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Abstract— A frequent cause of auto accidents is disre-
garding the proximal traffic of an ego-vehicle during lane
changing. Presumably, in a split-second-decision situation
we may prevent an accident by predicting the intention of
a driver before her action onset using the neural signals
data, meanwhile building the perception of surroundings
of a vehicle using optical sensors. The prediction of an
intended action fused with the perception can generate an
instantaneous signal that may replenish the driver’s igno-
rance about the surroundings. This study examines elec-
tromyography (EMG) signals to predict intention of a driver
along perception building stack of an autonomous driving
system (ADS) in building an advanced driving assistant
system (ADAS). EMG are classified into left-turn and right-
turn intended actions and lanes and object detection with
camera and Lidar are used to detect vehicles approaching
from behind. A warning issued before the action onset,
can alert a driver and may save her from a fatal accident.
The use of neural signals for intended action prediction is
a novel addition to camera, radar and Lidar based ADAS
systems. Furthermore, the study demonstrates efficacy of
the proposed idea with experiments designed to classify
online and offline EMG data in real-world settings with com-
putation time and the latency of communicated warnings.
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I. INTRODUCTION

WE SHIVER as emergency vehicles speed past us on the
road to attend a crash. Our hearts miss a beat as we

hear about a road accident on the news. – Tedros Adhanom
Ghebreyesus. Road safety is an item point in United Nations
(UN) sustainable development goals (SDG) and a target was
set in 2015, to reduce the traffic deaths and injuries by 50% by
the year, 2020. However, the percentage has increased by 8%
as reported by the World Health Organization (WHO) [1].

Fig. 1 depicts a frequent driving situation that will assist
to accentuate the nuisance value of traffic circumstances
for a driver: The protagonist driver (driver-A) is in a grey
car marked underneath with a green circle and a blue car
(driver-B) is approaching from behind in the right lane. The
approaching car is moving at 60 kilometers per hour(kph)
and the grey car is close to stationary. A car is considered
5 meters (m) long (the average length of a family car) in this
illustration. If driver-A decides to change lanes to her right
without looking in the rearview mirrors, what would be the
time margin to recover from her mistake? What would be the
minimum distance from the blue car to save driver-A from
a likely accident, if we could predict her intended action of
turning right? Let’s assume with 60 kph the blue car (driver-
B) travels 17m in one second(sec) and with a break applied
at this point we have one second to warn our driver about
the situation before the following car comes in contact with
an ego-vehicle. If a system takes 500 milliseconds (ms) to
predict her intended action and the system is cognizant of the
blue car, it cautions driver-A about her mistake. There is a
possibility that with a prior prediction of driver-A’s intended
action, she may recover from the mistake and avoid a likely
harmful accident.

Humans often drive with partial focus, varied attention,
miscellaneous thoughts and influence of the conscious mind
(Fig. 1). A large number of accident damages are caused
by side sweeps and rear-end traffic collisions. The drivers,
especially new drivers, often forget to look in the rearview mir-
rors or rely on precursive information and proceed with lane
changing and turning of the steering wheel. Inevitably, with
experience drivers finesse in certain emergencies like to avoid
an approaching vehicle from the left or the right lane while
turning left or right without looking in the rearview mirrors.
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Fig. 1. Depiction of a common driving situation that shows circum-
stances for a driver in the car with a green marking underneath it. A blue
car is approaching from behind supposedly at a speed of 60kph in the
right lane. In this situation, common circumstances for the driver are to
focus on the school bus, the cyclist, zebra crossing and children, traffic,
school zone, and so on while driving.

Reflexes are often credited for saving humans from many
unwanted situations, but the drivers’ actions are voluntary
actions that are initiated by the motor region with feedback
from the sensory information processed by the pre-motor and
prefrontal area. If the actions are performed without updated
information collected from the surroundings, an unwanted
situation may arise. An auxiliary system, acting as an artificial
reflex by collecting the motor signals as sensory input to the
system and responding with haptic feedback may neutralize
the unwanted situation for an inattentive driver in autonomous
vehicles (AV). Though AV is surmised to be on the verge
of commercial launch, passengers have reservations about the
machines and a recent survey [2] shows the acceptance of
AVs decreases as the autonomy level increases. The ADAS
is a safe and acceptable surrogate that may help to reduce
unwanted situations, accidents, and collisions. Conventional
ADAS are designed with inputs from the camera, ultrasonic
sensors, radars, and they generally monitor the conditions
of driving and a driver. This study explores the use of a
proactive approach to warn drivers in case a critical situation
is anticipated and uses electromyography (EMG) signals to
predict the intended action of a driver and subsequently
apprehends an unwanted situation with an ADAS.

