-
ing, as seizure activities are dominated by the low-frequency
domains, whose frequency ranges for Bonn and C301 datasets
are listed in Table III. Following the advise in [15] and
[35], four statistics for the resulted wavelet coefficients are
employed to represent the spectral-temporal features:

- Time-averaged absolute values for each coefficient:
E[|D3(t)|], E[|D4(t)|], E[|D5(t)|], E[|A5(t)|];

- Time-averaged power for each coefficient: E[|D3(t)|2],
E[|D4(t)|2], E[|D5(t)|2], E[|A5(t)|2];

- Standard deviation for each coefficient: Std[D3(t)],
Std[D4(t)], Std[D5(t)], Std[A5(t)];

- Ratio of time-averaged absolute values of adjacent sub-
band coefficients: E[|D4(t)|]

E[|D3(t)|] ,
E[|D5(t)|]
E[|D4(t)|] ,

where E[S(t)] and Std[S(t)] represent time-average and corre-
sponding standard deviation of time series S(t), respectively.
Here, each data sample is characterized by 14 feature vari-
ables, each of which is normalized into the range [0, 1].

C. Deep Boltzmann Machine for Feature Representation
As illustrated in Fig. 4, training DBM with multiple hidden

layers
(
h(1), h(2), h(3)

)
can be regarded as learning a stack of

RBMs by introducing a greedy, layer-by-layer unsupervised
learning algorithm for each RBM [36], [37] and treating the
hidden activities of one RBM as the data for training a higher-
level RBM.

RBM is formed between two adjacent layers, with the lower
as the visible layer and the higher as the hidden layer, as shown
in Fig. 5. Taking the Bernoulli-Bernoulli RBM for example,
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Fig. 5. RBM with Kv binary variables in the visible layer and Kh binary
variables in the hidden layer.

it contains a set of visible units v = {0, 1}
Kv and a set of

hidden units h = {0, 1}
Kh . The energy of the state {v, h} is

defined as:

E(v, h) = −

∑
i

aivi −

∑
j

b j h j −

∑
i

∑
j

viwi j h j , (2)

where a j , b j and wi, j are parameters of RBM: a j is the bias
of j-th visible unit vi ; b j is the bias of j-th hidden unit h j ;
wi, j is the symmetrically coupling weight between vi and h j .
The joint probability of the state {v, h} is defined as:

p(v, h) =
1
Z

exp(−E(v, h)), (3)

with the partition function Z =
∑

v,h exp(−E(v, h)).
Marginalizing out the hidden states leads to:

p(v) =
1
Z

∑
h

exp(−E(v, h)). (4)

From (3) and (4), the conditional probability of h j = 1 given
the visible units can be obtained:

p
(
h j = 1 | v

)
= σ

(
b j +

∑
i

wi jvi

)
, (5)

where σ(x) =
1

1+exp(−x) is a sigmoid function. Similarly, the
conditional probability of vi = 1 given hidden units is:

p (νi = 1 | h) = σ

ai +

∑
j

wi j h j

 . (6)

The conditional probability distribution provides the basis for
Gibbs sampling to update parameters in the following.

In RBM, given a set of training data D, the parameters a,
b and w are learned to maximize the log-likelihood function:

L(D; a, b,w) =
1
N

N∑
n=1

log p
(
v(n); a, b,w

)
, (7)

the gradient of which with respect to the model parameters
leads to:

∂L(D; a, b,w)
∂ai

= ⟨vi ⟩data − ⟨vi ⟩model , (8)

∂L(D; a, b,w)
∂b j

=
〈
h j
〉
data −

〈
h j
〉
model , (9)

∂L(D; a, b,w)
∂wi, j

=
〈
vi h j

〉
data −

〈
vi h j

〉
model , (10)

where ⟨•⟩data represents a data-dependent expectation with
respect to the completed empirical data distribution, and
⟨•⟩model denotes a data-independent expectation with respect

Fig. 6. Schematic diagram of CD-1 algorithm for training each RBM in
the DBM. The empty and filled circles denote the real-valued and binary-
valued units, respectively. Specifically, the red-framed input units are
regarded as logistic units, for which only binary value 0 or 1 is sampled
in MCMC.

