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An Investigation of Olfactory-Enhanced Video on
EEG-Based Emotion Recognition
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Abstract— Collecting emotional physiological signals is
significant in building affective Human-Computer Interac-
tions (HCI). However, how to evoke subjects’ emotions
efficiently in EEG-related emotional experiments is still
a challenge. In this work, we developed a novel experi-
mental paradigm that allows odors dynamically participate
in different stages of video-evoked emotions, to investi-
gate the efficiency of olfactory-enhanced videos in induc-
ing subjects’ emotions; According to the period that the
odors participated in, the stimuli were divided into four
patterns, i.e., the olfactory-enhanced video in early/later
stimulus periods (OVEP/OVLP), and the traditional videos
in early/later stimulus periods (TVEP/TVLP). The differential
entropy (DE) feature and four classifiers were employed
to test the efficiency of emotion recognition. The best
average accuracies of the OVEP, OVLP, TVEP, and TVLP
were 50.54%, 51.49%, 40.22%, and 57.55%, respectively.
The experimental results indicated that the OVEP signif-
icantly outperformed the TVEP on classification perfor-
mance, while there was no significant difference between
the OVLP and TVLP. Besides, olfactory-enhanced videos
achieved higher efficiency in evoking negative emotions
than traditional videos. Moreover, we found that the neural
patterns in response to emotions under different stim-
ulus methods were stable, and for Fp1, FP2, and F7,
there existed significant differences in whether adopt
the odors.
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I. INTRODUCTION

COMPREHENDING humans’ emotions and making cor-
responding responses are humans’ basic capabilities in

daily communication and decision making. However, the two
capabilities are essential to whether a machine is more intelli-
gent [1]. In recent years, the development of Human-Computer
Interactions (HCI) system with emotional autonomous percep-
tion has become an significant research hot spot in the field
of artificial intelligence (AI) and HCI [2].

As an important tool for building an affective HCI sys-
tem, electroencephalogram (EEG) is outstanding for analyzing
brain activities and understanding mental states [3]. Besides,
compared with some non-physiological signals, such as facial
expressions and body languages, EEG can reveal more real
emotional states, that is to say, humans can easily disguise
their true emotions by controlling their facial expressions or
body languages, but they hardly control their brain activities.
Therefore, EEG-based emotion recognition has attracted great
mention, from the theoretical research of emotional physiology
to the engineering application of affective Brain-Computer
Interactions (aBCI) system [4].

Evoking emotions and collecting related EEG signals are
keys for studying EEG-based emotion recognition. However,
defining emotional states is always a fuzzy problem, for
humans’ emotions may be influenced by many different exte-
rior factors, such as time, culture, language, space, etc [5].
What’s more, the individual’s emotional states are also deter-
mined by their physiological and cognition states [6]. Hence,
when performing the experiment of collecting emotional EEG
signals, how to induce participants’ emotions more sufficiently,
and how to activate the level of participants’ physiological
states more effectively? The stimulation of multi-sensory
seems to be potential when developing an emotional EEG
experiment, for the multi-sensory integration, namely interac-
tive synergy among the senses, can enhance the physiological
salience of a stimulus [7]. Besides, some previous works had
also indicated that the multisensory integration could improve
the efficiency of emotion recognition task [8], [9], [10].

In the present work, we simultaneously adopted odor and
video as stimulus materials for the purpose of fully stimulating
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the subjects’ multi-sensory, thus inducing their emotions more
efficiently. The main contributions of this work can be summa-
rized as follows: (1) We have designed a novel emotional EEG
experiment paradigm, and developed a multi-modal multi-
sensory emotional EEG dataset (multi-modal: EEG and EOG,
multi-sensory: vision, audition, and olfaction) which is pub-
licly available.1 (2) The odors are employed to participate in
the different stage of a video-stimulated emotional experiment,
to investigate the evoking efficiency of olfactory-enhanced
video, and the results illustrated that odors could significantly
improve the efficiency for evoking emotions in the early
stage of traditional video rather than the later stage. (3) The
experimental results demonstrate that the olfactory-enhanced
video could achieve higher classify accuracies on recognizing
negative emotions, and preliminary reveal the capability of
odors on emotion regulation on a video-stimulated emotional
experiment.

The layout of this paper is organized into following sections:
In Section II, a brief introduction of related works is presented.
The detailed information of the experiment is described in
Section III. Methods and experimental results are presented
in Section IV and V, respectively. The discussion can be
available among Section VI. Finally, Section VII presents the
conclusions of the current work.

II. RELATED WORKS

Emotions are usually an individual’s subjective response
arisen by either an internal or external event with pos-
itive or negative meaning [11]. In emotion recognition
reaserch, emotional states can be roughly categorized as affec-
tive states (such as positive, neutral, and negative), dimen-
sional states (such as high/low valence and arousal), and
discrete states (such as happiness, sadness, calmness, and
etc) [12]. However, quite a number of EEG-based emotional
experiments have been developed which utilized kinds of
stimulation materials with different emotional polarities to
stimulate participants’ different sensors, and employed these
emotional categorization principle. Lin et al. [13] adopted
the discrete states as emotional principle and the music as
stimulus material to analyze the emotional EEG. Do Bos [14]
employed the pictures, musics, or a combination of the both
to stimulate participants’ emotions, and categorized those
emotions as dimensional states. Besides, video clips are the
most popular stimulation materials among researchers, for the
video clips have the ability to stimulate subjects’ visual and
auditory senses simultaneously. Both Koelstra et al. [15] and
Soleymani et al. [16] adopted the dimensional principle and
built the emotional dataset, i.e., DEAP and MAHNOB-HCI,
respectively. In addition, Zheng and Lu [17] also built a widely
used dataset, SEED, which classified emotions as positive,
neutral, and negative. However, emotion-evoked experiments
involve not only stimulating participants’ vision and audition,
but also collecting emotion-related signals by stimulating par-
ticipants’ other senses, namely the taste sense [18], the tactile
sense [19], and the olfactory sense [20], these experiments
have indicated that individuals’ emotion also could be evoked