Recent neuroscience research investigates the time between
action planning and the initiation of neuron exaction for a
certain movement action. Reference [3] examined an early
awareness of the brain about an intended action and reported
a prior awareness of as high as 0.5s (seconds). The time is
reported to be approximately 10s in a later study [4], [5]. There
are alternative theories which state other reasons behind the
extended time reported in later studies about the prior known
awareness of the brain about movement actions actions [6].
However, for this study, the alternative theories also support
the experimentation setup as the driver is conscious about the
activity of driving a vehicle. Presumably a prior intimation
about the intended movement action of a driver when fused
with perception building algorithms in autonomous driving
software (ADS) and conditioned with simple heuristics can
warn the driver about an apprehension.

This study premises on findings in neuroscience and ADS
and combines the proprioceptive(humans) and exteroceptive
signals to develop an ADAS. The proposition in this work
suggests that the accurate prediction of an intended movement

action of a driver when fused with the perception building
techniques in the ADS, effectively warns a driver about
critical and unwanted situations. For example, side-sweep
and rear-end collisions cause frequent fatal accidents and
are caused by the drivers’ ignorance about rear traffic while
turning steering wheel. In the proposed work, the intended
action of a driver is predicted from continuous stream of EMG
data using a conventional support vector machine (SVM). The
perception of surroundings of ego-vehicle is computed using
camera and Lidar data. The camera images are used to detect
lanes and vehicles in the rearview. The Lidar is calibrated
with a rearview camera for measuring an accurate distance of
the tailing vehicles. Here, lane change intention is the driver’s
thought of changing the lane, whereas the lane changing action
is the driver’s actions that she performs and can be noticed
by the movement of the actuators. The study advocates the
use of the proposed ADAS in intelligent transportation and
safe vehicles. The rest of the manuscript is organized as
follows: Section II presents the related literature and section III
details the techniques adopted for each module of the pro-
posed framework. The experimentation details and results
are discussed in section IV and the conclusion is presented
in section V.

II. LITERATURE REVIEW

Consumer vehicles are equipped with basic safety fea-
tures: lane departure warning, forward collision warning, and
blindspot detection using ADAS [7]. New automobiles are
stepping up a level and providing lane-centering assistants,
rear-cross alert, and experimental self-park systems. This study
introduces the use of biological clues for action prediction to
device an ADAS which may act as an artificial reflex. In the
following an overview of the relevant literature is presented in
separate subsections.

A. Can We Really Predict the Intention?
The heading poses a pertinent question for the proposition

that the proposed ADAS benefits from the prediction of the
intended action of a driver. This study orients the proposition
towards the computational design and framework of ADAS
and introduces the literature for the premise that the intention
of a driver is known using advancements in Neuroscience.
Reference [6] details the decision-making and the freedom in
choice juxtaposing the studies in favor of the argument to the
rebuttals. The experiments favoring the arguments suggest that
the brain knows at-least 0.5s prior to the actual realization of
a decision of a human being [3]. Successively, the period is
reported as up to 10s with new experimentation and the brain
activity mapping techniques (functional magnetic resonance
imaging - fMRI) [4], [5]. Whereas, [8] categorizes the distant
intentions from the proximal intentions [9]: the former is the
planning of activity later in time and the latter is a plan
of action. It turns away the period suggested by the [3] for
the proximal actions. Reference [10] supported the claims
with experiments designed for predicting the decision from
Electroencephalogram (EEG) signals and reported that the
EEG signals are not different for two decisions: to move and
not to move. However, the discussion is about the unconscious
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Fig. 2. Nerves pathway and dressings of EMG wearable devices.

decision making and the readiness potential (RP) which is
a prior signal observed in EEG for a limb’s action [11].
However, the premise of this study is valid in the juxtaposition
as a driver is involved in a limited set of driving actions
and the conscious decision (RP) would be investigated for the
prediction of intended actions.

B. Pathway of Nerves
The nerves carrying motor signals, from the brain to the

upper limbs, travel from the spine to the upper limbs. Brachial
plexus carries the motor signals to the arms and it leaves the
spine (vertebral column) at Cervical C1-C8 and Thoracic T1
segments (vertebrae) in spine. A cartoon diagram in Fig. 2(a))
(not drawn with anatomical precision) depicts the pathway of
the nerves which carry the motor signals from the motor area
of the brain to the limbs for fine movements. The Brachial
plexus is branched into Medial, Ulnar, and Radial nerves. The
radial nerve signals the movement of muscles to raise the
hand, elbow, wrist, and fingers. The medial nerve innervates
the forearm and hand, while the Ulnar nerve also stimulates
the forearm and hand. This study uses the EMG wearable

device which wraps around the arm and captures the electrical
stimulation of the three nerves. The discussion of anatomy is
briefly touched in this study and anatomy literature [12], [13],
[14], [15] is referred for details.

