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Less Is More: Brain Functional Connectivity
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Classification With Task-Relevant
Channel Selection
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Abstract— Electroencephalography (EEG) signals are
gaining popularity in Brain-Computer Interface (BCI)-based
rehabilitation and neural engineering applications thanks
to their portability and availability. Inevitably, the sensory
electrodes on the entire scalp would collect signals irrel-
evant to the particular BCI task, increasing the risks of
overfitting in machine learning-based predictions. While
this issue is being addressed by scaling up the EEG
datasets and handcrafting the complex predictive models,
this also leads to increased computation costs. Moreover,
the model trained for one set of subjects cannot easily
be adapted to other sets due to inter-subject variability,
which creates even higher over-fitting risks. Meanwhile,
despite previous studies using either convolutional neu-
ral networks (CNNs) or graph neural networks (GNNs)
to determine spatial correlations between brain regions,
they fail to capture brain functional connectivity beyond
physical proximity. To this end, we propose 1) remov-
ing task-irrelevant noises instead of merely complicating
models; 2) extracting subject-invariant discriminative EEG
encodings, by taking functional connectivity into account.
Specifically, we construct a task-adaptive graph represen-
tation of the brain network based on topological func-
tional connectivity rather than distance-based connections.
Further, non-contributory EEG channels are excluded by
selecting only functional regions relevant to the corre-
sponding intention. We empirically show that the proposed
approach outperforms the state-of-the-art, with around 1%
and 11% improvements over CNN-based and GNN-based
models, on performing motor imagery predictions. Also,
the task-adaptive channel selection demonstrates similar
predictive performance with only 20% of raw EEG data,
suggesting a possible shift in direction for future works
other than simply scaling up the model.
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I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG)-based brain-
computer interaction (BCI) systems have enabled a

variety of neurological tasks, such as motion intention recog-
nition [1], emotion analysis [2] and brain disease detection [3].
The EEG-based BCI uses non-invasive scalp electrodes to
record and further analyze electrical fluctuations that occur as a
result of brain activity. A task that is of interest to this study is
recognising Motor Imagery (MI), a cognitive process in which
subjects imagine moving different parts of their bodies. There
have been years of research into algorithms for detecting a
particular MI, as well as implications for individuals with dis-
abilities in a range of applications, including brain typing [4],
mind-controlled wheelchairs [5] and prosthetic arm [6].

A. NN-Based MI Recognition
Recent MI recognition research takes advantage of deep

neural networks (NN) to extract discriminative representa-
tions from enormous amounts of data without the need for
carefully-designed features. For instance, convolutional neural
networks (CNNs) are widely adopted to extract spatial cor-
relations between different sensory channels, whilst recurrent
neural networks (RNNs) are promising for capturing temporal
dependencies from raw EEG signals. A single CNN architec-
ture consisting of two convolution blocks, dubbed EEGNet,
was proposed by [7] for EEG classification across different
paradigms. Zhang et al. [4] design a hybrid model using CNN
and RNN to extract spatial and temporal features from EEG
signals, paired with an Auto-encoder to eliminate artifacts.
Zhang et al. [8] additionally transform raw EEG signals into
a matrix-like form to explore correlations between physically
adjacent sensory channels.

B. Subject-Independent MI Recognition
While achieving success in subject-dependent settings, they

still suffer from subject-independent evaluation, in which
training and test data are collected from different subjects.
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In fact, EEG signals may manifest different patterns even when
subjects are performing the same cognitive task. It is necessary
either to adapt to new subjects or to model subject-invariant
features to address this issue. Fahimi et al. [9] combine gen-
eral mental states with new subject’s data for personalized
modeling. Chen et al. [10] reduce the discrepancy between
two subjects with adversarial training. In [11], the mean
covariance matrix of each user is transformed into an identity
matrix for the alignment of their EEG trials. However, each
new subject must be adapted once, and negative transfer may
also occur in view of noisy EEG signals [12]. Alternatively,
another line of work seeks to identify patterns that are uni-
versal across many subjects. For instance, Zhang et al. [13]
incorporate self-attention [14] into a convolutional-recurrent
model to explore concentrated temporal periods.

C. Topological Pattern of Brain Activity
Despite being dominant in learning spatial representations,

CNNs are structured on dense and regular “grid”-like inputs,
which limits their ability to identify non-Euclidean relation-
ships. It is, however, true that EEG channels are non-Euclidean
by nature, as are brain regions. Additionally, even with the
same acquisition device, signals do not necessarily origi-
nate from the same location due to the variance between
subjects. Zhang et al. [15], [16] represent EEG nodes as a
graph to learn a topological-based positioning relationship,
which appears to be less subject-dependent than conventional
representations. It brings to light recent interest in using
graph neural networks (GNNs) as an alternative to CNNs in
obtaining non-Euclidean representations from raw EEG input
signals [17]. There are concerns raised by existing graph-based
EEG representations despite the topological features showing
robustness to inter-subject variability.