1http://iiphci.ahu.edu.cn/toxiujue

successfully by stimulating their taste, tactile, or olfactory
senses.

Nevertheless, the generation of individual emotions in real
life is often due to the participation of multiple stimuli and
multiple senses. Stimulation of a single sense or two senses
may not be sufficient to enough activate participants’ physio-
logical arousal. Therefore, the strategy that combines different
kinds of stimulation materials for the purpose of enhancing the
individuals’ emotions is developed. Both Raheel et al. [21]
and Li et al. [22] adopted the strategy of the tactile enhanced
video to simultaneously stimulate subjects’ visual, auditory,
and tactile senses, to evoke subjects’ dimensional or discrete
emotions, respectively. Ranasinghe et al. [23] developed an
olfaction enhanced game that stimulate both subjects’ visual,
auditory, and olfactory senses to enhance their discrete emo-
tions. Raheel et al. [24] and Xue et al. [25] employed the
pattern of olfactory-enhanced video to evoke subjects’ affec-
tive states. All the above-mentioned multi-stimuli experiments
have demonstrated the higher efficiency of the collaboration
of multi-senses on recognizing emotions.

One of the goals for these EEG based emotional exper-
iments is to investigate the brain activities and neural pat-
terns in response to different emotional states. Various works
have focused on answering this question. The temporal
and parietal lobes were also indicated as the brain areas
related to processing the emotional response and change
[13], [17], [26]. Zotev et al. [27] reported that the healthy
subjects’ positive emotion could achieve self-regulation by
simultaneously regulating their BOLD fMRI activation in the
left amygdala and frontal EEG power asymmetry in the high-
beta band. Zheng et al. [17] indicated that the beta and gamma
bands of EEG signals were the critical frequency bands on
EEG-based emotion recognition tasks through a systematic
comparison. Moreover, various machine learning and deep
learning methods for emotion recognition also support this
conclusion [28], [29], [30]. In addition, Zheng et al. [31]
further reported that the stable neural patterns for different
emotional states over time do exist. Reheel et al. [24] com-
pared the difference of brain activities between traditional
video and olfactory-enhanced video by recording the EEG
signals of AF7, AF8, F7, and F8.

Another goal for EEG based emotional research is to
accurately recognize individuals’ emotional states in daily
life to accomplish the HCI task better. Feature extraction
and pattern recognition are the two core points for classi-
fying different emotional states. Zheng and Lu [17], [31]
developed differential entropy (DE) as emotional features
which achieve better performance among machine or deep
classifiers. Besides, statistics features (mean, variance, etc),
non-linear features (approximate entropy, permutation entropy,
etc), and time-frequency features (power specture density
(PSD), wavelet energy, etc) are both frequently selected
as features to classify emotions [32], [33]. In addition,
Aydın et al. [34] and Kılıç and Aydın [35] adopted func-
tional correlation features, such as conventional coherence
function (CCF) and phase lag index (PLI), to recognizing
different emotional states. However, compared with features,
different classifiers would also achieve different recognition
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performance. Therefore, both traditional machine learning
methods such as logistic regression (LR) and support vector
machine (SVM), and deep learning models such as deep belief
network (DBN) and convolutional neural network (CNN),
have achieved great results in EEG-based emotion recognition
[17], [24], [25], [28], [29], [30], [31], [32], [33], [34], [35].

These are parts of introductions to experimental and neural
pattern studies for EEG-based emotion recognition. However,
the majority of these studies are based on analysis of emotional
EEG signals evoked by audio-visual-related stimulation mate-
rials, whereas only a small minority of studies involved more
sensory stimulation. Although Raheel et al. [24] and Xue et al.
[25] had performed experiments with olfactory-enhanced
videos as stimulus material, and briefly investigated the
corresponding neural pattern, the olfactory-enhanced-video
stimulation related brain activity still needs further study.
Hu et al. [36] indicated that the efficiency of the different
period of a complete video clip do exist differences on evoking
subjects’ emotions, where the later period of a video would
reach higher awaking capability. Therefore, when odors partic-
ipate to the different stage of a video stimulation, whether the
efficiency of awaking participants’ emotions would change,
and whether the brain activity for different pattern would
change? In addition, which emotions do olfactory enhance-
ment videos have a stronger ability to induce? To the best of
our knowledge, there is no available work for the analysis of
these problems.

III. EXPERIMENTS

A. Subjects
Sixteen healthy participants (8 males and 8 females; age

range: 20-29 years old, mean: 23.53, std: 2.11), with normal or
corrected-to-normal visual acuity, normal hearing, and normal
smelling, participated in the experiment. All participants were
native Chinese students from Anhui University with different
educational degrees, i.e., undergraduate, master’s, and doctor-
ate. And they were informed about the experimental procedure
and required to overcome movements as possible. After partic-
ipating in each trial of an experiment, the participants needed
to make a self-assessment for reporting their emotional states.