C. Sensors
Sensors have categorised into Exteroceptive sensors and

Proprioceptive sensors. In this study, the proprioceptive sensor
definition is adjusted and it reveals the state of the driver.
EEG is often used to capture electrical impulses generated
during an activity in a driver’s brain and a detailed review of
EEG sensors used for this purpose is given in [16]. Whereas,
a detailed review discusses deep learning algorithms applied
on EEG data for various applications [17]. EMG is another
sensing method that is lately used in ADAS for people with
restricted mobility in upper limbs [18] and also for pedestrian
collision avoidance [19]. Reference [20] details about the
exteroceptive sensor technologies in use for ADAS and ADS.
It reflects upon the capacity and challenges of the sensors and
may help to choose the right sensor for further advancements
in the proposed idea like event-based vision sensors [21] may
help to reduce the crucial processing time. It also names
the driver attention model but does not provide the sensors
used in ADAS for the purpose. Reference [22] extends the
discussion on the utility of various sensors in ADS and ADAS
primarily focusing on their performance and limitations in
various demanding situations.

D. Perception
ADAS aids human drivers by imitating an expert’s response

in a situation and it relies on the perception built with inputs
from the exteroceptive sensors [23]. The pivotal role of the
perception module is to perceive the surroundings and to
become aware about the nearby objects and ego positioning.
The perception is used to predict the objects’ behavior in the
immediate future. The state-of-the-art uses object-detection,
segmentation, tracking, and depth-estimation to build the
perception and often uses data fusion from heterogeneous
sensors [24]. Reference [25] gives a detailed insight into the
recent advancements in object detection and discusses the use
of camera and Lidar data for 2D and 3D object detection
in images and point cloud data. The perception module and
its significance in a full stack of ADS is discussed in [26].
3D object-detection is a protrusive research topic and ADS
uses the data from Lidar and stereo-images to glean the
interesting objects [27], [28]. Reference [29] uses knowledge
distillation with a single shot detection neural network model
and detects 3D objects in Lidar data. Stereo-images are used
to detect 3D objects by generating a 3D feature volume from
left-right stereo images and detecting the objects in 3D volume
[30]. Nevertheless, 2D-object detection is a convenient and
popular perception building technique and it is extensively
pursued to develop economical ADAS and ADS [31], [32].

E. Prediction of Intention
Prediction in ADAS and ADS anticipates the behavior

of objects in the surrounding. However, in this study, the
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prediction of intention is for the driver which is often termed
as driver’s behavior in ADAS. The topic impelled many
researches and an earlier review paper [33] reflects on various
behavior monitoring methods: visual features, physiological
signals, and vehicle behavior. Reference [34] assess the driver
monitoring techniques in relation to the levels of SAE automa-
tion. Vehicle’s operational control by a driver suggests a lot
about the state of a his behavior and it is used in [35] to
predict the risky behavior from harsh braking, harsh steering
wheel control, and aggressive acceleration. Vehicle steering
angle and brake pressure help to predict a driver’s intention to
start a vehicle after stopping [36]. EEG is in frequent use with
the experimentation in ADAS as the signals are captured from
the core of human intelligence machinery and its communica-
tion [16]. More examples include, driver drowsiness detection
using evaluation of EEG with convolutional neural network
and episodic training [37]. Another study investigated the EEG
signals to detect the fatigue-related performance declines for
drivers [38]. However, an advance prediction of intention of a
driver for an ADAS system using physiological signals is not
found in literature, it has been studied intensively to infer the
intention of a driver from his actions [39].

F. Use of EMG in ADAS
Advanced machine learning and signal processing tech-

niques are effective in passable analysis of coarse EMG signals
and their use in prediction of a sequence of actions. EMG
wearable devices are used in experiments with prosthetic appli-
cations for people showing varying ability to use their upper
limbs and [40] provides a detailed review of the applications.
Reference [41] uses surface electromyography (sEMG) to
design a steering control assistant’s interface which servers
drivers with limited movement of arms. The sEMG with an
arm wearable EMG device is used in human driver trials to
assist people who suffer upper limb amputation and shows
effective aid to the driver to avoid pedestrian collision [19].
Another demonstration of the control of steering wheel using
EMG signals is discussed in [18] and the authors advocate
its utilization in ADAS for physically challenged drivers.
This study propounds another utility of EMG signals which
is homologous to steering action. The proposed framework
predicts the intention of a driver and uses it to warn the
driver anticipating a close contact with the approaching vehicle
from behind. The framework apprehends using perception
and prediction modules of ADAS and ADS. The perception
module uses lane detection and object detection using a camera
and object detection using Lidar. The detection in images
is mapped to the detection in Lidar for accurate distance
measurement. The driver’s intention prediction is combined
with the perception and a warning is generated if there are
vehicles that are close enough and may cause an accident on
turning of the steering wheel.

