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A Cross-Space CNN With Customized
Characteristics for Motor Imagery

EEG Classification
Ying Hu , Yan Liu , Siqi Zhang , Ting Zhang, Bin Dai , Bo Peng, Hongbo Yang, and Yakang Dai

Abstract— The classification of motor imagery-
electroencephalogram(MI-EEG)based brain-computer
interface(BCI)can be used to decode neurological activities,
which has been widely applied in the control of external
devices. However, two factors still hinder the improvement
of classification accuracy and robustness, especially in
multi-class tasks. First, existing algorithms are based on
a single space (measuring or source space). They suffer
from the holistic low spatial resolution of the measuring
space or the locally high spatial resolution information
accessed from the source space, failing to provide holistic
and high-resolution representations. Second, the subject
specificity is not sufficiently characterized, resulting in
the loss of personalized intrinsic information. Therefore,
we propose a cross-space convolutional neural network
(CS-CNN) with customized characteristics for four-class
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MI-EEG classification. This algorithm uses the modified
customized band common spatial patterns (CBCSP) and
duplex mean-shift clustering (DMSClustering) to express
the specific rhythms and source distribution information
in cross-space. At the same time, multi-view features from
the time, frequency and space domains are extracted,
connecting with CNN to fuse the characteristics from two
spaces and classify them. MI-EEG was collected from
20 subjects. Lastly, the classification accuracy of the
proposed is 96.05% with real MRI information and 94.79%
without MRI in the private dataset. And the results in the
BCI competition IV-2a show that CS-CNN outperforms
the state-of-the-art algorithms, achieving an accuracy
improvement of 1.98%, and a standard deviation reduction
of 5.15%.

Index Terms— Brain-computer interface (BCI), motor
imagery (MI), cross-space, customized characteristics,
convolutional neural network (CNN).

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is a technology that
enables information exchange between the brain and

external devices by constructing pathways that are independent
of peripheral nerves and muscle [1]. It has broad applica-
tion prospects in the fields of entertainment, industrial pro-
cess, aerospace, and rehabilitation engineering [2] and [4].
At present, non-invasive electroencephalogram (EEG) BCI is
widely used for recording brain activity in the field of BCI.
Because it can monitor large-scale neuronal activity in the
entire brain adjacent to the cranium in a low-cost and risk-
free manner [5]. There are four commonly used experimental
paradigms for non-invasive BCI: steady-state visual evoked
potential (SSVEP), visual P300, error-related potential (ERP),
and motor imagery (MI) [6], [7], [8], [9]. In contrast, MI has
the outstanding advantages of low damage and signal stability,
which has become one of the most promising paradigms [10].
MI-based BCI refers to judging the subject’s intention by the
activation effect of different brain regions when the subject
imagines a specific limb or muscle movement. This process
is accompanied by event-related desynchronization (ERD)
and synchronization (ERS) of the cerebral cortex based on
distinct frequency band mu rhythm (8-12Hz) and beta rhythm
(13-30Hz) [11].

Traditional MI-EEG classification algorithms are based on
multi-channel EEG in scalp space to identify motor intent,
also known as measuring space-based decoding. In recent
years, methods for signal classification by extracting the
time, frequency, and space domain characteristics of multi-
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channel MI-EEG have been developed to a certain extent [12].
Specifically, three-dimensional control of the virtual helicopter
was accomplished by directly extracting the difference in the
mu rhythm spectrum amplitude of the left and right EEG
signals [13]. Despite the rapid development of measuring
space-based decoding, various limitations still exist. Although
EEG has an extremely high temporal resolution, its low spatial
resolution is a fatal problem, which cannot be resolved by
expanding the number of electrodes. Since the signals recorded
by each EEG electrode are the result of the coupling of
multiple intracranial nerve sources, it is not accurate enough to
express the detailed spatial features of MI-EEG, which restricts
the further improvement of the classification accuracy [14].
Thus, how to enhance the spatial resolution of EEG signals
for BCI is a great challenge.

