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Abstract— Objective: This study aims to develop a flex-
ible myoelectric pattern recognition (MPR) method based
on one-shot learning, which enables convenient switching
across different usage scenarios, thereby reducing the
re-training burden. Methods: First, a one-shot learning
model based on a Siamese neural network was constructed
to assess the similarity for any given sample pair. In a new
scenario involving a new set of gestural categories and/or
a new user, just one sample of each category was required
to constitute a support set. This enabled the quick deploy-
ment of the classifier suitable for the new scenario, which
decided for any unknown query sample by selecting the
category whose sample in the support set was quantified
to be the most like the query sample. The effectiveness
of the proposed method was evaluated by experiments
conducting MPR across diverse scenarios. Results: The
proposed method achieved high recognition accuracy of
over 89% under the cross-scenario conditions, and it
significantly outperformed other common one-shot learn-
ing methods and conventional MPR methods (p < 0.01).
Conclusion: This study demonstrates the feasibility of
applying one-shot learning to rapidly deploy myoelectric
pattern classifiers in response to scenario change. It pro-
vides a valuable way of improving the flexibility of myo-
electric interfaces toward intelligent gestural control with
extensive applications in medical, industrial, and consumer
electronics.

Index Terms— Myoelectric control, electromyogram
(EMG), one-shot learning, cross-scenario, flexibility.

I. INTRODUCTION

AN ELECTROMYOGRAM (EMG) represents an electro-
physiological signal reflecting muscular activities that
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formulate movements under the control of motor nerves.
It can be used to decode and understand movement intentions
and to provide useful commands for controlling externally
powered devices, such as prosthetic and orthotic robots [1],
[2]. EMG has been used in the well-known technique termed
myoelectric control, where the surface EMG (sEMG) is mainly
employed by placing electrodes over the skin surface to sense
movements in a non-invasive manner [3], [4]. Myoelectric
pattern recognition (MPR) is a ground-breaking technology
that enables dexterous control of multi degrees of freedom
easily [5], [6]. There are also many commercialized MPR
products [7], [8], [9], [10] that are designed for prosthetic
control and rehabilitation treatment [6], [11]. Besides, the
MPR technology has significantly broader applications and
can exhibit potential in consumer electronics [12], [13].
In recent years, MPR technology has attracted much
attention as a novel interface for information input and
editing with applications in consumer electronics for motion-
sensing games and augmented or virtual reality for educa-
tion and entertainment [9], [14]. Current interaction scenarios
mostly use gestures as control commands [9], [15]. Although
satisfactory performance has been reported to demonstrate
the effectiveness of the MPR technology in laboratory con-
ditions, its applications may not always be successful in
practice [4], [12].

Consumer electronics applications always require high flex-
ibility of the interactive system that maintains the gesture
recognition performance across diverse application scenarios
involving using different command sets and switching to
different users. In a routine implementation of the MPR
technology, a classifier is trained on a fixed command set for
a specific user. Similarly, a myoelectric classifier is usually
built with a specific user’s data due to the great cross-user
variabilities of the sEMG signals, leading to its application
in a user-dependent manner [12]. Therefore, a conventional
myoelectric classifier is applicable for a certain scenario
depending on a predefined gestural command set and a specific
user. When this myoelectric control system is used in another
scenario, it suffers from degraded performance or is utterly
incompetent because it lacks effective learning and adaptation
to new scenarios. The original classifier needs to be re-trained;
otherwise it leads to compromised performance. The burden
of re-training is a discouraging and frustrating process for
the user [16], [17], [18]. Under this situation, the classifier
must be re-trained or calibrated with much well-labeled data
from the new scenario, imposing a great burden on the user.
Therefore, there is a great demand for flexible myoelectric
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control interfaces that can be used across diverse application
scenarios.