III. METHODOLOGY

The proposed framework is composed of four independent
but synchronous data collection and prediction modules. First
module performs EMG data collection and drivers’ intended

action prediction. Second is a lane detection module which
uses the images from a camera mounted on the back of
a vehicle for rearview. Third is an object detection system
which also uses the images of the rearview camera. Fourth
is a distance estimation modules which estimates the distance
of objects approaching the ego-vehicle from behind. A block
diagram in Fig. 3 depicts the flow of information among
the four modules. Details of each module are given in the
following subsections, whereas algorithm 1 gives a concise
methodology adopted in this study.

Algorithm 1 Artificial Proprioceptive Reflex Warning ADAS
Require: Image It , PointCloud PCt , EMG Et−w,...,t ▷ t is

the time and w is the EMG signals window
▷ Image I captured at time

t looking at backside, Point cloud data is the data captured
by the Lidar, and EMG is captured using for a window of
time w from the current time t

Ensure: Wt , dt ∈ {WL , WR, Wn} ▷ W is the warning if there
is a vehicle on left or right, or no vehicle
while T rue do

l ← Lane_Detection(It ) ▷ L is/are the points of the
lane

v2D, o← object_Detection(It ) ▷ v, o are vehicles
and objects

v3D, d ← object_Mapping(PCt , v2D, o) ▷ v3D map
the vehicle detected in 2D and their distance from vehicle

DI ← predict_I ntention(Et−w,...,t )

Cv, Cd ← predict_CriticalV ehicles(DI, d, v2D)

if Cv in {ll} & DIL then
Wt ← WL
dt ← Cd

else if Cv in {lr } & DIr then
Wt ← WR
dt ← Cd

end if
if Wt ̸= Wn then

Show warning dialogue box for 5 sec
Wt ← Wn

end if
end while

A. Intended Action Detection Using Electromyography
(ADE)

EMG sensors are used to capture and signal muscle activity
in response to the stimulation of nerves. The sensors are
attached to the surface of body muscles to detect neuro-
muscular activities. Seemingly, the muscles’ movements initi-
ate specific gestures and actions, and an early gleaning of the
EMG signals provides an astute guess of the intended action.
In this study, the EMG classification module predicts a driver’s
intended muscle movements of turning of the steering wheel in
right or left direction. The driver wears EMG surface devices
in two different dressings (Fig. 2(b)): one device on each arm
and two devices on each arm. In the first dressing the signals
are coarse and weak, whereas in the second dressing captures
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Fig. 3. System block diagram shows different modules. The EMG signals are communicated to the edge device on Bluetooth where it runs the
classification algorithm and the red line on the driver shows the proprioceptive haptic signals in case of a warning detected by the system. The
Computational system runs two Deep-learning networks (green for object detection and blue for lane detection), a matching algorithm on point
cloud data, and data fusion from all modules including edge device data.

more differentiable signals. Each device has 16 sensors in
a band which wraps around the arm and each sensor is
supplemented by another two sensors which filter the noise.
The wearable EMG band used in this study samples data at
200Hz. It is assumed that the driver puts both hands on the
steering wheel while driving.

The two devices send signals synchronously to an edge
device on a Bluetooth communication channel. The edge
device predicts the intended action of the driver using a quick
machine learning algorithm. This study experiments with
conventional SVM. The training of SVM is performed with
two different options: First, online training for every driver as
it’s not a tedious job and individual drivers have their own own
EMG signatures. Second, the data is collected from various
drivers and a pre-trained SVM is used to predict intended
action of a driver. The SVMs are quick to train, update online
and do not need abundant data which is a desideratum for
state of the art. During driving, the EMG data is a continuous
stream of signals (x1, x2, . . . xN ) which is input to the ADE
module and a fixed stream (xt−n, . . . , xt ) is used to predict the
action. At time instance t the signal xt−(n−1) captured at time

t−1 is dropped and the xt is appended for the prediction. The
predicted action is passed to the control module which fuses
the information with the results of perception module that runs
in parallel and nudges the driver about the situation of the
traffic. A fundamental idea in this study is to predict the action
in advance which may be implausible to test quantitatively
with the used apparatus because the reported delay of muscle
innervation and the action onset is little low. An alternative
assessment is discussed in section IV-E.4. Purportedly, this is
a pilot study and advocates for accurate and functional EMG
sensors development for the specific tasks with passable results
assessment tools.