B. Stimulus Materials
Before performing the emotion experiments, we first

selected 60 video clips, where each clip last 2 minutes (about
20 clips each of positive, neutral, or negative emotion labels).
The criteria for selecting the video clips were as follows:
(a) the videos should not cause any confusion; (b) the videos
should elicit a single target emotional state effectively; (c) the
videos should not to be too long and contain a relatively
complete storyline. We invited 20 volunteers to watch these
clips and report their emotions by giving scores from -7 to 7
(negative: -7 to -3, neutral: -2 to 2, positive: 3 to 7). Finally,
30 video clips for the three different emotions had been chosen
where each emotion had 10 video clips, where the sources of
the selected video clips were shown in Table I.

Besides, we also selected 20 different odors. The criteria
for selecting the odors were as follows: (a) the odors should

TABLE I
DETAILS OF FILM CLIPS AND ODORS IN OUR EMOTION EXPRIMENT

be not harmful to participants’ health; (b) each odor should
smell single rather than mixed; (c) the odors should elicit a
single target emotional state effectively. It is worth pointing
out that the odor smell single means that when participants
smell the odor, they could accurately judge the source of the
smell, rather than worrying about how many flavors the odor
contains, such as a mixture of alcohol and rose. Typically,
We borrowed the fluid volatility to subject the participants
to the corresponding odor stimulus. Similarly, after scoring
the odors by 20 volunteers, we finally chose 9 odors for three
emotions shown in Table I, where the positive odors contained
lavender, rose, orange, and florida water; the negative odors
contained industrial alcohol, essential balm, vinegar, and ink;
while the neutral odor only contained water. Besides, we also
performed the blank controls when subjects watch the videos
with the neutral label.

C. Experiment Paradigm And Data Acquisition
In order to investigate the different emotional neural patterns

for olfactory-enhanced videos as stimulus materials simulta-
neously, we designed a new emotional experiment to record
affective EEG signals. The protocol was shown in Fig. 1.
Each trial contained four parts, i.e., the start was a 3-s hint,
the following was a 2-minutes stimulus period, the next was
10-s feedback, and the last was 20-s resting period. Typically,
considering the differences in emotional tendencies between
individuals when receiving the same video and odor stimuli,
subjects were also asked to rate their feeling from -7 to 7
when making feedback, and this is the basis for a subsequent
experimental analysis rather than the labels of the stimulus
materials. Besides, we easily divided each trial into two
periods, i.e., the early stimulation period (the first minute of the
video) and the later stimulation period (the second minute of
the video). In detail, when performing the k-th trial, subjects
were stimulated by the traditional video in the early stimu-
lation period, and then stimulated by the olfactory-enhanced
video in the later stimulation period. In contrast, when per-
forming the k + 1-th trial, subjects were stimulated by the
olfactory-enhanced video in the early stimulation period, and
then stimulated by the traditional video in the later stimulation
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Fig. 1. Paradigm of the EEG experiment with the olfactory-enhanced
video as stimulation material.

Fig. 2. The electrode placements. (a) The EEG cap layout for 28 chan-
nels; (b) The EOG setups.

period. For simplicity, we denote the four stimulus pattern
as ‘TVEP’, ‘TVLP’, ‘OVEP’, and ‘OVLP’, where the four
notations represent the traditional video with early stimulation
period, the traditional video with later stimulation period, the
olfactory-enhanced video with early stimulation period, and
the olfactory-enhanced video with later stimulation period,
respectively. In total, there were 30 trials for each experiment.

The EEG data was recorded by Brain Products2 with a
sampling rate of 250 Hz. The layout of EEG electrodes
with 28 channels on the cap obeyed the international 10-20
system and was shown in Fig. 2(a). Meanwhile, the EOG data
was recorded simultaneously where the electrode placements
were shown in Fig. 2(b). In total, the physiological signal
with 32 channels (28 channels for EEG, and 4 channels for
EOG) for 30 trials had been recorded for each subject, and
each trial continued 2 minutes, where the first minute and
the second minute of the trial recorded the signals stimu-
lated by the traditional video/ olfactory-enhanced video and
olfactory-enhanced video/ traditional video, respectively. The
emotional EEG-EOG signals can be publicly available from
http://iiphci.ahu.edu.cn/toxiujue.

IV. METHODS

A. Preprocessing
According to the feedback of subjects after each trial, only

the trial when the subject reported a same emotion state for
both the two stimulus stages of the trial was chosen for
further analysis. The raw EEG signals were first notch filtered

2https://www.brainproducts.com/

by 50 Hz to remove the power-line noise, followed by a band-
pass filter between 1 and 50 Hz. Then, the average re-reference
was performed on the EEG signals. Finally, the independent
component analysis (ICA) was ran on the preprocessed EEG
signals to remove the artifacts. Specially, the ADJUST-plugin3

toolbox was employed to automatically classified the inde-
pendent components (ICs). All above-mentioned preprocessing
steps were ran in EEGLAB toolbox.4

B. Feature Extraction
A more concrete band pass filter was performed for EEG

signals which had been preprocessed to extract a specific
frequency band EEG signals, i.e., the delta band (1-3 Hz),
the theta band (4-7 Hz), the alpha band (8-12 Hz), the theta
band (13-30 Hz), and the gamma band (31-50 Hz). After that,
a moving window with 1 second was used to partition the
preprocessed EEG of each trial into multiple EEG segments,
and each trial were obtained 120 data segments (60×2, 60 data
segments for the traditional video as stimulus material, and
60 data segments for the olfactory-enhanced video as stimulus
material). For further analysis, we extracted the DE feature
from the EEG segments with five different frequency bands,
for the reason that the DE feature had been reported to achieve
better performance than other features, such as power spectral
density [31].