Many studies have been conducted to make the myoelectric
control system adaptive to different scenarios. The essence of
the cross-scenario myoelectric pattern recognition problem is
the different distribution of samples between different scenar-
ios, similar to the domain shift problem in computer vision,
and transfer learning is a typical solution. Transfer learning
aims to improve the performance of a model on a target
domain by transferring knowledge contained in a different
but related source domain [19], [20], [21], [22]. Two types
of transfer learning have been applied to MPR. One type is
supervised transfer learning based on deep neural networks.
Ameri et al. [23] and Hu et al. [24] introduced this type
to allow the myoelectric classifier to be calibrated towards
adaption to electrode shift. Further, Chen et al. [25] proposed
different transfer learning models with fine-tuned parameters
on a few repetitions to improve the recognition accuracy of
new users and new categories. However, these studies failed
to eliminate the requirement of large, labeled data in the target
domain, still imposing potentially overwhelming re-training
burdens on users. The other type is unsupervised transfer
learning, where both domain adaption (DA) [26] and domain
generalization (DG) [22] have become popular approaches.
The difference between DA and DG is that DA has access
to the unlabeled target domain data, while DG cannot see
them during training. Cote-Allard et al. [10], [14] proposed
unsupervised adaptive models, which use DA approaches
to maximize the performance of a given new user using
existing training source domain(s) to overcome the distribu-
tion difference problem across users [14]. Wu et al. [27]
used data augmentation, a DG approach, to improve model
generalization capability through data augmentation. Although
these unsupervised approaches do not impose an additional
re-training burden at all, their performance is not satisfactory
under conditions with large cross-domain differences due to
limited knowledge of the new domain.

To ensure the flexibility of myoelectric interfaces, it is not
compulsory to eliminate the requirement for re-training or
calibration in new scenarios. If the data required from the
user are minimal, for example, just one execution per each
gestural pattern, such a fast and simple re-training procedure
is acceptable for the user under a new scenario. Especially
involving new categories, as far as we know, it is difficult
to implement category substitution in the command set com-
pletely without any re-training burden [28], [29], [30], [31].
As an alternative transfer learning strategy, one-shot learning
is applicable to meet such a requirement. Many previous
studies have reported its successful applications in image
processing in particular. A facial image recognition system
proposed by Chanda et al. [32] based on a one-shot learning
approach allowed a new user to be added using only one
photo without a complex re-training procedure. Moreover,
Koch et al. [33] conducted a one-shot learning approach using
Siamese neural networks (SNNs) for image classification to
enable the correct identification of images in categories that
were not involved in the training dataset at the least cost of
re-training. In these studies, using one-shot learning enabled

Fig. 1. Illustration of gestural interfaces applied to three different
scenarios with different sets of gestural commands.

the fast calibration of the classifier to be suitable for new users
and categories, drawing an analogy for developing flexible
myoelectric interfaces across multiple scenarios.

Inspired by the advance of one-shot learning, a new method
for MPR is proposed in this study to enhance the flexibility
of myoelectric interfaces applicable to various application
scenarios, including switching to a new user and/or using a
different command set. This method relies on the SNN, which
can generate a similarity evaluation metric by learning how
different any gestural category is from another rather than
what each category is. Pioneering studies [31] on using this
similarity metric were introduced in the computer vision field
for image classification. This network is employed due to its
contribution that the features learned in the source domain can
be generalized to the target domain, even if the target domain’s
command set is changed in gestural categories or their number.
Implementing the proposed method can substantially reduce
the re-training burden when cross-domain manipulations are
required. Our work helps improve the myoelectric control
systems’ application flexibility and enhance their robustness
against variabilities in both the command category set and the
user.

II. METHODS

A. Subjects
Seven healthy and non-disabled subjects (aged 24–35 years;

five males and two females, all right-handed) were recruited
for this study. The study was approved by both the Clinical
Medicine Research Ethics Committee of the First Affili-
ated Hospital of Anhui Medical University (AHMU, Hefei,
Anhui 230022, China) and the Ethics Review Board of the
University of Science and Technology of China (USTC, Hefei,
Anhui 230026, China). Informed and written consent was
obtained from all subjects before they participated in any
experiment procedure.
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Fig. 2. Placement of the 2-dimensional electrode array in a form of 6×8
on the forearm muscles for recording HD-sEMG data.

B. Experiments
The subjects sat in a height-adjustable chair with their arms

on a table during the experiment. Meanwhile, pads with 70%
isopropyl alcohol were applied to clean the skin surface of
the subjects’ tested forearms. A high-density electrode array
was placed to mainly cover the posterior side of the tested
forearm for recording HD-sEMG data from major forearm
extensors. It was designed with 48 electrode probes arranged in
a 6 × 8 grid (Fig. 2). The diameter of each electrode probe was
3 mm, and the distance between two neighboring electrodes
was 14 mm. In addition, two common reference electrodes
were attached to the olecranon of both arms, respectively.
Thus, each electrode in the array formulated one recording
channel concerning the reference. The HD-sEMG signals were
recorded by a custom-made data recording system. The raw
signals were amplified with a total gain of 60 dB, band-pass
filtered at 20–450 Hz, and digitalized via a 16-bit analog-
digital converter at a sampling rate of 1 kHz. The recorded
data were transferred to a computer via a USB cable, and
software with a graphical user interface (GUI) was developed
to monitor and process all the recorded EMG data on the
computer screen in real time.