B. Lane Detection
Lane detection is a widely targeted challenge in ADAS

and ADS quests and often uses camera images for the
detection. Earlier it was detected using conventional image
processing and, later deep-learning techniques are employed
for the detection. The latter gives rise to dataset collection
and there are comprehensive dataset available with various
imaging conditions. However, the lane annotations in the
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labeled dataset are available only for the front-view, whereas
in this study the ADAS uses rearview. The models trained
with the front-view annotated dataset are comparatively less
accurate with rearview images. In this study, the same model
is used to predict the lane in rearview images and sufficiently
serve the purpose of identifying tailing vehicles in respective
lanes. The lane detection information is separately computed
in parallel to the vehicle detection with the object detection
module.

A data augmentation technique to produce the automated
annotation of rearview from the front-view is discussed briefly
here for interested readership. The lanes are annotated in
the image frame sampled from continuum of driving videos
from a front-view camera, the same view is captured by the
back-view camera after a certain number of frames. The con-
ventional feature matching techniques in CV can be employed
to compute the transformation parameters. The transformation
parameters can be used to project the front-view annotations
to the back-view annotations in a self-supervised manner. The
deep-learning techniques with self-supervised learning can be
applied using the computation of extrinsic parameters for the
mapping.

C. Object Detection and Distance Computation
Human drivers exercise involuntary sensory-motor data

fusion for vehicle control [42]. Quintessential object detection
from different views supposedly includes the tailing vehicles
using the rear and side mirrors involuntarily before a lane
change. The detection is often observed in parallel to the
voluntary control of the vehicle which may be ignored or
masked in presence of other thoughts and actions. This study
investigates the use of object detection in rearview images
using state-of-the-art deep learning techniques. The rearview
camera is used to detect the objects approaching from behind.
A model trained with the general vehicle images suffices for
this study as the object detection dataset are conveniently
augmented to cater for the perceptive changes in rearview
images.

The distance of the approaching vehicle is computed using a
Lidar. The Lidar is calibrated with the rearview camera and the
detection in images is mapped to the Lidar point-cloud data.
The Lidar gives an accurate distance of the tailing vehicle.
The objects are conveniently detected in the point-cloud data,
but this study considers distant objects which lose resolution
in point-cloud data. Another option is to use the monocular
depth estimation and extract the distance information from the
image only thus neutralizing the cost of an expensive Lidar
sensor on the cost of computational latency.

D. Information Fusion
Human reflexes exhibit extraordinary skills in a certain situ-

ation and the instantaneous response meticulously benefits the
requisite objectives. The reflexes often build the sensory-motor
responses close in distance. In the case of driving the motor
neurons engaged are the somatic nervous system and the sen-
sors are distant from the actuators. Also, conscious movements
are planned in response to particular perception that is built

by the vision and auditory sensors. The information is contin-
uously collected from vision(front, sides, rearview), hearing,
and somatosensory signals, and the information is fused to
build a perception of the surroundings. The fused information
prompts future actions, and the following discussion about the
proposed modules for data fusion is inspired by the spectacles
of neuroscience.

The detection data from object detection and lane detection
is fused to identify the lane of the tailing vehicle and spot
the vehicles in immediate left, right, and following lanes as
charging vehicles. The Lidar-camera transformation is fused
to collect the distance of the charging vehicles and mark
critical vehicles with a distance threshold. The intended action
detected by ADE module is fused with the information of
the critical vehicle and nudge the driver if the intended move
apprehends a collision with the critical vehicles. A flow of
information in Fig. 3 depicts the flow and fusion stages of
the processed sensory information and the artificial haptic
response.

IV. EXPERIMENTATION

The experimentation to test the proposed framework is
carried out with a model SAE level-2 experimental vehicle.
The vehicle is mounted with a 32 channel Lidar, two cameras
(front-view and rearview) and a radar for perception building.
The vehicle is equipped with a custom-designed computational
machine for vision and point-cloud data processing. The EMG
sensors used in this study are two wearable Myo wraps1 [40],
one for each arm. Each wearable device has 16 sensors
mounted on a round wrap of strips and each strip has two
sensors.

A. Computational Environment
The computational setup for the experimentation is shown

in Fig. 3. Camera images and Lidar point cloud data are
transferred to a computational machine equipped with an
Nvidia GTX1070 GPU. The experiments are performed on
the ADS computational stack, which uses Robotics Operating
System (ROS) as a data fusion middle-ware. ROS operates on
a publisher and subscriber communication framework which
supports the parallel computation demands of the proposed
workflow of the ADAS. The EMG signals are captured on an
edge device using a 1.3 G H z processor and 2 GB memory, and
the EMG data is transmitted over Bluetooth. The EMG sensors
used in this study are from ThalmicLab’s Myo armband
that records signals at 200 H z and further details about the
specification of EMG sensors are discussed in [40]. The same
edge device runs the SVM for the prediction of the intended
action. The device also runs a ROS node connected to the main
computation machine running the ROS Master connected over
LAN. The intended action and the EMG data are published on
the edge device which is subscribed by the information fusion
module running on the computation machine. The EMG data
is also published on a separate channel to avoid the delays
of communicating the prediction results. The data helps to
examine and analyse the signals used for prediction.