1) Channel Redundancy: standard EEG acquisition devices
measure brain activity from the entire scalp. A particular
cognitive task will, however, not require the activation of
all brain regions [18], and different tasks may even activate
different regions [19]. It follows that redundancy would be
included if all channels are used indiscriminately.

2) Edge Formation: confusion still exists regarding how
inter-regional brain connections should be represented as
graph edges. The graph representation of certain non-euclidean
structures, such as brain networks, is shown to be more
effective than using CNNs [17]. Still, the extensively studied
distance-based edge formation [15], [16] does not account
for dynamic functional connectivity between different MI
intentions.

3) Graph Noise: EEG recordings are bound to contain noise
from both external and internal factors, implying raw EEG
signals are likely to result in poor model generalization and
over-fitting risks given GNNs’ sensitivity to the quality of
the input graph [20]. This makes it even more challenging
to identify task-relevant patterns while invariant to subjects,
as EEG datasets are practically impossible to scale up as much
as other domains.

Targeting each of these concerns, our study presents
a Subject-Independent MI classification model using brain

Functional Connectivity (SIFT-EEG). For redundant channel,
functional connectivity statistically contributes to identifying
the brain regions involved when performing a particular cogni-
tive task. For edge definition, graph adjacency is dynamically
determined by functional connectivity, which filters out weak
associations and identifies task-relevant active brain regions
based on their importance in the functional connectivity
graph. This is followed by performing self-attentive temporal
convolution to extract discriminative task-adaptive temporal
embeddings that mitigate graph noise contained in raw EEG
signals. Finally, we derive robust topological embeddings
from the task-adaptive temporal graphs of different subjects
using a Graph Isomorphic Network (GIN) that reliably detects
equivalent graphs [21].

D. Contributions
• We propose a subject-independent MI prediction model

built upon functional topological adjacency, which further
takes into account self-attentive temporal convolution
and graph isomorphism, thus capturing task-adaptive but
subject-invariant EEG embeddings.

• We present a data-driven channel selection algorithm
based on active brain regions, which can exclude
non-contributory channels and reduce the impact of task-
irrelevant noises.

• We evaluate SIFT-EEG on a large-scale EEG-based
MI dataset, demonstrating its effectiveness for subject-
independent classification, with competitive performances
against state-of-the-art even using 20% of raw data.

II. PRELIMINARIES

A. Graph Representation for EEG Signals
A graph G = ⟨V, E, W ⟩ is an abstract structure in

non-euclidean space, composed of nodes V , edges E , and
weights W . Thus, the brain network topology can be rep-
resented by graphs. The nodes {vi }i=1:n ∈ V refer to EEG
scalp electrodes located on specific brain regions, with a
total electrode count of n. Each edge ei j ∈ E represents
the inter-regional relation between electrode pairs (vi , v j ).
Accordingly, the pairwise edge weight wi j ∈ W indicates the
strength of each relation.

Graph adjacency A takes the form of a 2D matrix RN×N ,
where N denotes the number of nodes. One can be either a
weighted or an unweighted graph. For unweighted adjacency,
Ai j = 1 represents a pair of connected nodes while Ai j = 0
means there is no connection between them. A weighted
adjacency has an additional attribute to the strength of rela-
tionship by setting Ai j = wi j . Degree d(vi ) measures a node’s
centrality by the number of edges connecting to it, indicating
the node importance within the graph, calculated by adding
up the i-th row of A.

Edge definitions for EEG-based graph representations are
yet to be provided. The literature mostly uses either complete
graph [17], i.e., each pair of nodes are connected, or distance-
based connections [15], [16], that is, two nodes connected if
their physical distance between electrodes is lower than a pre-
defined threshold.
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Fig. 1. Overview of the Subject-Independent MI classification model using brain Functional Connectivity (SIFT-EEG) model. We first crop raw
EEG signal into a sequence of time slices using the slide window technique; adopt CNN to extract temporal features and a self-attentive module
to search for the most discriminative temporal slice; then we combine nodes in the temporal embedding with functional connectivity to generate
the graph representation of EEG signals; select three layers of Graph Isomorphism Network (GIN) to extract topological features and lastly, the
extracted topological embedding are classified to different motion intention using a fully connected network with a softmax activation function.

B. Graph Neural Networks
Graph Neural Networks (GNNs) are a family of generalized

neural networks excelling at analyzing graph-structured data.
Graph Convolutional Network (GCN) [22] simplify spectral

graph convolutions to the framework of neural networks,
which defines a GCN operator to exchange node-wise informa-
tion through edge connections, along with a layer-wise propa-
gation rule that updates hidden node features. Throughout the
K -layer propagation process, the nodes receive the averaged
features from their neighbors via a mean aggregation, and the
shape of the graph structure remains the same at the next layer.

h(k+1)
v = σ

(
W · MEAN

{
h(k)

v ∪ h(k)
n | n ∈ N (v)

})
(1)

where h(k+1)
v is node v’s hidden feature at k-th GCN layer,

W are model parameters and σ is non-linear activation.
READOUT(·) function is further applied after propagating the
last layer to extract the graph-level embedding,

hG = READOUT
({

h(K )
v | v ∈ V

})
(2)

GraphSAGE [23] interpret GNNs from a spatial perspective
and generalize the mean-aggregator in GCN to a wider range
of operators,

h(k+1)
v = σ

(
W · AGG

{
h(k)

v ∪ h(k)
n | n ∈ N (v)

})
(3)

where W are model parameters and AGG(·) refers to a permu-
tation invariant function such as min/max/mean pooling.