1) Data Collection: All subjects were asked to perform ten
gestural categories (labeled as G1-G10) involving the exten-
sion of different fingers or finger combinations (as the main
functions of the finger extensors) (Fig. 3). The subjects were
instructed to perform four repetitions of each gestural category
at a stable and comfortably medium force level, generally
corresponding to 30–40% maximal voluntary contraction of
the muscles. After completing each repetition, the hands and
fingers slowly returned to a neutral position and remained
relaxed, with all fingers naturally bent. A video clip was
prepared and played as a guideline to instruct the subjects
on implementing these gestures and their timings. Following
the video guidance, the subjects were asked to hold each
repetition of the gesture for 5 s with a relaxation period
of 4 s between two consecutive repetitions. Some of these
gestures could be selected to form different gestural com-
mand sets suitable for various application scenarios (Fig. 1).

Fig. 3. Illustration of fifteen gestural categories. There are two ges-
tural category sets, namely Command Set 1 including 10 categories
(G1 - G10) and Command Set 2 containing 5 categories (G11 - G15),
respectively.

In this study, we intentionally selected ten categories (e.g., G3,
G6-G12, G14, G15 in Fig. 3) to form a set for simple numeric
input. In addition, another combination of five categories
(e.g., G11 - G15 in Fig. 3) was formed as the command set
for manipulating an industrial robot in different degrees of
freedom. Both sets of gestural commands (Fig. 3) were defined
in this study to test the rapid customization and deployment
of the classifier under the condition of changing the gestural
command set by adding or alternating new categories.

2) Online Testing With New Command Set: In addition to
the above collection, our system supports real-time data pro-
cessing and testing. The collected data were segmented into
a series of data windows with a length of 128 ms and an
overlap of 50% (i.e., window increment of 64 ms). These
windows were the basic samples for the subsequent MPR,
and the specific data processing algorithm was detailed in the
following subsection. For each user, the previously acquired
data were used as source domain data to pre-train a similarity
model (rather than a final classification model). On this
basis, a cross-scenario online test was designed: the user was
assumed to select a new Command Set 2, as shown in Fig. 3,
to be used in a new scenario, including five new categories
(i.e., G11-G15). During the calibration stage, subjects followed
the on-screen cues and performed each gesture only once, for
about a 1-s execution period. A randomly selected sample from
the middle segment was used to form the support set. Then, the
system combines the previously trained model and completes
the construction of the new classifier almost instantaneously.
In the testing phase, the system randomly generated a series of
gestural tasks for manipulation, displayed in a GUI (Fig. 4),
and asked the subjects to follow the on-screen cues to execute
each task in turn for 1 s. When a gestural task appeared,
each task was displayed for 3 s, followed by another 3-s rest
between two executions. During the whole testing phase, each
gesture category was tested at least 20 times, regardless of
the order of appearance, and the data of up to 20 s for each
category was collected (not counting the baseline during the no
action period) approximately equal to the total amount of data
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Fig. 4. The user interface of the software used for the online testing
experiment. There is a demonstration photo on the left panel to show the
gestural task required to be performed by the user. The system decision
is reported on the right panel, along with the currently used command
set.

for each gesture in the training data (approximately 300 win-
dows could be collected). The testing data was processed
in real-time in the system to make instant decisions about
gesture recognition and to calculate the recognition accuracy
concerning the cues (i.e., the ground truth) displayed to the
user. The recognition accuracy was defined as the number of
correctly recognized windows divided by the total number of
windows to be recognized, where the windows corresponding
to the baseline were not considered.

All the data of the testing process were also saved and
pooled into the same database with the training data so that
the data stored from each subject included 15 gestures with up
to 20 s of data per gesture for subsequent retrospective offline
data analyses, including testing other algorithms, changing the
split of training, testing data, and performing cross-validation.