1Thalmic labs (https://www.bynorth.com/)
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B. Data Collection
There are three modules in the proposed framework that

needed a dataset for their learning algorithms. First, object
detection data set uses the Mscoco dataset [43] for detecting
tailing vehicles. Mscoco object detection is a comprehensive
dataset with 80 labeled categories of objects. The lane detec-
tion module uses the TUSimple2 dataset which provides a
labeled dataset for lane detection. The ADE uses a dataset
of EMG signals collected with Myo wearable devices for
experiments in this study.

C. EMG Dataset
The EMG dataset collected for this study uses the wearable

Myo device worn by three different drivers performing two
different actions and the third category is defined as no-
turn. The actions are turning right, turning left, and third is
otherwise. It is assumed in this pilot study that the driver is
using both hands to drive and his hands are on the steering
wheel during experiments. The data is collected with a sta-
tionary vehicle by turning the steering wheel only. The two
wearable sensors are connected to an edge device and data is
communicated over Bluetooth. Each device gives 64 readings
(window size w) from each of the 8 sensors from the Myo
device and the raw signal values from all the sensors and
devices are concatenated to make one sample. The data is
labeled manually into three classes for training. The data
values are normalized and scaled between -10 and 10. The
three classes are labeled as 0,1,2 for left, right, no-turn.
This study is approved by the Gwangju Institute of Science
and Technology (GIST), Institutional Review Board (IRB)
approved this study under approval number (20230202-HR-
70-06-02). Moreover, informed consent was obtained from all
the subjects participated in data collection of the study.

The two wearable devices synchronously transfer the data
which is collected at the edge device and stored as separate
arm actions on the edge device. The synchronization of the
two devices is a delicate part which is supported by the
MyoConnect development library provided with the software.
The synchronization is cross verified with the timestamps.
In another experiment with two wearable devices wrapped on
each arm (Fig. 2(b)) the data is collected separately for each
arm and data for four devices is concatenated to emulate a sin-
gle action. For each driver a around 100 (±6) samples for all
three categories are collected and a 60 to 40 train-test split is
used. In a second approach, the data is collected online before
the start of the experiments for individual drivers. A similar
procedure of data generation is adopted except that the data is
not stored and fed live to the learning algorithm for N samples
of window-size (w = 64) for each action. The details of the
apparatus are given in section IV-A. EMG noise is filtered in
the Myo armband. The resident noise however is considered
a regularization of the EMG classification algorithm.

D. Lane Detection and Object Detection
The lane detection module discussed in section III uses

a trained ANN UltraFast lane detection [44] algorithm for

2https://github.com/TuSimple/tusimple-benchmark

detecting lanes in rearview camera images. The images are
resized to 416x416 for inference and then resized to original
size for display. The algorithm uses a deep neural network
which contextually divides a view into a grid. The features are
extracted from an image and the grid is generated with row
specific anchors. The grid structure of the image gives fast
computational speed for lane detection as the grid contains
spatially coarser data points than the competitive methods
which use whole image pixels. The real time performance at
300 frames per second (fps) of the lane detection algorithm
befits the requirements in the proposed study. The object detec-
tion module uses a state-of-the-art ANN Yolo3 [31]. Yolo3 is
fast in detecting the objects in images at 23ms (60fps) and is
optimal for suggested experiments. Yolo3 uses 53 convolution
layers with 3x3 and 1x1 convolution kernel sizes and uses
k-mean clustering for bound-box anchors. For further details,
interested users are referred to the original manuscript [31].
The point cloud data is filtered using euclidean clustering
algorithm to determine the object and maps it to the image
from the camera using the calibration. It gives the accurate
distance of the object detected in the image.

E. Results
1) Accuracy of EMG Classification Offline: Primary focus

of this study is anticipating the intended action of a driver
and generating a warning for a driver using biological expe-
riences. The EMG signals from three drivers are classified
into three classes using the two different use of wearable
sensors as discussed in section IV-C. The accuracy of the
EMG classification is tested with the data collected from EMG
wearable devices worn by the drivers and performing three
actions with their hands on steering wheels. The vehicle was
stationary for this experiment. In this section, the experiments
are planned with two different variations based on the training
and testing data. First, separate training data is prepared for
each driver and tested for the same driver. The train to test split
ratio is 60 to 40 for each driver(details about EMG dataset
are discussed in IV-C). Second, a single training dataset is
generated for all drivers and the test dataset is also combined
for all drivers. Table I gives the results of two experiments.
The correct prediction of the intention of the driver is in
numerator and the denominator gives the total number of
samples for a performed action. The accuracy increases as
we increase the number of used EMG devices. The four
devices data is collected separately by wearing two devices
on each arm and concatenating the data later for training and
testing. It is also noticed that the generalization causes more
errors in prediction than person specific training and testing.
The person specific testing will not decrease the effectiveness
of the proposed idea as elaborated from an experiment in
section IV-E.2. The reported prediction results in a cell where
the numerator is greater than the denominator, it suggests bias
towards the titled class in data collection.