The recent Graph Isomorphism Network (GIN) [21] is
derived from the Weisfeiler-Lehman (WL) isomorphism test
for checking if graphs are topologically identical, proving that
GIN is as powerful as the WL test when AGGREGATE(·) and
READOUT(·) are permutation invariant and injective, which
produces more discriminative embeddings than other GNNs
variants in graph-level classification.

Assume the function f : X → Rn for any countable
node feature space X . Then for infinitely many choices of ϵ

including all irrational numbers, such that any function g can
be decomposed into g(c, X) = φ((1+ϵ) · f (c)+

∑
x∈X f (x))

for some function φ, where c ∈ X and X ⊂ X . A multilayer

perceptron (MLP) with more than one hidden layer can be
used to approximate injective function [24], so the node
embedding hv becomes distinguishable, using the GINConv
operator defined by

h(k+1)
v = MLP(k)

(1+ ϵ(k))h(k)
v +

∑
n∈N (v)

h(k)
n

 (4)

where the AGG(·) of neighbor nodes is implemented as a
summation to impose injective mapping.

III. METHODOLOGY

A. Overview
We now describe the goal of EEG-based Motor

Imagery (MI) classification and overview the key steps
of our approach. Given an EEG segment X ∈ RN×K

collected while a subject was performing a MI task, we aim
to estimate the associated specific intention Y by training
a predictive model that performs supervised classification
under the subject-independent setting, meaning that model
training and evaluation are conducted on two disjoint groups
of subjects. K = T × f is the number of time points within
a segment, N is the number of electrodes, T is the recording
duration, and f is the sampling frequency.

Let X be an EEG segment and Y be the intention, our
approach approximates the mapping f : X → Y , parame-
terized by a Neural Network Ŷ = f2(X), by involving the
following five steps:

1) Calculating adjacency A ∈ RN×N across the readings of
all sensory channels X based on functional connectivity;

2) Selecting the top-N ′ strongest channels X ′ ∈ RN ′×K

tailored to the MI task and identifying task-relevant edges
E ′ ∈ RN ′×N ′ ;

3) Extracting temporal node embedding V ∈ RN ′×ω,
by summarizing the features of each temporal slice Sm ∈

RN ′×ω, where S = {Sm}
M
m=1 results from sliding window

applied on raw data of task-relevant channels X ′;
4) Generating topological graph embedding H ∈ Rh from

the brain functional network G =
〈
V, E ′

〉
constructed by

temporal node embeddings and task-relevant edges;
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5) Predicting the intention f (X) = Ŷ of an EEG segment
from the graph-level topological embedding.

B. Functional Adjacency Matrix
We first calculate the adjacency of an EEG-based brain

network with functional connectivity. We prefer this approach
to previous distance-based or complete graph connections
which either ignore topological relationships or are very
computationally intensive if too many nodes are involved.
Functional connectivity defines the statistical dependencies
among temporal signals, commonly measured as the similarity
between two brain regions by using the Pearson coefficient:

P(i, j) =
Cov(i, j)

Var(i)Var( j)
(5)

where Cov(i, j) is the covariance of measurement readings
between sensory electrodes i and j , Var(i) denotes the
standard deviation of i-th channel readings throughout K
timesteps.

This results in a complete functional adjacency A ∈ RN×N

with N being the number of electrodes. The following section
discusses how we further reduce nodes and edges by only
keeping task-relevant channels.

C. Task-Adaptive Channel Selection
The activation of different brain regions varies with brain

activity [25], indicating that some regions may not respond
as actively to certain tasks as others. However, raw EEG
data collected from electrodes distributed throughout the scalp
will thus always contain information irrelevant to a specific
MI task. The presence of such redundancy increases the
computational burden and over-fitting risks.

This has led to the demand for filtering out task-irrelevant
channels, yet most efforts are directed at manually solving
complex optimization problems [26], which even requires
extensive domain expertise [27]. The problem may, how-
ever, require an automatic solution in some cases, such as
cross-subject analysis [28]. Instead, we propose a simple yet
effective data-driven channel selection strategy upon node
importance within all EEG channels, representing the acti-
vation intensity of corresponding brain regions. In particular,
we suggest two metrics for measuring the nodes’ importance
3 ∈ RN .