C. Data Processing for MPR Using One-Shot Learning
Fig. 5 shows the flowchart of the proposed method for

fast calibrating an MPR control system suitable for a new
scenario by taking advantage of the similarity prediction
capability learned from many sample pairs using one-shot
learning. Under a given application scenario with any user
and any gestural command set, just one sample of each
gestural category is required from the user to form a
support set. The classifier suitable for this new scenario
can be established consequently with the cue of the sup-
port set to maintain the high performance of the MPR
control.

1) Data Segmentation and Feature Extraction: As described
in the experiment, the data were segmented into windows
according to time. Then, the part of the windows that
belonged to the muscle activation was selected from them. The
RMS amplitude thresholding method proposed by Pasinetti
et al. [34] was employed for determining muscle activation
windows. It was based on detecting both onset and offset
timings of every repetition of muscle activation, where the
baseline data were discarded accordingly. Thus, each ges-
tural category, including multiple repetitions over about 20s
in total, could produce about 300 windows. Then, for the
windows from muscle activities during gestural performances
(G1-G15), four time-domain (TD) features, originally

proposed by Hudgins et al. [35], (namely mean absolute
value (MAV), number of zero-crossings (ZC), number of
slope sign change (SSC), and waveform length (WL)) were
extracted from each channel of the HD-sEMG data. Therefore,
a feature matrix of 6 × 8 × 4 was formed for each analysis
window consisting of 48 channels, where the 2-D electrode
array intentionally retained the size of 6 × 8 to maintain
its spatial information. We could also regard each feature
matrix as a featured image where a sEMG channel represented
each pixel in a resolution of 6 × 8 in the array with the
same size. Further, our feature image has four color channels
represented by four TD features. Each featured image derived
from an individual window was considered a basic sample in
the pattern recognition analysis in this study.

In addition, a data augmentation approach was applied
to all samples of the training dataset described in the fol-
lowing pattern recognition approach as reported in previous
studies [27], [36]. A shift operation is performed on each
feature image using moving the original image by one pixel
in both vertical and horizontal directions while the image size
is maintained. Such a transformation resulted in cropping out
13 pixels in the original images while specifying new regions
to be filled with the new pixels. These new regions were
filled by duplicating the pixels from the edge near the original
image. Consequently, the amount of training data samples
was doubled compared to its original sample size. However,
conducting this data augmentation approach on any sample
was unnecessary for calibration or testing.

2) Siamese Neural Network for Pattern Similarity Metric:
Before conducting the pattern classification, we had to build
the SNN first. Unlike general neural networks capable of
predicting specific patterns of individual samples, the SNN
is often used to evaluate whether two samples are similar
due to their unique structure [37]. As shown in Fig. 6, there
are a pair of sub-networks at the front end, each consisting
of three blocks in the same structure and essentially sharing
the same weights. Each sub-network can be considered a
copy of the other. Two sEMG image samples are required
to be fed into both subnetworks simultaneously to obtain their
respective feature maps flattened as one-dimensional feature
vectors by Block 3. Both resultant feature vectors are then
passed through a metric function module consisting of a
Euclidean distance function and a sigmoid function to decide
whether both samples are the same. In the training stage,
the network requires input samples in pairs, either from the
same or completely different patterns, given a label of 1 or 0,
respectively. Subsequently, through training, the network can
measure the similarity of any given pair of samples.

As convolutional neural networks (CNNs) have achieved
good results for recognizing HD-sEMG images [38], [39],
[40], we chose CNNs to build the first two blocks of both
sub-networks for feature learning on EMG images. Fig. 7
further shows the architecture of one subnetwork consisting of
three blocks. Block 1 has a convolutional layer with a kernel
size of 3 × 3 and 128 filters, followed by a RELU activation
function, a batch normalization layer, and a maximum pooling
layer with a filter size of 2 × 2. Block 2 has a convolutional
layer with a kernel size of 2 × 2 and 128 filters, followed by
a RELU activation function and a batch normalization layer.
Block 3 consists of a Flatten layer and a fully connected layer
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Fig. 5. Flowchart of the proposed method.

Fig. 6. The architecture of the Siamese neural network involved in the
proposed method.