to the distribution defined by the model. Then the parameters
a, b and w are updated by the gradient ascending method:

ai = ai + α (⟨vi ⟩data − ⟨vi ⟩model) , (11)

b j = b j + α
(〈

h j
〉
data −

〈
h j
〉
model

)
, (12)

wi j = wi j + α
(〈
vi h j

〉
data −

〈
vi h j

〉
model

)
, (13)

with the learning rate α = 0.1.
The distribution from the completed model is intractable but

can be approximated by Gibbs sampling in the way of Monte
Carlo Markov Chains (MCMC). Contrastive divergence [38]
(CD) has been developed to approximate the data-independent
expectation under the RBM distribution, as described in Fig. 6.
First, the dataset is partitioned into small batches, and the
gradient ascent is performed sequentially over all these batches
in random order. Starting from a data point, a random con-
figuration of the hidden layer is sampled according to the
conditional probability p

(
h j = 1 | v

)
for each j-th unit in

Eq. 5, as depicted in Fig. 6. In turn, given this, a configuration
of the visible layer is sampled according to Eq. (6) and so
on. Thus, one can take advantage of the bipartite structure
of RBM to draw a whole visible or hidden layer at once,
thanks to the factorization of the conditional distribution in
Eq. (6) or (5), respectively. The approximation using n iterated
sampling of both visible and hidden units is known as CD-n,
and CD-1 as shown in Fig. 6 works surprisingly well in
practice [18], [39]. Therefore, the sampled configurations can
be used to estimate the data-independent expectation under the
RBM model through CD-1 algorithm, as described in Fig. 6.

In Fig. 4, the input data is fed into the bottom layer, while
the top layer outputs two non-linear features to represent the
non-linear structure of the input data. Both are real-valued,
while all hidden nodes are binary, only taking 0 or 1 to speed
up the training [18], [40]. Thus, the above-introduced training
method for the Bernoulli-Bernoulli RBM can be applied to
the training of h(1) ↔ h(2) and h(2) ↔ h(3). h(1) ↔ h(2) is
shown in Fig. 6(b). The output of the top layer in Fig. 4 is set
as stochastic real values drawn from a Gaussian to make good
use of continuous variables, allowing data representation in a
2D feature space. Then h(3) ↔ o in Fig. 6(c) is regarded as
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a Bernoulli-Gaussian RBM, whose energy function should be
correspondingly modified as:

E(v, h) = −

∑
i

aivi −

∑
j

(h j − b j )
2

2σ 2
j

−

∑
i

∑
j

viwi j
h j

σ j
,

(14)

where σ j is the standard deviation of the Gaussian noise
for j-th output unit. All σ j are set to 1 for our results in
Sec. IV-B and IV-C. The stochastic update rule for the visible
units remains the same except that each h j is divided by σ j ,
and the update rule for hidden units j is to sample from a
Gaussian with mean b j + σ j

∑
i viwi j and variance σ 2

j .
As mentioned in Sec. III-B, the input values are here

normalized into the range [0, 1], and the visible units are
regarded as logistic units in v ↔ h(1), as suggested in Hinton’s
seminal work [18], [40], [41]. If the visible units are set as
linear units with Gaussian noise and v ↔ h(1) is regarded
as a Gaussian-Bernoulli RBM, the training can not achieve a
good 2D representation for clustering seizure and non-seizure
events (data not shown here). Further explanation is presented
in Sec. IV-A.

Therefore, our DBM model can be decomposed into one
special Bernoulli-Bernoulli RBM for v ↔ h(1) (Fig. 6(a)),
two normal Bernoulli-Bernoulli RBM for h(1) ↔ h(2) and
h(2) ↔ h(3) (only h(1) ↔ h(2) shown in Fig. 6(b)), and one
Bernoulli-Gaussian RBM for h(3) ↔ o (Fig. 6(c)).

It is important to point out that DBM should be shortly
trained into a transient state, not converging to an equilibrium
state. DBM_transient are obtained by training each RBM
of the DBM model only 10 rounds of MCMC Gibbs sam-
pling, which is far away from reaching an equilibrium state
(∼ 200 rounds required for most cases). For DBM_converged,
each RBM of the DBM model is trained to an equilibrium
state. The similar results are achieved in many different trials
with random initialization of the network parameters, implying
that our results are statistically significant.