1) Degree-Based Importance: The degree of a node indi-
cates its centrality within a brain network as well as the
implication at the graph-level. Within this metric, we simply
define the nodes’ importance W as the number of incoming
edges by looking up the channel-wise adjacency matrix A.
Then, we apply a proportional threshold T ∗ to preserve
channels N ′ adapting to a specific intention by descending
nodes upon the importance 3. The above steps are applied
for each EEG segment X in the dataset.

2) Strength-Based Importance: We assume the channels
with high correlation strength across different MI tasks are
more active than those less correlated. Say we have EEG
segments of C tasks with Nc for each, being performed by
multiple subjects. We compute the absolute Pearson coef-
ficient between the same channel’s Nc readings of every

Algorithm 1 Task-Relevant Channel Selection
Require: raw EEG segments set X , intention set C , impor-

tance weight 3 and threshold T ∗

Ensure: EEG segments set X ′ of task-relevant channels
1: X ′← ∅
2: for X ∈ X do
3: Sort all channels by importance scores S in descending

order, and store the indices into I

I ← argsort(W )

4: Select the most active channels with threshold T ∗

X ′← X i , ∀i < T ∗ and i ∈ I

5: Preserve readings of the most active channels X ′ and
append them to the task-relevant EEG set

X ′← X ′ ∪ X ′

6: end for

two intentions ci , c j ∈ C across all intentions. Then the
task-relevant strength of each channel is obtained by averaging
its C−1 coefficient values across all intention pairs. We define
this strength of all channels as the importance weight 3

for segment X . Lastly, we apply a threshold T ∗ to preserve
task-relevant channels N ′ by descending nodes upon their task-
relevant strength.

D. Temporal Embedding
There might be different concentration periods between

subjects during MI, leading to different temporal properties
even if two subjects were performing the same task [13]. Thus,
our objective is to identify the most discriminative period
within each EEG segment of different subjects, which we refer
to as the subject-invariant temporal embedding.

Specifically, we first crop the EEG segment X ′ ∈ RN ′×K

into M temporal slices S ∈ RM×N ′×ω using a sliding window
of size ω, after selecting the strongest N ′ channels. We then
create initial temporal features Um of each temporal slice Sm ∈

RN ′×ω by applying a 3×3 convolution kernel followed by an
elu non-linear activation,

Um = elu (conv(Sm)) , for m = 1, . . . , M (6)

where Um retains the same tensor shape as input slice Sm .
Next, we use self-attention [14] to capture slice-wise correla-
tions and adapt temporal weights to their temporal features,
leading to a temporal embedding V ∈ RN ′×W that summarizes
the EEG segment,

V =
M∑

m=1

exp(H⊤m Wm)∑M
j=1 exp(H⊤j W j )

Um (7)

with

Hm = WhUm + bh (8)
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Fig. 2. Selected task-relevant channels and channel-wise connectivity.
We present part of the edges with the highest correlation for readability
purposes. The graph is visualized using BrainNet Viewer [29].

where Wm , Wh and bh are learnable parameters. The temporal
embedding V aggregates all of M slices, taking into account
each slice’s importance, which derives the most discriminative
representation upon input values.

E. Topological Embedding
The brain activity is coordinated by multiple brain

regions [30]. These inter-regional correlations are potentially
beneficial when incorporated into predictive models. While
CNN-based methods [4], [8], [13] assume Euclidean-structure
of EEG electrodes, these works ignore the natural geom-
etry of brain structure and connections between differ-
ent regions beyond their immediate vicinity. As opposed,
graph-based brain representations appear to reflect better the
non-Euclidean nature of human’s scalp [17], but also encode
the subject-invariant positioning priors of electrodes [15], [16]
to the model. Nevertheless, their graph constructions cannot
encode dynamic functional connectivity that adapts to different
MI tasks, since the edges therein are fixed in terms of the
distances between nodes.

1) Task-Adaptive Edge Formation: In a brain network, the
correctly illustrated edges could model how each brain region
associates with other active regions during a MI task. Mean-
while, channel-wise correlations across MI intentions do not
remain constant as aforementioned. Having identified the
task-relevant channels N ′, we now formulate the task-relevant
edges E ′ ∈ RN ′×N ′ to leverage strong associations tailored to
the task [31], in the following stages:

1) Constructing: Calculate channel-wise correlation adja-
cency Ac ∈ RL×S×N×N of all subjects for each intention
c ∈ C , using the Pearson coefficient, where L denotes
the number of labels, S is the number of subjects, and
N represents the number of channels/electrodes.

Algorithm 2 Task-Relevant Edge Formation Algorithm
Require: EEG segments set X , adjacency matrices A, inten-

tion set C , edge threshold T e

1: for c in C do
2: Average the matrices Ac of all EEG segments within

the same intention c

Ac = meanX→c(A), ∀A ∈ A, ∀X ∈ X

3: Sort edges E Ac in Ac based on the absolute value of
weights 3 in descending order

Ec = sort(abs(E Ac ))

4: Derive critical edges corresponding to the strongest
associations using edge threshold T e

Ec = indices(Ec(0 : t × |Ec|))

5: end for
6: Merge critical edges together to produce task-relevant

edges

E = unionc∈C (Ec)

2) Generalizing: Find the generalized connectivity across
all subjects by averaging the adjacency matrices of all
subjects for each intention c.