Fig. 7. Subnetwork configuration embedded in Siamese neural net-
works. Herein, the Conv2D refers to the convolution layer and the two
followed notations represent the number and size of the kernel.

with 4096 filters. In the fully connected layer, all weights
were initialized from a normal distribution with mean zero and
standard deviation of 10−2, and the bias of the fully connected
layer was initialized with 0.5 mean and standard deviation
of 10−2. In addition, the L2 regularization layer [41] was used
after each block to prevent overfitting, with a regularization
parameter of 2 × 10−3.

The ADAM optimizer [42] was applied to train the network
with the learning rate set to 0.01. Also, the binary cross-
entropy loss was selected as the loss function to optimize
the network parameters. The loss function was calculated

as follows:

L = y(x (i)
1 , x (i)

2 ) log P(x (i)
1 , x (i)

2 )

+ (1 − y(x (i)
1 , x (i)

2 )) log(1 − P(x (i)
1 , x (i)

2 )) (1)

where y(x (i)
1 , x (i)

2 ) = 0 for the i-th pair of samples in different
patterns and y(x (i)

1 , x (i)
2 ) = 1 for the i-th pair of samples

belonging to the same pattern; P(x (i)
1 , x (i)

2 ) represents the
predicted probability distribution. As shown in Fig. 8 (a), the
training process represents one iteration per image pair entered
into the network, with 200 iterations performed per batch for
100 batches. This means that 20,000 iterations are performed
for each training process.

3) One-Shot Learning Based on the Siamese Neural
Network: The above SNN can determine whether paired input
samples are the same. On this basis, a classifier for recog-
nizing multiple patterns can be constructed by a support set
containing at least one representative sample from each of
all designated gestural categories/patterns. Therefore, such a
support set is needed when switching to a new application
scenario. The gestural categories can be different from the
original categories used for training the SNN, with selection,
substitution, and supplementation of certain categories by
some new categories. The availability of the support set allows
us to build and calibrate a classification model suitable for
the new application scenario following the one-shot learning
approach.

When the SNN and a support set were determined, the
corresponding classifier was also constructed. In the testing
phase, as shown in Fig. 8 (b), when an unknown sample
(also termed a query category) was input, it was paired with
each sample in the support set, and a similarity score of
each pair was calculated through the well-trained SNN. The
decision was made as the category whose sample pair achieved
the greatest similarity score. Referring to the suggestion of
Pinheiro and Collobert [43], it can be expressed as:

Ĉ = arg maxc{scorec} (2)

It is worth noting that if the support set was formed by
selecting categories directly from the original training data,
a classifier supporting classification of the original gestural
categories was constructed, which is in line with the basic
supervised classification process, without considering any
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Fig. 8. Illustration of the dataset with well-labeled sample pairs used for
training the Siamese neural network (a) and the testing approach with a
classifier established under the guidance of a support set. (b).

change of the gestural category set in the new application
scenario.

Further, in practice, we may not exclude the possibility of
obtaining more than one sample per category from the user
during the calibration phase for building the support set. One
repetition of a gestural motion usually lasts about 1 s, gen-
erating several analysis windows according to the windowing
strategy mentioned above. This is equivalent to obtaining a
number m of samples per category to build the support set,
i.e., to perform an m-shot learning approach. In this case, the
similarity scores can be calculated for these m samples of
each category separately with the query category, and their
averaged value is used as the eventual similarity score for
decision making: Any category corresponding to the maximum
eventual similarity score was the decision from the classifier.

The proposed method was implemented using the Python
language, the Keras framework [44], and the PyQt4
Library. The software ran on a laptop with an Intel Core
i5-1035G1 CPU, 16 GB RAM, and NVIDIA MX350 GPU.

D. Performance Evaluation
To evaluate the performance better, we designed seven

testing scenarios as shown in Fig. 9, including the scenario
described in Online Testing with New Command Set.

1) The first scenario described a very common MPR testing
procedure, termed a “routine” scenario, where both the set
of gestural categories and the user for testing remained the
same as those in the training dataset. Namely, the Command
Set 1 (see Fig. 3) was just considered for testing and training,
and the classification approach was implemented in a user-
specific manner. As required by the proposed one-shot learning
approach, one sample from every gestural category in the
training dataset was randomly selected to form the support set
that guided the deployment of the classifier. In this scenario,

Fig. 9. Schematic plot of the way of testing under five different
scenarios. In every scenario, there are three datasets: training dataset,
support set, and testing dataset, marked in A, B, and C, respectively. The
dataset in a blue bar represents data of gestural categories in Command
Set 1, while red bar stands for data from Command Set 2. Data bars in
different lines indicate different users.

a five-fold cross-validation strategy was used, where data cor-
responding to one of five repetitions of the muscle contraction
for each category was used for testing, and meanwhile, data
of the remaining four repetitions were used for training.