2) EMG Classification Online: Another experiment was
designed to test the efficacy of the system for a new driver on-
the-spot. The training data was collected when the driver takes
the wheel and with a minimal number of samples an SVM is
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TABLE I
EMG SIGNAL CLASSIFICATION FOR THREE DRIVERS

Fig. 4. (a) Error bars for on-the-spot training and testing for two drivers.
(b) Accuracy in percentage for the two drivers after on-the-spot training.

trained and the learned parameters are used for instantaneous
testing. The same EMG devices are used and the results are
generated with a single device on each arm. w is 64 for each
device. The samples are concatenated from both devices and
used for training and prediction. The training dataset is com-
posed of 6 examples and are considered sufficient to generate
good predictions, as the system is tested for an individual.
Fig. 4 depicts samples and prediction accuracy graph for two
drivers. The number of examples proportionally increase the
time for training but improve the result of predictions. The
experiments suggest a minimal nuisance value for the whole
process of training which may vary based on the real-world
experience in a routine environment.

3) Warning Generation: A complete framework is tested in
a setup prepared for the vehicle(called SDV). The test was
performed on a major four lane in-campus road with two-
way-traffic. The SDV was driven at a speed of 20kph for
5 minutes straight on the road with restricted traffic. The
tailing vehicle was driven by a team member who was in
continuous communication with the team in the SDV. The
tailing vehicle was kept at a safe distance(30m-50m) during the
experimentation. The driver in SDV wears the EMG devices
and the camera and Lidar are calibrated using the ADS. The
EMG signals were continuously streamed and w of 64 in
one example was used for prediction. The continuous stream
of signals was appended to a queue to generate a sample
that strips the farthest signal and appends a recent signal
for prediction with a continuous stream. A SVM was trained
as discussed in section IV-E.2 and the prediction results are
communicated to the ADS.

The ADS captures the stream of data from the camera
capturing the rear view of the vehicle. The stream of data is
passed to lane-detection and object detection algorithms. This

Fig. 5. A complete depiction of signals and computation results after
processing. The left side shows the image data captured by the rearview
camera, lane detection and object detection applied to the image. The
right side shows the point cloud data at bottom and EMG data on top.
The left side top image shows the fused results in one image that
includes lane and object detection and the distance measured by the
lidar. The red triangle in the EMG data shows the intention prediction in
the continuous stream of EMG singals.

experiment used FLIR Blackfly-S camera for rearview with a
frame rate of 522fps. Another experiment was performed with
a Logitech c930 webcam rear view camera with a frame rate of
30fps. The lane detection and the object-detection work in real-
time with more than 30fps. The experiments used Velodyne
HDL-32E Lidar which gives a 360◦ field of view (FOV),
a maximum of 1200 rotations per minute (RPM) that gives
us 20fps, and covers 80m-100m distance. The Lidar settings
for the experiments also used a 120◦ rear view range with
600RPM that reduce the frequency to 10fps. The calibration
in the ADS and gave us the distance of the detected vehicle
in the rearview.

Fig. 5 shows the results of all modules in the ADS, windows
on the left shows the detected tailing vehicle. An image
with lane-detection is shown on the left bottom separately.
A calibrated 3D detection of the vehicle is visible on the right
side in point cloud data which also shows the distance from the
vehicle. Fig. 5 top right shows the classification and marking
of the predicted intention in bounding boxes. A warning is
generated with a dialogue box and a vibration of the wearable
EMG device. It is visible in the point cloud data our vehicle
is oriented a bit towards left at the time the warning was
generated by the system.

4) Can She Recover From the Mistake?: A pertinent out-
come to conclude this study is the computational time for
prediction of the intended action considering the real-time
computations in other modules. The intended movement action
detection competes with the muscles’ movement onset. The
delays are often studied using the movement-related cortical
potential (MRCP) [45], whereas the EMG is used to detect
the onset movements in an experimental setup [46]. More-
over, electrochemical delays (ECD) and electromechanical
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delays (EMD) can be explored to assess the difference between
intended action detection using EMG and the onset movement.
This study pilots the utility of ADAS using EMG for move-
ment intention detection and can not benefit from the discussed
techniques to detect the exact latency using methods given
in [46]. Therefore, this study relies on the computational time
for each module of the proposed framework to answer the
pertinent question.