3) Thresholding: Preserve critical connections that exceed
the threshold T e for each intention c.

4) Merging: Derive task-relevant edges E ′ by merging the
critical connections of all C intentions.

Algorithm 3 shows the pseudocode to derive a purely func-
tional adjacency E ′. Moreover, considering the temporal
embedding V results from the task-relevant channels X ′,
we construct the task-adaptive brain network G =

〈
V, E ′

〉
to

obtain topological embedding.
2) Embedding Computation: We adopt a L-layer GIN to

investigate the topological embedding of a given brain network
G, as it shows promise for graph-level classification [21],
[32]. The graph-level topological embedding H ∈ RW after
L-layers’ propagation is produced by

H = READOUT
{

h(L)
v | v ∈ V

}
(9)

with

h(l)
v = MLP(l−1)

(1+ ϵ(l−1))h(l−1)
v +

∑
n∈N (v)

h(l−1)
n

 (10)

where W is the embedding dimension. We set MLP with
2 hidden layers, ϵ = 0, and k = 3 in practice. While
READOUT(·) function can be either non-injective aggrega-
tions (e.g., pooling) or injective mappings (e.g., MLP(·)),
it is believed that the latter will yield a more discriminative
graph embedding, as shown by [21]. Our empirical studies
experiment with different setups to verify this argument in
EEG-based applications.
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Fig. 3. The visualization of hidden features with t-SNE. Green dots refer to left-hand imaginary motion, while orange dots indicate right-hand
imaginary motion.

F. Intention Classification
We take the topological embedding H of an EEG segment

X to perform intention prediction, with a softmax function to
estimate the probabilities of each possible intention,

Pc = softmax(Wo H + bo), for c = 1, . . . , C (11)

where Wo and bo are trainable parameters. The predicted
intention is thus given by Ŷ = arg maxc Pc.

IV. EMPIRICAL STUDIES

A. Experiment Setting
1) Dataset: In this work, we evaluate the performance

of the proposed SIFT-EEG on a widely studied large-
scale cross-subject EEG-based Motor Imagery dataset eegm-
midb (EEG motor movement/imagery database) downloaded
from Physionet database [33]. The dataset was collected using
BCI2000 [34] containing 64 electrodes with the sampling
frequency of 160Hz from 109 healthy subjects. Following the
conventions [15], [16], we remove subjects #88, #89, #92,
#100 from the dataset due to consecutively resting states.
Within three sessions of Motor Imagery tasks, EEG signals
were recorded when subjects were executing left/right fist
open and closed imagery. There are approximately fifteen
3.1-second segments of imaginary left/right-hand movement in
each session; each subject performed three sessions. We ran-
domly select 90 subjects and use their EEG segments as the
training set, whereas the remaining 15 subjects are used as
the test set. There are no disjoint subjects in the training
and testing set, which ensures the evaluation is conducted
in a subject-independent setting. We experiment with twelve
different train/test splits to reduce randomness in the results.

We fix a unique random seed for each split that specifies the
training and testing subjects. Noticeably, the last split includes
all untested subjects from the previous eleven splits to ensure
each subject is tested at least once.

2) Preprocessing: In line with most related works, raw EEG
data is normalized with a z-score, calculated by subtracting
the mean value and dividing by the standard deviation of
training samples X . We do not further apply filters or data
augmentation on raw EEG signals. We use temporal data as
model input.

3) Baselines: We reproduce several baselines for subject-
independent MI classification, including both traditional and
DNN-based approaches. We adopt the Common spatial pattern
and linear discriminant analysis (CSP+LDA) [35] as the
representative traditional means. The DNN-based approaches
are further divided into the CNN and GNN families.

Specifically, the CNN-based methods include EEGNet [7],
CRAM [13], GHAM [16]. The GNN members GIN0 [21],
GraphSAGE [23] and EEG-GAT [36] apply different GNNs
under the same framework [17]. In addition, we implement a
two-layer RNN as a vanilla DNN baseline to model temporal
data.

4) Implementation Detail: Each input EEG segment X ∈
R64×496 contains 496 timesteps with 64 channels. For tem-
poral embedding, we apply the slide window technique with
window size of 400 and a step size is 10. Hence, the input
signal contains ten temporal slices, where each slice has
the shape of [64,400] (i.e., N = 64, ω = 400). All the
models are implemented with PyTorch1 and trained and trained
on an NVidia 3060-Ti GPU in a fully-supervised manner.

1https://pytorch.org
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TABLE I
OVERALL PERFORMANCES FOR SUBJECT-INDEPENDENT EVALUATION.