C. Feature Smoothing
Performing the feature smoothing allows us to reduce the

influence of emotion-unrelated EEG, and take advantage of the
time dependency when emotion changes [31], [37]. Therefore,
feature smoothing may be a crucial step on building an
EEG-based emotion recognition system. Zheng and Lu [17],
[31] developed the linear dynamic systems (LDS) to smooth
EEG feature, and indicated that the LDS outperformed the
method of moving average. Nevertheless, LDS may spend
more time on smoothing the features. Val-Calvo et al. [37]
compared the Savitzky-Golay (SG) filtering with LDS, and
demonstrated that both the two smoothing method had out-
standing property on improving the classification accuracy,
while the SG was significantly faster than LDS on smoothing
features. Therefore, in the current work, the SG smooth-
ing method is employed to make the DE features more
robust and discriminative on performing EEG-related emotion
classification.

D. Classifiers
The experimental environment was built on a Win-

dows 10 PC with Core (TM) i7–8700 CPU and 16 GB
memory. The computing environment was pytorch 1.8.0.

The DE features were further fed to four different class-
cifiers, i.e., logistic regression (LR), support vector machine
(SVM), k nearest neighbors (KNN), and deep believe network
(DBN), to achieve the EEG-based emotion recognition.

3https://www.nitrc.org/projects/adjust/
4https://sccn.ucsd.edu/eeglab/
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LR, SVM, and KNN are traditional classifiers. The LR
classifier is a generalized linear model based on statistics
knowledge and aims at find an optimal hyperplane to achieve
the classification task. Similar to LR, the SVM classifier also
aims to find an optimal hyperplane, while the SVM is a model
based on geometric which only consider the support vectors.
Specially, the regulation parameter C of LR, and the optimal
regulation parameter C and the kernel function hyperparam-
eter gamma of SVM were chosen from the parameter pool
Pvalue = {0.01k, 0.1k, k|k = 1, 2, . . . , 9}. Specially, the grid
search method was employed to search the optimal parameters,
such as the hyperparameter gamma. Besides, the L2 penalty
term and the ‘rbf’ kernal were also employed for LR and SVM,
respectively.The KNN classifier is an Euclidean distance-based
model that calculates the distance between the target sample
and all the training samples, and classifies the target sample
by the training samples corresponding to the first k minimum
distances. The number of nearest neighbors k is set to 5.

Compared to the traditional neural network models, DBN
is a probabilistic generative model which establishes a joint
distribution between the observed data and the labels. In this
work, a classical structure of DBN classifier with 2 layers
of restricted Boltzmann machine (RBM) and a layer of back
propagation (BP) was employed. The optimal numbers of
neurons in the first and second hidden layers with step of
50 in the ranges of [50, 200] and [50, 200], respectively.
The adam optimizer with learning rate of 0.001 and weight
decay parameter of 0.001 was adopted. And the batch size
and maximum epochs were 16 and 500, respectively.

Besides, due to the individual’s difference on cognition or
emotional tendency, the emotional data may unbalanced for
different emotional states after emotional stimulation. Hence,
we employed the strategy of balancing the class weight
to avoid the problem for SVM and LR. And for DBN,
we employed the strategy of resampling.

V. EXPERIMENTS RESULTS

A. Classification Performance
In this subsection, we compared the effectiveness of the four

different emotion-evoked patterns, i.e., the TVEP pattern, the
TVLP pattern, the OVEP pattern, and the OVLP pattern. The
DE features were respectively feed to different classifiers, i.e.,
LR, SVM, KNN, and DBN, to build the EEG-based emotion
recognition systems and achieve the comparison. The leave-
one-trial-out (LOTO) cross validation strategy was applied
to validate the efficiency of emotion recognition. More con-
cretely, assume that there are n trials of one subject, we select
n-1 trials of EEG data as the training data, and the rest one
trial of EEG data as the test data. The reason we employed
the LOTO strategy was mainly based on that the EEG with a
specific task is sensitive to change caused by the differences
in cognitive states and environmental variables [39]. That is
to say, in k-th trial of an experiment, the pattern of EEG
signal may keep stable, while in the next trial, the pattern
of EEG signal will change. Therefore, the traditional K -fold
cross validation strategy hardly consider the characteristics of
EEG signals over time, environment, cognitive states and other

factors, while the LOTO strategy does relatively better in this
aspect.