D. The Compared Methods
Our proposed DBM_transient is compared to

DBM_converged, KPCA, Isomap, t-SNE, and UMAP.
Since the normalization is done linearly, Principal Component
Analysis (PCA) is affected by non-Gaussian distributions of
the features (see Fig. 7). Thus, PCA is not a good candidate
for comparison and is replaced by KPCA, which employs a
nonlinear transformation [28]. For KPCA, the RBF kernel
with gamma equal to 0.5 is chosen. Isomap, t-SNE and UMAP
can estimate the intrinsic geometry of the data manifold by
exploring neighbors of each data point on the manifold, and
embed high-dimensional data in a low-dimensional space
for visualizaion. For Isomap and UMAP, the number of
neighbors is set to 5 and 15, respectively. For t-SNE, the
perplexity and number of iterations equal to 30 and 1000,
respectively, producing the best performance for the datasets.
Rest of the parameters are set to default or ‘auto’ as given
in their corresponding python libraries. Following the Grid
search cross-validation technique, the best parameters are
selected for each method.

Fig. 7. Feature distributions of the input data for both Bonn dataset and
C301 dataset. Here only E[|D3(t)|], E[|D3(t)|2], Std[D3(t)] and E[|D4(t)|]

E[|D3(t)|]
are shown as examples to indicate the complicated distributions of the
features.

DBM can adaptively learn complex nonlinear global pat-
terns in the data (see Fig. 7) [36], which is beyond the
ability of the compared nonlinear dimensionality reduction
methods. KPCA should pre-define the kernel, which may
be not suitable for the complex data, while Isomap, t-SNE,
UMAP can only capture the local relation structures among
samples by neighbor embedding. In the results, superiority
of DBM_transient over the compared methods on the 2D
representations of EEG signals is evaluated by the two evalu-
ation metrics: Fisher’s discriminant function and classification
measures from a subsequent linear SVM.

E. Evaluations
(1) Here, Fisher’s discriminant function [28], as a measure

of class separation, is maximized to select a proper projection
for linear classification, evaluating the clustering performance
of a 2D representation. The projection of the 2D feature xn
of the n-th data sample Xn down to one dimension yn can
be given as: yn = ωT xn , where ω is called a weight vector.
Fisher’s discriminant function is defined to be the ratio of the
between-class variance to the within-class variance and can be
given by:

J (ω) =
ωT SBω

ωT SWω
, (15)

where the between-class covariance matrix SB
and the within-class covariance matrix SW
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are given as:

SB = (m2 − m1)(m2 − m1)
T , (16)

SW =
1

N1

∑
n∈C1

(xn − m1)(xn − m1)
T

+
1

N2

∑
n∈C2

(xn − m2)(xn − m2)
T , (17)

with mean vectors: m1 =
1

N1

∑
n∈C1

xn and m2 =

1
N2

∑
n∈C2

xn The larger value of Fisher’s discriminant func-
tion J (ω) indicates the better separation of two classes, and
thus the better clustering performance.

(2) SVM with a linear kernel [28], [42] is a linear classi-
fication method for evaluations, which is used to search the
best support vector in the data hyperplane to maximize the
margins of different classes.

The binary classification performance of SVM can be
defined as the standard statistical measures: specificity (SPE),
recall (REC), precision (PRE), accuracy (ACC), and F1 Score,
defined as:

SPE =
TN

TN + FP
,

REC =
TP

TP + FN
,

PRE =
TP

TP + FP
,

ACC =
TP + TN

TP + TN + FP + FN
,

F1 Score =
2 · PRE · REC
PRE + REC

,

where TP (true positive) is the number of samples correctly
classified as seizure class, TN (true negative) represents the
number of correctly as non-seizure class, FP (false positive)
indicates the number of samples incorrectly detected as seizure
class, and FN (false negative) means the number of samples
incorrectly detected as non-seizure class. ACC is the ratio of
correctly predicted samples in the testing dataset. F1 Score
measures the geometric average of PRE and REC.