2) The second testing scenario, as described in the online
testing with a new command set, was used to test the effective-
ness of the proposed method for implementing 1-shot learning
in the case of a new command set. It is named “cross-set,
1-shot”.

3) The third test scenario was similar to the previous
scenario. When forming the support set, five samples per
category were randomly selected, leading to a “cross-set,
5-shot” scenario.

4) In the fourth testing scenario, the user for testing in the
scenario was different from any of those providing data to
train the SNN, forming a “cross-user, 1-shot” testing scenario.
Besides, the set of gestures used for classification was still
Command Set 1 and remained consistent. A 7-fold cross-
validation scheme was conducted, where data from six subjects
were used for training and the data from the remaining subject
were tested.

5) The fifth scenario was similar to the fourth scenario.
It was consistent with the fourth scenario, except that five
samples per category were used to form the support set. It was
termed a “cross-user, 5-shot” testing scenario.

6) The sixth scenario is an additional consideration of cross-
gesture sets based on the fourth scenario, i.e., the data from
five categories in Command Set 2 were used for testing,
whereas the data of other categories not in Command Set 2
were used for training and the user for testing in the scenario



WANG et al.: SIMILARITY FUNCTION FOR ONE-SHOT LEARNING TO ENHANCE THE FLEXIBILITY OF MYOELECTRIC INTERFACES 1703

was different from any of those providing data to train the
SNN, forming a “cross-user, cross-set, 1-shot” testing scenario.
Given the cross-user setting, the same 7-fold cross-validation
scheme was also conducted, where the testing dataset was
formed intentionally from Command Set 2.

7) We intentionally conducted a 5-shot approach to replace
the 1-shot design in the sixth scenario. It was termed a “cross-
user, cross-set, 5-shot” testing scenario.

For performance comparison, other common MPR meth-
ods were also implemented. The conventional MPR method
selected KNN as the classifier [45] due to its simple and
effective performance. Unlike many traditional methods, with
only one sample per category, a KNN classifier can also be
trained to work for classification, and the metric idea of the
proposed method is similar to that of KNN. [46], [47]. For spe-
cial testing scenarios, the support set’s data were involved in
the training phase for the KNN method. Within state-of-the-art
methods relying on transfer learning, the FS-HGR method [30]
was adopted because of its successful cross-user/domain appli-
cations. In particular, in the above two classification meth-
ods, feature extraction and data augmentation methods are
consistent with the proposed method. Furthermore, to verify
the role of data augmentation, we also implemented both
the FS-HGR method and the proposed method without the
data augmentation, thus generating two methods termed FWA
and PWA (the proposed method without data augmentation),
respectively. Other settings of all comparison methods were
consistent with those of the proposed method or fine-tuned
with optimal performance.

Furthermore, a one-way ANOVA for all five methods was
performed for the first scenario. To verify the performance
of the proposed method when applied cross-scenarios, a one-
way repeated-measures ANOVA was performed on the average
accuracy of the remaining six scenarios in the five methods,
with both the method (five levels: KNN, FWA, PWA, FS-HGR,
Proposed Method) and the scenario (six levels) considered as
within-subject factors. The LSD method was employed for
post hoc multiple comparisons tests. The significant level was
set to 0.05. These statistical analyses were performed using
SPSS software (ver. 24.0, SPSS Inc. Chicago, IL, USA).

III. RESULTS

From the actual decisions of five examples shown in Fig. 10,
it can be found that each query sample had a similarity score
when it is compared with every element of the support set
representing each category. The highest similarity score close
to 1 can be observed in the query sample’s category. Deciding
by selecting the category achieving the highest similarity score
is straightforward. In particular, in the classification process
of the query sample at the bottom, both categories give high
similarity. This is because both categories have almost visually
similar patterns. The classifier struggles to choose the highest
similar score as the decision, which is truly correct.