To evaluate the performance of different simulated patterns
and classifiers, the overall accuracy [40] was employed which
is defined as

Acc =

∑N
n=1

∑C
c=1 mnc∑N

n=1
∑C

c=1 Mnc
(1)

where C is the number of classes, N is the number of trial
for an experiment, mnc is the number of correctly predicted
samples of the c−th class in the n−th trial, and Mnc denotes
the total samples of the c−th class in the n−th trial. The
percent theoretical chance level [41] of classification is given
by 100

C (i.e., in this work, the chance level = 33.33%.)
The average accuracies (standard deviations) of four classi-

fiers from different frequency bands over all 16 subjects were
shown in Table II. As shown in Table II, the beta and gamma
bands achieved higher accuracies among the five frequency
bands regardless of classifiers or stimulus patterns for the
emotion recognition task. Besides, regardless of classifiers, the
best accuracies of the beta and gamma bands were achieved
with the TVLP pattern, followed by the OVEP and OVLP
patterns, and last the TVEP pattern. Compared with the OVEP,
OVLP, and TVEP patterns, the TVLP pattern achieved 7.25%,
6.06%, and 19.81% higher accuracies for LR in the gamma
band, and 6.47%, 8.54%, and 17.11% higher accuracies for
LR in the beta band, respectively. For SVM, KNN, and DBN,
a similar difference can be calculated between the TVLP
pattern and other three stimulus patterns. In addition, the
OVEP and OVLP performed very similarly in terms of the
classification accuracy for all classifiers, where the difference
between the two patterns was always around 1% in the beta
and gamma bands. While, both the OVEP and OVLP patterns
achieved around 10% higher accuracy in the gamma band, and
around 8% higher accuracy in the beta band than the TVEP
pattern, respectively.

To determine if the differences of the accuracies between
the four stimulus patterns for the five frequency bands was
statistically significant, the paired-sample t-test by MATLAB
function t test was employed. However, before employing the
t-test, the Lilliefors test was also employed to verify that the
data come from a normal distribution by MATLAB function
lillietest . We calculated the t-tests for these four pairs of
stimulus patterns, i.e., TVEP-TVLP, TVEP-OVEP, OVEP-
OVLP, and TVLP-OVLP, where the results were shown in
Table III. As shown in Table III, there existed a significant
difference between the TVEP and TVLP patterns for LR,
SVM, KNN, and DBN, in the beta and gamma bands. Besides,
there also existed a significant difference between the TVEP
and OVEP patterns in the beta band for LR and KNN, as well
as in the gamma band for LR, SVN, and KNN. Although
there was no significant difference between the TVEP and
OVEP patterns for DBN in the beta and gamma bands when
α = 0.05, the p-values were still close to 0.05 with a
difference of around 0.01. However, the p-values of the OVEP
and OVLP patterns were always higher than 0.05 for the four
classifiers in the beta and gamma bands, which means that
there was hardly no significant difference between the two
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TABLE II
THE AVERAGE ACCURACIES AND STANDARD DEVIATIONS OVER 16 SUBJECTS FOR DIFFERENT

CLASSIFIERS WITH PATTERNS OF TVEP, TVLP, OVEP, AND OVLP

TABLE III
PAIRED-SAMPLE t-TEST RESULTS ON THE ACCURACIES OVER 16 SUBJECTS FROM THE FIVE FREQUENCY BANDS (α = 0.05)

TABLE IV
THE AVERAGE ACCURACIES AND STANDARD DEVIATIONS OVER 16 SUBJECTS FOR DIFFERENT CLASSIFIERS

WITH THE PATTERNS OF TRADITIONAL VIDEO AND OLFACTORY-ENHANCED VIDEO

patterns. For the TVLP and OVLP patterns, we can make a
similar conclusion.

According to the classification accuracies shown in Table II
and the paired t-test results shown in Table III, it can be
concluded that enhancing emotion induction through odor is
mainly achieved with a higher efficiency in the early stage of
the traditional video stimulation, while the enhancement effect
in the later stage of the stimulation is not significant.

Furthermore, we also combined all trials of TVEP with
TVLP, or all trials of OVEP with OVLP, to compare the
efficiency of traditional video with olfactory-enhanced video
on evoking participants’ emotions. The classify accuracies
were shown in Table IV. It can be found that, for each
classifier, the stimulus pattern of olfactory-enhanced video
always achieved higher accuracy.

B. Confusion Matrices
To further study the recognition performance of different

classifiers in the three emotional states, the confusion matrices

over all 16 subjects under the patterns of TVEP, TVLP, OVEP,
OVLP, traditional video, and olfactory-enhanced video, had
been calculated. Fig. 3 showed the results of the gamma
band, for the gamma band is most tightly associated with
evoking emotions and achieved higher performance in emotion
recognition task.

As we could found that, the recognition capabilities of
the different stimulus patterns had obvious differences in
the three emotional states. For positive emotional state, the
TVLP pattern achieved higher accuracies for four classi-
fiers, followed by the OVEP pattern, the OVLP pattern,
and last the TVEP pattern; For negative emotional state,
the OVLP achieved higher accuracies for four classifiers,
followed by the TVLP pattern, the OVEP pattern, and last
the TVEP pattern; For neutral emotional state, the TVLP
pattern achieved higher accuracies for LR and SVM, followed
by the OVLP pattern, the OVEP pattern, and last the TVEP
pattern. While for KNN, the OVLP pattern achieved higher
accuracies, followed by the TVLP pattern. Finally, for DBN,
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Fig. 3. Confusion matrices for different classifiers with the TVEP, TVLP, OVEP, OVLP, traditional video, and olfactory-enhanced video patterns.
For each subfigure, from top to bottom: the LR, the SVM, the KNN, and the DBN classifiers; from left to right: the TVEP, TVLP, OVLP, OVEP,
traditional video, and olfactory-enhanced video patterns. The label, ‘pos’, ‘neu’, and ‘neg’ represent the positive, neutral, and negative emotional
states, respectively.

the OVLP and TVLP pattern achieved higher accuracies,
respectively.