IV. EXPERIMENTAL RESULTS

Section IV-A presents the complexity of feature distribu-
tions, indicating the difficulty of isolating seizure events from
non-seizure ones. By the DBM, 14 features of each sample can
be represented and visualized in a 2D space for clearly cluster-
ing seizure and non-seizure events of both the small-size Bonn
dataset (Sec. IV-B) and a much more complex large-size raw
clinical C301 dataset (Sec. IV-C). DBM_transient is superior
over other methods on the performance of representation and
visualization, as demonstrated with a higher value of Fisher’s
discriminant function and a higher classification accuracy by
a subsequent linear SVM in Sec. IV-B and IV-C.

A. Distributions of Input Features
The 14 spectral-temporal features of EEG signals extracted

by DWT are regarded as the input to the DBM. These are
real-valued and normalized into the range [0, 1]. The visible

units in v ↔ h(1) are regarded as logistic units rather than
linear units with Gaussian noise. Thus, v ↔ h(1) is trained as
a special Bernoulli-Bernoulli RBM, as depicted in Fig. 6(a).

The scheme is reasonable since the features of both datasets
are non-trivially distributed, as shown in Fig. 7. Here only
E[|D3(t)|], E[|D3(t)|2], Std[D3(t)] and E[|D4(t)|]

E[|D3(t)|] are taken as
examples to show the complicated distribution of features. The
main points discovered in Fig. 7 are:

• Non-seizure features are narrowly distributed bounded
to 0, while the seizure ones are widely and irregularly
distributed over the range [0, 1];

• The distributions of both seizure and non-seizure data
features are overlapped;

• Almost all distributions of either seizure or non-seizure
features are non-Gaussian, with multiple peaks;

• Bonn dataset has a wide distributed ratio feature E[|D4(t)|]
E[|D3(t)|]

of both seizure and non-seizure events, while that of C301
dataset is mostly located around 0;

• The ratio feature E[|D4(t)|]
E[|D3(t)|] has a high overlap of seizure

and non-seizure data for Bonn dataset, while the overlap
for C301 dataset is greatly reduced.

The non-Gaussian variability of input features suggests keep-
ing their complicated and intrinsic data structure rather than
introducing a simplified Gaussian noise. Therefore, it is justi-
fied to train v ↔ h(1) as a special Bernoulli-Bernoulli RBM
(Fig. 6(a)) in order to extract the essential latent properties for
a better low-dimensional representation.

B. Feature Representation for Bonn Dataset
Here, DBM is employed to reduce the dimensions of

14 features nonlinearly and represent them in a 2D feature
space, where one can intuitively identify seizure events with
no further complicated computation. This approach effec-
tively clusters seizure and non-seizure events in a 2D feature
representation space, as shown in Fig. 8 for all 7 cases of
Bonn dataset. The data class is colored according to the data
label, which is only used for visualization and evaluation of
clustering performance rather than for training DBM. Seizure
and non-seizure samples gather into linearly separable clusters,
although the task is increasingly complex with more and
more diverse non-seizure data from Case 1 to Case 7. The
scatter points, representing samples of each class, form into a
Gaussian shape distribution due to the Gaussian noise, which is
introduced into the output layer o of Bernoulli-Gaussian RBM
h(3) ↔ o. Seizure and non-seizure events can thus be spatially
separated in a 2D feature space, with each class dominating
a respective area and easily identified by empirical judgment
without label information.

Figure 8 also shows the 2D feature presentations of 5 other
dimensionality reducing methods: DBM_converged, KPCA,
Isomap, t-SNE, and UMAP for comparison. The cluster-
ing performance of DBM_converged is much weakened as
compared with DBM_transient (Fig. 8). Understanding the
underlying mechanism remains elusive, although some recent
work shed a bit of light on it [43], [44], [45]. The superiority
of clustering performance by DBM_transient is demonstrated
with much higher values of Fisher’s discriminant function
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Fig. 8. 2D feature representations of seizure (red dots) and non-seizure (green dots) events in each case of Bonn dataset using 6 different
unsupervised learning methods. The data class is colored according to the data label, which is only used for visualization and clustering performance
evaluation rather than training. The background colors are obtained by a subsequent linear SVM, with the color boundary as the separating line.

Fig. 9. Fisher’s discriminant function J(ω) for 6 different unsupervised
learning methods in each case of Bonn dataset.