The computations in this study are discussed as fol-
lows: The EMG wearable device is connected with an
edge device using a Bluetooth device with a transmission
latency of the low energy Bluetooth which is 46ms in worst
case [47]. The computational time for prediction of EMG
is 0.55ms (± 0.1) and the communication from the edge device
to the computational machine is on gigabit network which is
insignificant. It does not add delay to final result transmitted
to our computational machine and takes 100ms (± 10). The
computational machine computes the lane-detection, object-
detection, and Lidar-to-camera mapping in real-time. All the
computations are performed in parallel and a simple control
logic accumulates the results from all modules and generates a
warning in less than 2ms. The warning sends a signal back to
the edge device which transmits a vibration command to the
EMG wearable device to warn the driver. In all, the round-trip
for the whole transmission takes less than 200ms.

If we hark back to our example from the section I, the
system has 500ms to predict and warn the driver if the
following vehicle is driving at a speed of 60kph and it is
17m away from our vehicle. The tested system’s computation
time is far less than the conjectured time. However, the pilot
system uses the EMG signals which are captured from the
upper limbs for intention prediction. The movement action is
already initiated at the time the system starts its prediction,
but a vehicle at a distance of more than 50m may provide a
cushion to the driver to recover from an action which may
lead to an undesirable situation. The experimentation details
in section IV-E.2 are tangible evidence of timely prediction
of a driver’s intended action before the approaching vehicle
reaches a close distance.

The related studies in [41] evaluate the later movement error
for EMG guided steering control interface in a simulated envi-
ronment and test three similar scenarios. However, a contrast
in the objective makes it challenging to opt for the lateral
moment error for a fair comparison. Whereas, [19] uses a
time analysis of the pedestrian collision avoidance using the
EMG Myo bands in a simulated game environment. A direct
comparison of the response time for the collision avoidance
is not possible, but the response time proposed strategy is
generally quicker nonetheless. Moreover, the proposed study is
tested in a real environment with the devised experimentation
with veritable computational response times in real situations.
We plan to introduce standard qualitative and quantitative
evaluation metrics for comparisons in future studies.

F. Limitations
The proposed study uses a number of components and

multi-modal heterogeneous data. A primary module, that pre-
dicts action of a driver in advance, uses EMG signals and it

needs to be synchronized with video data which is used by
lane detection module. EMG and videos are spatio-temporal
data with different dimensions and modalities. As the proposed
ADAS system operates in milliseconds granularity, a robust
synchronization is required for accurate functioning of the
system. Moreover, point-cloud data is used for accurate dis-
tance calculation, thus synchronization between camera and
Lidar is highly recommended for the experimentation of a
functional system. Moreover, Lidar and camera calibration
affects accurate estimation of distance from a tailing vehi-
cle. In this study, the experiment is carefully designed and
all sensors are synchronized and calibrated for an effective
demonstration of the proposed idea. An error in calibration and
a drift in synchronization will definitely affect the performance
of proposed system.

Overfitting can impact the framework in three modules
EMG signal classification, Lane detection, and Object Detec-
tion. In EMG signal classification overfitting can impact in
two different ways. First, with a general system trained offline
with EMG signals of multiple users and inference for an
individual. Second, a system is trained online with individual
data. Both scenarios are tested and evaluated in this study and
the impact is minimal in the results, but it cannot be ruled out
in machine learning and should be evaluated with a large-scale
test deployment. Lane detection and Object detection gener-
alization are tested with the adopted networks trained on a
public dataset and tested in a specified experimental setup.
The performance is accurate for the experimentation without
the tuning of the trained network on the experimental data.

V. CONCLUSION

This work presents a pilot study designed to assess the
utility of biological neural activation for advanced driving
assistance systems (ADAS). The electromyogram (EMG) is
used to predict the intended movement of arms of a driver
to turn the steering wheel in the left or right direction. The
predicted information is combined with the object detection
in images and Lidar point cloud data and feed to the control
logic. The algorithms use rearview camera images and Lidar
point cloud data to detect following vehicles, their locations,
and distances from ego-vehicle. The results suggest that the
warning generated by the proposed system can timely warns a
driver about a tailing vehicle to recover from a movement onset
and imitate a proprioceptive reflex with a haptic response.
The system uses a simple EMG wearable device for inputs
and a conventional SVM for the prediction of intended action.
It can be extended to design an application-specific system
with EEG and state-of-the-art machine learning algorithms.
Moreover, task-specific EMG sensors can be designed to wear
closer to the spine to sense electrical stimulation earlier and
predict early. Another prospect is the use of EEG for the same
purpose which will take it a step closer to the actual claims
and will gain more time for the computations and generating
warnings.
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