What’s more, the OVEP pattern can significantly improve
the classification accuracies for both positive and negative
emotional states compared with the TVEP pattern. Besides,
the OVLP pattern can also slightly improve the classification
accuracies for negative emotional state compared with the
TVLP pattern. In addition, it also can be observed that the
OVEP pattern performed better on recognizing the positive
emotional state than the OVLP pattern.

Furthermore, comparing the pattern of traditional video
with that of olfactory-enhanced video, the pattern of the
olfactory-enhanced video improved with about 7% and 3%
higher accuracies on classifying the negative and neutral
emotions than of the traditional video, respectively. While for
recognizing the positive emotion, these two patterns performed
similar.

C. Neural Patterns
To obtain the neural patterns associated with different

emotions and different stimulus patterns, we projected the DE
features to the scalp. Fig. 4 displayed the neural patterns of
three emotions by calculating the average DE features over
all subjects and then projecting them to the scalp. Fig. 4(a),
Fig. 4(b), Fig. 4(c), and Fig. 4(d) displayed the neural patterns
of the TVEP, TVLP, OVEP, and OVLP patterns, respectively.
As shown in Fig. 4, an obvious difference could be observed
between the five frequency bands for the different emotional
states regardless of the stimulus patterns. That is to say, the
beta and gamma bands had a stronger activation in the bilateral
temporal cortex (T7, T8, FT9, FT10, TP9, and TP10) than
the other three low frequency bands. Besides, we can also
find that the neural patterns also existed differences between
the positive, neutral, and negative emotional states in the beta
and gamma bands. Compared with the neutral emotional state,
the positive and negative emotional states activated more in

the bilateral temporal cortex for both the beta and gamma
bands.

What’s more, as shown in Fig. 4, for the neutral emotion
state, we observed that the TVLP (shown in Fig. 4(b)), OVEP
(shown in Fig. 4(c)), OVLP pattern (shown in Fig. 4(d)) had
a weaker activation response in the left temporal cortex (T7,
FT9, and TP9) than the TVEP pattern (shown in Fig. 4(a)),
while the activation responses of the TVLP, OVEP, and OVLP
patterns performed similarly; For the positive emotional state,
in general, both the four stimulus patterns performed similar
activation responses in bilateral temporal cortex. Besides, it is
obviously that the right temporal cortex (T8, FT10, and TP10)
activated more than the left (T7, FT9, and TP9). In addition,
for the negative emotional state, an obvious difference can
be found from the four stimulus patters. That is to say, the
TVLP pattern had a stronger activation response in the bilateral
temporal cortex than the TVEP and OVLP patterns, while
the OVEP pattern had a slightly stronger activation response
than the OVLP pattern. What’s more, contrary to the neutral
emotion state, the activation response of the OVEP and OVLP
patterns in the bilateral temporal cortex were stronger than the
TVEP pattern, while the TVLP and OVEP patterns performed
similarly on neural activation response in the bilateral temporal
cortex.

Furthermore, comparing the traditional video pattern with
the olfactory-enhanced video pattern, it can be drawn that
there existed a significant difference in the frontal lobe and
prefrontal lobe (F3, F4, F7, F8, Fp1, and Fp2). To indicate
the significance of the difference for the DE features extracted
from the EEG signal recorded by each electrode, we applied
the non-parametric statistical test, the Kruskal-Wallis test
(K-W test), on the DE feature of each frequency band of
each electrode. The reason we adopted the K-W test was
that the DE feature of each electrode was not completely
subject to a normal distribution after performing the Lilliefors
test.
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Fig. 4. Topographical maps of the DE features in the five canonical frequency bands. For each subfigure, from top to bottom: positive, neutral,
and negative emotions; from left to right: delta, theta, alpha, beta, and gamma bands. For each frequency band, we normalized the DE features to
range form 0 to 1 across the three emotional states and four stimulus patterns. (a) TVEP; (b) TVLP; (c) OVEP; (d) OVLP.

TABLE V
P-VALUES AGAINST TRADITIONAL AND OLFACTORY-ENHANCED VIDEO WITH DIFFERENT STIMULUS PERIOD

ON ALL BANDS OF FP1, FP2, F3, F4, F7, AND F8 CHANNELS (α = 0.05)

The results of K-W test for six pairs of stimulus pat-
terns, i.e., TVEP-OVLP, TVEP-OVEP, TVLP-OVLP, TVLP-
OVEP, TVEP-TVLP, and OVEP-OVLP, in terms of p-values

against five frequency bands of six channels were shown
in Table V. As we can observe from Table V, as long as
the kind of stimulus materials was consistent, namely both
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Fig. 5. Box plot of different EEG frequency bands against the four different stimulus patterns for EEG channels (a) Fp1; (b) Fp2; (c) F3; (d) F4;
(e) F7; (f) F8.

traditional video or both olfactory-enhanced video, there
were no significant difference (p-value > 0.05) in response
to DE features of each frequency band of each channel.
Besides, the delta, theta, and alpha bands on Fp1 and Fp2,
were found significant differences (p-value ≤ 0.05) between
the traditional video and olfactory-enhanced video regard-
less of the stimulus period. Similar to the Fp1 and Fp2
channels, the delta band on the F3 and F4 channels also
performed significant differences between the traditional video
and olfactory-enhanced video, while the theta and alpha bands
on the F3 and F4 channels didn’t showed the significance.
In particular, we observed that for the F7 channel, not only
the delta, theta, and alpha bands, but also the beta and
gamma bands, performed the significant differences between
the two different kinds of stimulus materials. While for the
F8 channel, there almost didn’t exist significant differences,
except for the delta, theta, and alpha bands with the pair of
TVLP-OVLP.