ALL RESULTS ARE OBTAINED OVER 12 RUNS WITH MEAN ± STD

We use cross-entropy as the objective function and optimize
model parameters using Adam with a learning rate of 0.001.
The training batch size is 500. Each model is trained for
120 epochs, and the dropout probability is set to 0.5 to avoid
over-fitting. We implement all GNN-related components using
Torch_Geometric.2

B. Result & Discussion
The proposed SIFT-EEG is empirically compared with a

range of baselines, focusing on three research questions.
1) Does the modeling of temporal dependencies benefit

spatial/topological correlations and model performance?
2) Does task-adaptive dynamic connectivity outperform

distance-based connectivity for topological learning?
3) Does task-relevant channel selection with topological

features still achieve competitive performance?
The evaluation metrics include classification Accuracy and the
Area Under ROC-Curve(ROC-AUC). All models are trained
and evaluated with the same setting for fair comparison.

1) Overall Performance: Tab. I reports the model perfor-
mance of all approaches on both metrics. Observe that
SIFT-EEG outperforms all baseline models, with 1.13% and
14.68% accuracy improvements, as well as ROC-AUC gains of
1.09% and 15.44%, compared to the best performing CNN-
based state-of-the-art (GHAM) and GNN-based state-of-the-
art (EEG-GAT), respectively. Meanwhile, the top performers in
both DNN families prove to be more accurate than CSP+LDA.
In addition, all DNN baselines (except RNN) include mecha-
nisms to represent the spatial correlation between EEG chan-
nels, providing better results than vanilla RNN. It follows that
such representations should be incorporated into modeling.

Fig. 5 depicts how the training loss changes with the number
of training epochs increase. GNN-based methods generally
have lower training losses and faster convergence rates com-
pared with CNN-based methods, which suggests the capability
of topological features in task-specific predictions. However,
their test performances are worse than CNN-based methods,
showing a tendency to overfit the training data. The reason

2https://pytorch-geometric.readthedocs.io

TABLE II
COMPARISON OF THE CLASSIFICATION ACCURACY FOR

TASK-ADAPTIVE AND RANDOM SELECTION OF

20% OF ORIGINAL CHANNELS

may be that GNN-based methods extract topological features
directly from raw EEG signals. Recall that our evaluations
take place in a subject-independent setting. In this case, the
variances in temporal patterns between subjects, i.e., graph
noises, may cause them to perform inconsistently [37], [38].
Conversely, CNN-based methods explicitly handle temporal
correlations before looking at the spatial domain. For instance,
CRAM locates discriminative temporal features adaptively for
different subjects by using attention. This eases the burden
on the spatial feature extractor and generalizes the model to
new subjects, albeit fitting these models takes longer. The
proposed SIFT-EEG combines the merits of both, leveraging
flexible topological features of the brain signal, as well as
subject-adaptive temporal features that reduce task-irrelevant
noise.

In addition, we perform statistically significant tests to eval-
uate the model performance improvements of SIFT-EEG over
baselines. We use the pairwise t-test, assuming the pairwise
difference is significant if p-value is less than 0.05. The
results are reported in Tab. III, where statistically significant
differences are bolded.

2) Impact of Temporal Embedding: Now we analyze how
temporal embedding contributes to EEG-based MI classi-
fication and answer the first research question. EEGNet
design a CNN block to extract temporal features, while
CRAM and GHAM adopt self-attention on a recurrent net-
work to capture long-term temporal dependency and adaptive
subject-specific patterns, thus improving model performance
in subject-independent experiments. In contrast, GIN0 and
GraphSAGE take raw EEG signals directly as input without
learning temporal features. This leads to much lower predictive
results than their CNN-based counterpart. EEG-GAT, on the
other hand, attempts to extract temporal information with
a 2D temporal convolution operator, which derives around
32% and 24% improvement over GIN0 and GraphSAGE,
even when all three approaches are developed under a similar
predictive framework. We also examine the impact of temporal
embedding within SIFT-EEG. Denoted as SIFT-EEG(w/o t),
a SIFT-EEG variant without temporal embedding is compared
with full SIFT-EEG to reveal its effect. There is an increase of
29.01% and 28.96% in the results of accuracy and ROC-AUC,
respectively. It is thus clear from the comparisons of all three
groups that modeling temporal dependency in conjunction
with spatial/topological embedding is essential.

3) Comparison of Topological Feature: The second research
question investigates whether the proposed task-adaptive
dynamic connectivity facilitates topological learning. We first
identify the graph connection of each model in comparison.
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Fig. 4. The brain topology maps acquired with various importance metrics under different ratios of subjects sampled from 105 subjects.

Fig. 5. Comparison for training loss change when the number of training epochs increases.

TABLE III
THE STATISTICALLY SIGNIFICANT TESTS. WE FIND THAT 20 OUT OF 24 COMPARISONS ARE

SIGNIFICANT (p ≤ 0.05), WITH RESULTS SHOWN IN BOLD

GHAM uses distance-based graph representations of EEG
channels, but not GNN for representation learning. All three
GNN baselines define complete graph connections to yield the
best results. SIFT-EEG chooses functional connectivity and
bypasses the position limits.