Fig. 11 reports the classification accuracies averaged overall
subjects using five different methods under seven testing
scenarios. When a routine MPR was conducted (under the
routine scenario), it was unsurprisingly found that all methods
achieved very high accuracies, close to 100%. When the
MPR system was applied across scenarios, however, almost

Fig. 10. Five representative examples of the one-shot learning classi-
fication. One query sample actually belonging to each of five gestural
categories was selected. Each query sample has one for each pattern
chosen randomly as an example. The number in the square brackets
are the similarity scores, and the command pattern made the decision
is in the red box.

all methods had a somewhat compromised performance. The
conventional KNN method had its accuracy dramatically drop
to 49.90% ± 7.94%. The FS-HGR method yielded an average
accuracy of 71.54% ± 8.84%. By contrast, the proposed
method had the smallest accuracy decrease among all meth-
ods and maintained a relatively high level of accuracy at
89.73% ± 1.99%. In addition, without data augmentation,
the FWA method and the PWA method showed a slight
performance drop, as compared with the FS-HGR method and
the proposed method, respectively. The ANOVA revealed no
difference between any two methods under the routine scenario
(p = 0.811) but a significant difference between these meth-
ods under other scenarios involving cross-set and cross-user
testing (p < 0.001). Specifically, the proposed method signifi-
cantly outperformed other methods with statistical significance
(p < 0.05 for comparing with the PWA method and
p < 0.001 for comparing with other methods, respectively).

The confusion matrix in Fig. 12 reports representative
results of the FS-HGR (top) and proposed methods (bottom)
for one-shot classification of the five new patterns in cross-
user and/or cross-set scenarios, respectively. In either case,
FS-HGR caused many misclassifications, and these errors were
concentrated in both categories G14 and G15. By contrast, the
proposed method achieved the most accurate classification of
the sample of five new gestures, with only a few sporadic
errors present.

Table I reports the computational time costs using the
KNN method, the FS-HGR method and the proposed method
in a representative cross-scenario application (i.e., cross-set,
1-shot). Before a scenario transfer, a KNN classifier does
not need pre-trained, while both FS-HGR and the proposed
method need to pre-train a model with a great number of
well-labeled training samples, which consumes 28 min and
10 min respectively. However, when switching to a new
scenario only the KNN needs to be re-trained/calibrated, the
time consumed by the model is 0.057 ms when the data
used to calibrate the model has one sample per category.
The testing time was expressed as the time consumed by the



1704 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 11. The mean classification accuracies averaged over all subjects using 5 different methods under when the myoelectric interface was tested
on 7 different scenarios, respectively. The condition termed “average” on the right side reports the averaged performance across all scenarios
except the routine scenario. Error bars represent standard deviations.

TABLE I
COMPUTATIONAL TIME COST FOR THE TRAINING

AND TESTING USING THREE METHODS

model to produce a decision of each sample, where the KNN
method achieved the least time consumption of 0.057 ms and
the FS-HGR method had the longest one of 0.351 ms. The
proposed method required 0.303 ms per testing sample.

IV. DISCUSSION

As it evolved into interactive technology, the MPR needs
to easily adapt to multiple application scenarios for rapid
customization and deployment [48], [49]. This usually requires
a large amount of data for re-training or calibration under a
new scenario, causing an extra burden that impacts the user’s
experience [16], [23], [25]. It is the proposed method that
maintains the high performance of the MPR while reducing
the re-training burden dramatically using one-shot learning to
enhance the flexibility of myoelectric interfaces. The proposed
method abandons the traditional classification approach by
memorizing each category’s pattern, but it specifically mea-
sures similarity between diverse sample pairs. Such learned
capability can be well generalized to fast customization of a
classifier suitable for any given classification task using the
one-shot learning, with the aid of a support set containing just
one shot per category. This property allows the classifier built
by the proposed method to be fast adapted to various new
scenarios.

When no cross-scenario application is involved, as expected,
all methods yielded a very high accuracy, close to 100%, and
they did not show any significant difference (p = 0.695),
regardless of whether they were based on the one-shot learning
or not. This finding is consistent with most of the previous
studies reporting satisfactory performance of MPR under
ideal laboratory conditions [10], [24], [27], [30]. When the
application scenarios became realistic, i.e., involving new
users to instantly manipulate the system with new gestural
categories, the classical KNN method encountered a significant
performance compromise. This unsurprising finding can be

attributed to the limited generalization of the routine classifier
to new users and gestural categories. When one-shot or transfer
learning was conducted, including both the FS-HGR method
and the proposed method, their performances were not much
compromised under the cross-set or cross-user scenarios. Our
finding was consistent with previous reports [30], [45] on the
application of transfer learning, further confirming the fact
that more or less labeled samples from the target domain
(new set or new user) help to lead to good adaption and
generalization of the classifier.