Box plots for the DE feature of five frequency bands on
channels, the Fp1, Fp2, F3, F4, F7, and F8 channels for
the TVEP, TVLP, OVEP, and OVLP patterns were shown in
Fig. 5. As shown in Fig. 5, for the Fp1 and Fp2 channels, the
box plots (Fig. 5(a), Fig. 5(b)) showed a significant difference
in the delta, theta, and alpha bands among the DE features
between the traditional video and olfactory-enhanced video.

In addition, for the F7 channel, the box plots (Fig. 5(e))
showed significant differences in both the five frequency
bands. Obviously, the results displayed in the Fig. 5 were
consistent with those of the K-W test.

VI. DISCUSSION

A. Efficiency of the Proposed Experimental Paradigm
The stimulus pattern of the olfactory-enhanced video had

been validated to outperform the traditional video, Table VI
displayed some of the major studies about EEG-based
emotion recognition in response to the traditional video,
odor, or olfactory-enhanced video. As displayed in Table VI,
the literature [24], [25], [42] adopted the stimulus pat-
tern of olfactory-enhanced video with different experiment
paradigms, where the literature [42] reported that the odors
increase subjects’ Quality of Experience (QoE) levels for
olfactory-enhanced video by the approach of a combination
of experiments and questionnaires, while both the literature
[24], [25] verified the effectiveness of the olfactory-enhanced
video through the machine learning method. However, all
the above-mentioned three works were with a fixed stimulus
order, which neglected the difference in the effectiveness of
evoking subjects’ emotions during the different periods of
a complete video. In general, a stimulus video contains a
relatively complete plot, thus with a gradual understanding of
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TABLE VI
COMPARISON OF THE PROPOSED EXPERIMENT PARADIGM FOR EEG-BASED EMOTION RECOGNITION

TASK WITH WORKS AVAILABLE IN THE LITERATURE

the video content, subjects’ QoE levels during the later period
of the video will be obviously stronger than in the early period.

In the current work, we developed a new experimental
paradigm that could dynamically enable the odors to evoke
subjects’ emotions synchronously during different periods
when they were stimulated by video clips. To the best of
our knowledge, there is no other experimental paradigm
dynamically adds odor to different stages of video-evoked
emotion trials. According to the t-test, no matter which stim-
ulation stage was chosen (early or later period of a trial), the
olfactory-enhanced videos always significantly outperformed
the early stage of traditional videos, while it was not sig-
nificantly different from the later period of traditional video
(shown in Table III). These results suggest that the olfactory
enhancement of emotion primarily takes effects during the
early period of a stimulus trial, with no significant enhance-
ment at the later period. Moreover, as shown in Table IV, the
stimulus of olfactory-enhanced videos generally outperformed
that of traditional video, where the result is consistent with
that of [25] and [24].

B. Efficiency for Classifying Different Emotions
In general, most people typically prefer emotions which

feel pleasant, and avoid those feel unpleasant [43], [44], [45].
Moreover, a resent sampling survey over 246 U.S. adults
had reported that participants empathize with positive emo-
tions 3 times as frequently as with negative emotions [46].
Indeed, these conclusions are consistent with the results of the
EEG-based emotion recognition. Actually, most EEG-based
experimental paradigms usually adopt traditional videos to
evoke participants’ emotions, which means that the par-
ticipants need to understand the video contents and then
empathize with the emotions conveyed by the videos. There-
fore, it is certainly that the affective classify models usually
achieved higher accuracies on recognizing positive emotions,
followed by the neutral emotions and last the negative emo-
tions [17], [28]. Therefore, improving the classify accuracy in
response to the negative emotions is significant for building
an affective HCI system.

Comparing with the traditional videos, the olfactory-
enhanced videos provide more potential possibility. That is
to say, the pattern of olfactory-enhanced videos offers more
discriminant information to improve the classify accuracy for

different emotion states, especially the negative emotions, in an
emotional recognition task. The average classify accuracies in
response to the three emotional states over the four classifiers
was displayed in Fig. 6. Obviously, our experiment further
approved the conclusion that the traditional video would more
easily evoke subjects’ positive emotions than negative emo-
tions. Furthermore, as shown in Fig. 6, the olfactory-enhanced
video stimuli always achieved higher accuracies in recognizing
negative emotions than the traditional video stimuli during
the same stimulus stage of a trial. However, for positive
emotions, there existed a relatively big difference for the
olfactory-enhanced video stimuli in different stimulus stages,
namely the OVEP pattern achieved higher accuracies than the
OVLP pattern, nevertheless, the reason cause this problem is
ambiguous. We think that one of the possible reasons is that
the odors we chose didn’t exactly match the video content.
In other words, the positive video contents were mainly about
comedy for comedy could more easily make an individual
happy or excited, while the main role of positive odors is
to be relaxing or pleasant. More concretely, in the early
stage of a stimuli trial, because of the lack of understanding
about the video content, subjects’ positive emotions were
mainly evoked by positive odors; While in the later stage of
a stimuli trial, with the deepened understanding of the video
content, subjects’ were more easily be happy or excited, but
due to the simultaneous stimulation of the odor, the positive
emotions may be more smoothing or even distracted. Finally,
for the neutral emotions, the results were consistent with our
expectation, since during the different stages of the stimulus
trial, the two kinds of stimulus patterns, namely traditional
video, and olfactory-enhanced video, performed similarly.