GHAM extends CRAM with a graph definition of input
that leads to an increase in 1.5% on accuracy and 0.7% on
ROC-AUC to CRAM, implying the merit of non-euclidean
assumption imposed by graph representation. Among the three
GNN baselines, EEG-GAT shows better performance than
the other two. A possible explanation is, GAT could benefit
from well-designed attention in large and noisy graphs [39],

suggesting GAT seems to win out over GIN in a complete
graph of the brain network (as per their framework).

We further replace dynamic connectivity with complete
connection in SIFT-EEG and observe a clear performance drop
as in SIFT-EEG (w/o d). The GIN applied to SIFT-EEG aggre-
gates all nodes indiscriminately under complete connections.
This leads to the conclusion that SIFT-EEG needs to be defined
with task-adaptive edges.

4) Injective Mapping Benefits SIFT-EEG: We additionally
test with different READOUT functions in SIFT-EEG, includ-
ing three pooling-based variants SIFT-EEG (Avg), SIFT-
EEG (Sum), SIFT-EEG (Max), referring to mean-, sum-,
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TABLE IV
COMPARISON OF MODEL PERFORMANCE WITH DIFFERENT CHANNEL

SELECTION STRATEGIES APPLIED TO SIFT-EEG

and max-pooling. The performance also drops noticeably.
As a reminder, SIFT-EEG emphasizes a) graph-level prediction
instead of node-level prediction; and b) structural information
of the graph (brain network). Our results empirically align
with the theoretical findings of [21], i.e., MLP-based injective
mapping increases capacity over its non-injective READOUT
counterpart.

5) Analysis of Task-Adaptive Channel Selection: Our third
research question examines task-adaptive channel selection
from four perspectives. First, we visualize and compare the
effects of two importance metrics. We next apply task-adaptive
channel selection to CRAM and GHAM to examine its appli-
cability. We evaluate its effectiveness against three additional
channel selection approaches using SIFT-EEG. Finally, we dis-
cuss the model elapsed time results with different channel
selection ratios.

a) Qualitativeness: Fig. 2 showcases the positions of
task-relevant channels selected by two different importance
metrics. The nodes resulting from degree-based importance
are primarily located around the central sulcus, while those
derived by strength-based importance clusters in the frontal
lobe correspond to the functional area for motor control in the
study of neuroscience [40].

b) Applicability: In addition to SIFT-EEG, the perfor-
mance of two other models, CRAM and GHAM, is compared
with task-adaptive and random selection by keeping 20%
original channels. For comparison, CRAM makes no graph
assumptions, GHAM represents the input with a hard-ruled
graph definition, whilst SIFT-EEG dynamically determines the
graph representation. As seen by Table II, the accuracy of all
models for task-adaptive selection is similar to (with CRAM
and GHAM) or even slightly higher (with SIFT-EEG) than all
channels when only 20% are used, whereas random strategy
returns lower performance. Hence, our task-adaptive channel
selection could benefit all models in general. Still, it works best
when coupled with dynamic functional graph connectivity.

c) Effectiveness: Moreover, we compare the proposed
task-adaptive selection with two additional channel selection
strategies. Shan et al. [41] identify subject-specific channels
by finding channels with strong correlations to the central
channel. In reproducing this strategy, we select the channels
with an average correlation ≥ 0.7, except for the refer-
ence channels C3/C4/Cz. Mattioli et al. [42] reduce the num-
ber of channels required by segmenting motion functional
regions and producing regions of interest. In our experiments,
we select channels located in the motor cortex region for
this method. Table IV reports the least number of channels

Fig. 6. Electrodes position in international 10-10 EEG signal acquisition
device.

Fig. 7. Classification accuracy for top t% task-relevant channels
selected by the proposed algorithm.

required to achieve an accuracy greater than 60%, for each
of these strategies applied to SIFT-EEG. The task-adaptive
selection with strength-based importance is the top performer
with the fewest channels required. The degree-based metric,
however, appears to be relatively ineffective. It might be
the case that nodes are unequally distributed throughout the
scalp. According to Fig. 6, the sensory nodes near edge areas
(e.g., AF7, O1 and P10) have fewer neighbors than those in
central areas such as Cz, Cpz and Fcz. Meanwhile, the distance
between nodes affects both the number of incoming edges
and the strength of the connection. This eventually biases the
estimation when using the degree-based importance metric.

On the other hand, the strength-based task-adaptive
selection does not only report higher accuracy but with
fewer channels, even compared to using channels from the
widely-recognized motor cortex region [42]. The results indi-
cate that task-adaptive channel selection can help encode the
most discriminative EEG embedding with the fewest channels,
even in the absence of extensive domain knowledge.

d) Efficiency: Our final step is to examine the model
performance and running efficiency when varying the number
of channels and edges. Fig. 7 and Fig. 8 show accuracy and
relative elapsed time, respectively. The random selection con-
sistently results in degraded performance as available channels
decrease. In contrast, both task-adaptive selections perform
better than random selection. The strength-based selection
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Fig. 8. Relative elapsed train and inference time for SIFT-EEG under
different channel selection ratios.

maintains the highest consistency of performance, regardless
of the number of channels. Meanwhile, both training time and
inference time are trending downward with fewer channels.
In an interesting twist, running with 20% channels would cost
slightly more time than the case of 40%, which, however,
would lead to rebounded classification accuracy.