When testing across different scenarios, the significantly
superior performance of the proposed method demonstrates its
good generalization and high flexibility in diverse scenarios.
Such an advanced property is believed to gain from its capa-
bility of assessing similarities or differences between several
categories rather than classifying some categories within a
predefined and limited range. This mechanism also ensures
that good generalization capability can be obtained only with
one shot. Our findings (i.e., Fig. 11 and 12) confirmed the
significant performance advantage of the proposed method
under a one-shot condition compared to the FS-HGR method.
The FS-HGR method still had degraded performance under
the one-shot condition compared to the 5-shot condition, while
the proposed method achieved comparably high performance.
Usually, the classifier constructed under the guidance of
conventional transfer learning methods is likely to result in
an obvious compromise when testing across scenarios once
data for calibration is not sufficiently large [1], [4]. These
shortcomings can be well compensated with the advance
of the proposed method enabling one-shot transfer learning,
as demonstrated by the experimental results.

It is worth noting that the user’s re-training burden in
the current study mainly consists of the re-collection of the
EMG data from the target domain and the computational
time consumed by the model re-training or calibration. For
both FS-HGR and the proposed method, not only the time
to re-collection EMG data is significantly reduced, but also
the computational time for model re-training is completely
eliminated. Although the KNN method achieved satisfactory
recognition accuracy in the “routine” testing scenario as well,
300 samples per class were used to ensure stable performance
of the KNN model [46], [50]. However, the time to generate
300 windows for one category would be more than 5 min
(given the window increment of 64 ms). In the proposed
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Fig. 12. Confusion matrixes illustrating results of five task patterns (G11-G15) using the FS-HGR method (a) and the proposed method (b), when
testing in 1) cross-set, 2) cross-user and 3) both cross-set and cross-user scenario, respectively. The 1-shot condition is consistently applied.

method, by contrast, just 1 shot per category is required
to guarantee the model’s generalization ability in the target
domain, indicating a minimal cost of time for retraining. Under
the same 1-shot condition, the FS-HGR method failed to
achieve satisfactory performance and had significant accuracy
compromise as compared to that under the 5-shot condition
(Fig. 11). Moreover, although the model pre-training time is
indeed long for the proposed method, such process can be
computed in advance from a large amount of offline data and
the end-user does not feel the presence of this process. That is,
as long as the data re-collection and re-training time is short
enough, a good end-user experience can be warranted.

In addition, both the FS-HGR and the proposed method
applied a data augmentation approach to improve the diversity
of the training dataset, which allowed the network to gain
advanced capability of characterizing spatial patterns. Both
methods’ superior performance confirmed their necessity com-
pared to their non-augmentation versions, i.e., FWA and PWA,
respectively. This finding is consistent with previous studies
described by Wu et al. [27]. This also falls within the common
sense of deep learning that enlarged training data help to learn
improved model capability and generalization.

Ideally, the commercialized product of myoelectric con-
trol is expected to be a plug-and-play system applicable in
any scenario without any re-training or calibration burden.
In this regard, our solution using one-shot learning helps
to enhance the flexibility of myoelectric interfaces and dra-
matically reduces the re-training burden to a minimal level.
However, it still does not meet the ideal condition where the
calibration of the classifier worked in a completely unsuper-
vised manner. This remains to be the major limitation of this
study. Furthermore, it is much more interesting to combine

more prior knowledge of skeletal and physiological anatomy
to enhance the learned capability of identifying new gestural
categories. These abovementioned topics will be important
directions for our future efforts.

V. CONCLUSION

This study presents an MPR method to improve its flex-
ibility in actual applications across different scenarios. The
method trains a similarity evaluation model in SNN from a
large amount of data paired into image pairs and applies it to
new users/new patterns, with the support of one shot per new
command set to complete the gestural pattern classification.
In applications with switch to different scenarios, includ-
ing cross-set and cross-user changes, the proposed method
achieves up to 90% accuracy, significantly surpassing conven-
tional MPR and common transfer learning methods. It is an
effective solution to the high cross-scenario re-training burden
in implementing MPR systems.
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