C. Neural Pattern for Different Stimulus Patterns
The beta and gamma bands had been reported to show

higher activation responses in previous studies, and play an
important role in EEG-based emotion recognition [17], [28].
In our study, we observed that compared with the delta, theta,
and alpha bands, the beta and gamma bands were more active
in the bilateral temporal cortex regardless of the stimulus
patterns, which further demonstrated that the high frequency
EEG signals reflect more emotional information [47], [48].

The EEG pattern in response to emotions had been indicated
to be provided with stability over time [31]. In our experiment,
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Fig. 6. The average accuracies of recognizing three emotions over the
four classifiers for the four stimulus patterns in the gamma band.

we found that during the stimulation by same kind of stimulus
mode (i.e. traditional video or olfactory-enhanced video), the
topographical maps of DE features shown in Fig. 4 were
similar over the different stage of a trial. Besides, during the
same stage of a trial, the topographical maps also showed
similarity over the different kinds of stimulus mode.

Moreover, we observed that for all the five frequency bands,
the activities of pre-frontal lobe (Fp1, Fp2) for traditional
video were significantly stronger than the olfactory-enhanced
video in general according to the Table V. When stimu-
lating by odors, subjects’ olfactory attention will signif-
icantly increase, which may further increase their visual
attention because of the multi-sensory integration among the
cross-modal stimuli [7]. In addition, a study has also demon-
strated that odors can affect visual processing by attracting
attention more faster under the cases where the odor matches
the video content [49]. Therefore, in our experiment, under
the stimulation of olfactory-enhanced videos, the frequency of
subjects’ eye activity, such as eye movement and blink, may
relatively decrease, and thus the activities of the pre-frontal
lobe were weaker than the stimulation of traditional videos, for
the pre-frontal lobe is the brain region most strongly affected
by EOG artifacts [50]. Furthermore, we also found that there
existed a significant difference for the DE feature extracted
from F7 on whether adding the odors as stimulation, where
the result is similar to [24], in which the MUSE EEG headband
(AF7, AF8, TP7, TP8) was employed to record the EEG
signals, and the channel AF8 was found to show significant
difference between traditional videos and olfactory-enhanced
videos in the delta, theta, and alpha bands.

D. Limitations and Future Works
Our experimental results illustrated the efficiency of the

designed emotional BCI paradigm. Nonetheless, the current
study still has some limitations. Firstly, The age range of the
participants was concentrated between 20 and 30 years old,
with at least a bachelor’s degree. In the future, we will extend
the proposed paradigm to subjects with a wider age range
and other educational background, to study the universality
of olfactory-enhanced videos on evoking individuals’ target
emotions. In addition, our experimental results preliminary

showed the possibility of odors for regulating the emotions on
the emotional stimulation experiment with traditional videos
as stimulus materials, while sufficient evidence is lacking to
confirm this possibility. Hence, we will further adopt odors
with different stimulus intensity by controlling the strength
of odors, and study the effectiveness of odor participation in
the problem of emotion regulation. Moreover, the respective
evoked efficiency of odors and videos are not clear when both
the two kinds of materials are involved in emotional evok-
ing experiments. Therefore, a more detailed and reasonable
experiment paradigm needs to be developed to investigate
the primary and secondary aspects of odor and video in the
efficiency of inducing emotions. Finnally, the reaserch about
brain network is also an important work to study the interac-
tion of different brain areas when subjects are stimulated by
traditional video or olfactory-enhanced video.

VII. CONCLUSION

Stimulating individuals’ multi-sensory will evoke their emo-
tions more efficiently. In this paper, we developed a novel EEG
emotional experiment paradigm which allow odors dynami-
cally evoke participants’ emotion during the early or later term
of a video stimulation, and we built an EEG-EOG emotional
dataset which is publicly available. From the experimental
results, we have found that regardless of the period, olfactory-
enhanced videos were significantly better than the early term
of traditional videos in statistics, while slightly worse than
the later term of traditional video in classifier performance.
In addition, compared with the traditional video stimulus,
the olfactory-enhanced video stimulus had achieved higher
performance in recognizing negative emotions, which partly
made up for the weak ability of the traditional video stimulus
to identify negative emotions. Furthermore, we found that
topographical maps with different stimulus patterns didn’t
show obviously differences, which indicated that, to a certain
extent, the neural pattern in response to emotion changes is
stable when stimulating individuals’ different senses. Besides,
we also observed that the olfactory-enhanced video stimuli and
traditional video stimuli differ significantly on the Fp1, Fp2,
and F7 channels in almost all five frequency bands.
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