In addition, we compare the computational efficiency of
SIFT-EEG with baselines when all 64 channels are used,
as shown in Fig. 9. We evaluate how long it takes to handle
400 arbitrarily sampled EEG segments with 400 forward
passes with batch size 100, for both training and inference.
The proposed SIFT-EEG takes 3.4% less training time than
EEG-GAT, the strongest GNN baseline whilst improving the
predictive performance by 14.68%. Moreover, SIFT-EEG con-
sumes 5 fewer but 10 more seconds than CRAM and GHAM,
respectively. The higher recognition accuracy of these three
models comes at the expense of being more costly during
inference. Nevertheless, we note that SIFT-EEG can improve
its efficiency with our task-relevant channel selection, denoted
by SIFT-EEG (w/c) in Fig. 9. At the time it runs with top-40%
task-relevant channels, which improves training and inference
efficiency by more than 50% and 75%, respectively. This
proves SIFT-EEG to be faster than most baselines while
gaining substantial performance benefits.

6) Visualization of Dynamic Functional Connectivity: Hav-
ing learned the task-adaptive dynamic functional connectivity
topology, we compare it with a fixed functional connectivity
topology originating from the pre-motor, supplementary, and
primary motor area [43]. We visualize the active brain region
across certain proportions of 105 subjects upon performing MI
tasks, according to two important metrics, as in Fig. 4. The
degree-based importance is associated with activities in the
frontal and parietal lobes, whereas strength-based importance
seems to target the occipital lobes mainly. There are overlaps
between the dynamic active region and the fixed motor region
regardless of the number of subjects used. Moreover, our
dynamic brain topology shows that active regions within each
importance metric are distributed similarly across subjects.
Increasing the number of subjects converges the distribution
to an almost identical pattern, implying that the statistical
characteristics of the dynamic topology can be improved

Fig. 9. Comparison of computation efficiency for total time taken for
processing arbitrarily sampled 400 EEG segments.

Fig. 10. Impact of varying the number of training subjects. Every subject
is included in the test set at least once for each train/test ratio. The
results are reported with mean ± std values of the relatively improved
classification accuracy within each method itself.

by having more samples. Still, it shows robustness despite
different sample sizes.

7) Impact of Varying Training Subjects: Furthermore,
we investigate how different numbers of training subjects
affect classification accuracy. Our experiment begins with fifty
subjects used for training, i.e., the training and test subjects
are close to a 1:1 ratio. Following, the training set expands
by five subjects per ratio record until 100 subjects have been
included. For each train/test ratio, we perform cross-validation
to split the train and test sets, ensuring each subject has been
tested at least once. We report performance improvements
across GNN family methods with varying numbers of train-
ing subjects, using fifty as the baseline and the mean and
standard deviation for each ratio, as illustrated in Fig. 10.
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Fig. 10 illustrates a strong correlation is observed between
the number of subjects and classification accuracy. Increasing
the number of train subjects from fifty to seventy almost lin-
early improves classification accuracy. This may suggest that
SIFT-EEG learns more subject-independent features as it is
trained on more subjects. However, the improvement becomes
negligible as the training set size increases, when there are
seventy to eighty-five subjects. Observations show that the
overall performance continues to improve beyond eighty-five
training subjects. The presence of more training subjects may
increase the likelihood of testing subjects exhibiting similar
patterns to those in the training set, as well as improved
predictive performance.

We also include the performance changes of other GNN-
based methods. Whereas all methods demonstrate performance
improvements, SIFT-EEG benefits the most from the use of
a greater number of training subjects, as this may facil-
itate the extraction of subject-independent patterns among
the population. In contrast, other methods show fluctuating
results and irregular patterns while underperforming SIFT-
EEG consistently, mostly because neither of these methods
bakes subject-independent features into the representation.
Interesting to note that EEG-GAT reports considerably higher
variances despite being the best-performing GNN member.

V. CONCLUSION

This paper focused on task-adaptive modeling of brain
networks with functional connectivity. We conducted extensive
experiments with a large-scale EEG dataset to demonstrate
that the proposed predictive model outperforms the state-
of-the-art for Motor Imagery classification in the subject-
independent setting. Moreover, our investigation indicated
that task-adaptive region selection produces similar predictive
performance with only 20% of raw EEG data, with a con-
siderable reduction in computation cost during model training
and deployment. Our future work may lend itself to the data
scarcity problem in EEG-related research by examining other
Motor Imagery datasets with fewer subjects. We will exam-
ine how to apply the proposed subject-independent channel-
selection methods more efficiently in situations where training
subjects are limited.
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