J (ω) (as shown in Fig. 9) and higher classification accuracy of
a subsequent linear SVM (boundary line indicated by the edge
of different background colors in Fig. 8) on the testing data,
as presented in Table IV. In Fig. 9, J (ω) consistently achieves
the highest values by DBM_transient for all 7 cases, com-
pared to the other methods: DBM_converged, KPCA, Isomap,
t-SNE, and UMAP, despite an increase in task complexity
from Case 1 to Case 7. The 2D low-dimensional feature
representations by Isomap, t-SNE, and UMAP are similar

shown in Fig. 8, with the corresponding J (ω) much smaller
than that of DBM_transient (Fig. 9).

As seizure and non-seizure events are clustered and sep-
arated with a large between-class distance, seizure activities
can be easily identified by physicians or training a subsequent
linear SVM. The classification by the linear SVM following
DBM_transient achieves an average accuracy of 0.968 for all
the cases, which is higher than those achieved by the SVM
following DBM_converged (0.951), KPCA (0.937), Isomap
(0.863), t-SNE (0.956), and UMAP (0.946). Additionally,
DBM_transient achieves the highest values (REC, and F1
Score) in almost all the cases as listed in Table IV. Specif-
ically, REC of DBM_transient shows much higher scores than
the other methods, especially in more complex and unbalanced
training groups (Case 5 to Case 7).

Furthermore, the results from the proposed DBM_transient
followed by the supervised SVM are also compared with
the unsupervised K-means and multiscale K-means (MSK-
means) methods for Bonn dataset (See Table 8.1 in [3], where
K-means and MSK-means are specially treated as classifiers).
The results verify the effectiveness of DBM_transient in
extracting the essential latent properties of EEG signals for
representation and visualization.

C. Feature Representation for C301 Dataset
Bonn dataset is much cleaner than the acquired raw clinical

data. However, the small size of Bonn dataset with only
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TABLE IV
SVM BASED CLASSIFICATION PERFORMANCE ON BONN DATASET USING 6 DIFFERENT METHODS

Fig. 10. 2D feature representations of seizure (red dots) and non-
seizure (green dots) events for C301 dataset using 6 different unsuper-
vised learning methods, with the description similar to Fig. 8. Addition-
ally, the highlighted yellow dots represents the misclassified samples,
eight of which are selected as examples with their original signals plotted
in Fig. 11 for further discussions.

500 samples completely hinders the commonly used unsuper-
vised learning methods (e.g. DBM_converged, Isomap, t-SNE
and UMAP) from achieving a good low-dimensional feature
representation, since the data size is not enough for these
methods to converge to a good representation. Surprisingly,
DBM_transient can extract the intrinsic latent properties and
successfully represent the data in a low-dimensional space for
clustering seizure and non-seizure events.

C301 dataset is much more complicated and unbalanced
than Bonn dataset. The EEG signals of C301 dataset are

Fig. 11. Examples of original EEG signals with seizure parts red
shadowed according to physician’s labels. (A) Correctly classified non-
seizure samples; (B) Correctly classified seizure samples; (C) Non-
seizure samples misclassified as seizure samples; (D) Seizure samples
misclassified as non-seizure samples.

stochastic, non-stationary and diverse with non-stereotyped
EEG patterns (Fig. 11). Moreover, these raw clinical EEG sig-
nals are often polluted by physiological or non-physiological
artifacts [16]. However, C301 dataset has a 20 times larger
size (757 seizure samples and 9992 non-seizure samples) than
Bonn dataset, which may benefit the unsupervised learning
methods for clustering. As expected, the large size of C301
dataset can improve the representation performance (Fig. 10)
of almost all the methods employed, with a much higher
Fisher’s discriminant function J (ω) as listed in Table V.
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TABLE V
SVM BASED CLASSIFICATION PERFORMANCE ON C301 DATASET

USING 6 DIFFERENT METHODS

Interestingly, our results verify the effectiveness of
DBM_transient on C301 dataset similar to that on Bonn
dataset. By DBM_transient, seizure and non-seizure samples
are effectively separated into two clusters (Fig. 10). In con-
trast, by DBM_converged, KPCA, Isomap, t-SNE, and UMAP,
non-seizure and seizure samples are widely distributed in
the 2D representation space (Fig. 10), due to the diversity
of non-seizure activities (Fig. 11). The representations by
t-SNE and UMAP are quite similar. These methods separate
seizure and non-seizure samples; however, both have a smaller
between-class distance in comparison with DBM_transient.
The result shows that DBM_transient achieves the best cluster-
ing performance with the highest J (ω), while the classification
performance by a linear SVM subsequent to DBM_transient
are closely comparable to the linear SVM following the other
methods, evaluated by the measures: SPE, REC, ACC and
F1 Score, as listed in Table V. The results demonstrate that
DBM_transient is competent to cluster seizure and non-seizure
events robustly on the small-size Bonn dataset as well as
the large-size C301 dataset, with great potential in clinical
applications.

It is still challenging to fully identify seizure events of the
raw clinical data, e.g., C301 dataset. Some seizure samples
are misjudged as non-seizure events by the DBM_transient
and the other methods (marked as yellow in Fig. 10), eight
of which are selected as examples shown in Fig. 11(C) and
(D). For clarification, two correctly classified non-seizure and
seizure signals are also presented in Fig. 11(A) and Fig. 11(B),
respectively. In Fig. 11, the seizure sections of EEG signals
are red-shaded by physicians. It can be observed that the EEG
patterns presented in Fig. 11(C) and (D) are non-stereotyped
and similar to each other. These samples complicate the task
of classification, leading to misclassification.

V. CONCLUSION

This work leverages the benefit of both the time-frequency
domain features and the novel unsupervised learning approach
DBM_transient to represent EEG signals in a 2D feature space.
The proposed method DBM_transient effectively extracted
the essential latent properties of EEG signals for visually
clustering seizure and non-seizure events and allowed a linear
readout for classification.

The spectral-temporal features of EEG signals by DWT
are employed as input for training to reduce dimensions
and representation in a 2D feature space for clustering and
classification. We found that input features are distributed

into a non-Gaussian shape with multiple peaks, indicating the
intrinsic complex data structure. DBM trained to a transient
state, namely DBM_transient, can capture these intrinsic fea-
tures and represent them in a 2D feature space with seizure and
non-seizure events separated into respective Gaussian-shaped
clusters. Such powerful representation ability is beyond that
of DBM_converged, KPCA, Isomap, t-SNE, and UMAP. The
embedding methods such as Isomap, t-SNE and UMAP are the
nonlinear dimensionality reduction methods that evaluate the
similarity between two data points without the ability to cap-
ture the hidden data structure, which can be learned by training
DBM to a transient state. The two evaluation metrics: Fisher’s
discriminant function J (ω) and classification measures of a
subsequent linear SVM, demonstrated the superior clustering
performance of DBM_transient.

DBM_transient worked very well on the small-size Bonn
dataset with only 500 samples in total, despite an increase in
task complexity from Case 1 to Case 7, beyond the abilities
of the other methods employed here. Importantly, it is also
effective on the large-size raw clinical C301 dataset, which
is much more complicated and unbalanced with a 20 times
larger size, and the EEG signals of which are stochastic,
non-stationary and diverse with non-stereotyped EEG pat-
terns. The clustering results in the 2D feature space (Fig. 10)
are well separated. However, some samples are misclassi-
fied due to complicated and non-stereotyped EEG patterns
(Figs. 11C and D). More importantly, the network structure
and the training procedure of DBM_transient are the same for
all 7 cases of Bonn dataset and C301 dataset. Therefore, the
feature representation and visualization by DBM_transient can
robustly and reliably cluster seizure and non-seizure events,
adjustable to different datasets with various data sizes.

In conclusion, our results show that DBM_transient per-
formed well in extracting the essential latent data structure
and presenting them in a low-dimensional feature space with
visually clear clustering, facilitating its future usage in clinical
applications. In future work, DBM_transient should be evalu-
ated with different feature vectors of EEG signals [17] or more
generic feature set library, e.g. YASA [46], and further applied
to the more complex and larger datasets, e.g. CHB-MIT dataset
from Boston Children’s Hospital [47], to investigate its power
as well as limitations.
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