To overcome the mentioned above problems and achieve
more accurate detection of the relationship between MI-EEG
and motor intentions, it is necessary to develop a neural
activity recognition technique. EEG source imaging (ESI)
technology provides a solution that maps the signal on the
scalp to the source distribution of the cortex to complete
the traceability of the EEG, while retaining high temporal
resolution, but also improving spatial resolution [15], [16].
A large number of equivalent dipole signals are used to sim-
ulate the source signals of the cerebral cortex. What’s more,
due to the addition of magnetic resonance imaging (MRI) brain
anatomical constraints in ESI, source signals also have clearer
and more precise physical and physiological interpretation
[14]. At present, the method of feature extraction from cortical
source signals has been given increasingly more consideration
and broadly utilized in BCI motor neural decoding, which
is called source space-based decoding [17], [18]. Compared
with traditional decoding methods, source space methods have
been shown to improve the classification accuracy of MI tasks
[19], [20], [21]. Although anatomical techniques and neuro-
physiological studies provide the theoretical basis for source
space-based algorithms, ESI is essentially a model-based neu-
roimaging technique that has limitations not to be ignored [22].
For one thing, the source signal is calculated rather than real;
for another, to avoid the over-fitting problem caused by a
large number of dipoles, it is necessary to manually screen
out the dipoles highly relevant to MI tasks [18]. Consider the
whole, the brain network is an interconnected and coordinated
whole. Local brain regions after screening cannot represent
the global information of the cerebral cortex, which may
lose vital information. Even though the source space-based
decoding methods have many advantages and have shown
certain superiority over measuring space-based methods, it is
a challenge to break through their unreal and local limitations.

The mentioned above facts indicate that the single-space
decoding is inadequate for the interpretation of MI-EEG
signals, failing to provide holistic and high-resolution rep-
resentations. In detail, measuring space provides real global
information, and source space provides calculated and detailed
information. Both of them have their advantages and can
complement each other. As far as we know, no research has
proposed the fusion of two spaces to decode MI-BCI tasks.

Another problem faced by the classification methods in
both measuring and source space is that the classification

performance of subjects may differ greatly due to their
different brain control and learning ability [23], [24]. It has
been pointed out that classification algorithms respond differ-
ently to different frequency bands, that is to say, the signals
of each subject are specific to the frequency domain [25].
Similarly, it has been proved that the locations of brain
activation areas are not the same when subjects perform the
MI tasks, which means the signals are specific to the space
domain [26]. As a consequence, if the differences between
subjects are not considered, the consistent processing of all
signals based on physical cognition may lead to problems such
as poor robustness, low reliability, and difficulty in further
enhancing the accuracy.

To break through the single-space decoding one-sidedness
and limitations of subject specificity, we proposed a cross-
space convolutional neural network (CS-CNN), in which
individual differences were taken into account. Customized
characteristics were extracted in the measuring and source
space, respectively, and were fed into CNN for cross-space
fusion to ultimately achieve four-class MI tasks classification.

This paper innovatively proposed the CS-CNN for decoding
MI-EEG four-class tasks, and its contributions can be summa-
rized as the following two points:

• We proposed a novel cross-space decoding, which com-
bined the real global information in measuring space and
the simulated detailed information in source space to
express the features related to MI tasks more compre-
hensively and deeply. This had profound implications for
improving the accuracy of decoding algorithms.

• We proposed a customized characteristics representation
to mine the specificity of MI-EEG in the frequency
and space domains, further enhancing the robustness of
personalized decoding.

The remainder of this paper is organized as follows.
Section II introduces some backgrounds and related works.
Section III explains the data sources and the structure of the
proposed algorithm. Section IV presents the results of the
proposed algorithm and comparative experiments, Section V
is the discussion, and Section VI is the relevant conclusion.

II. RELATED WORK

This section first introduces the MI-EEG decoding methods
based on measuring space, including machine learning and
deep learning. And then, we introduce the source space-based
decoding. Finally, we give a comprehensive overview of the
proposed algorithm.

A. Decoding Methods Based on Measuring Space
Measuring space-based decoding has been part of main-

stream thinking for the past few decades of history, with
researchers intervening from both machine learning and deep
learning perspectives for in-depth exploration.

In the field of machine learning, some studies have pro-
posed classical methods to classify MI tasks. The performance
mainly depends on two important points: distinguishing
features and excellent classifiers. Among the numerous
features, spatial filters can maximize feature differentiation,
such as beamforming, laplacian, and common space pattern
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(CSP) [27]. Of particular note, the CSP is the most popular
method with obvious advantages [28]. And one versus one
(OVO) or one versus rest (OVR) strategies can extend it for
multi-task classification. Later, this method has been developed
to a certain extent through adaptive CSP, regularized CSP, and
L1 norm-solved CSP in enhancing the signal-to-noise ratio and
solving the overfitting problem [29], [30], [31]. In particular,
the filter bank common spatial patterns (FBCSP) algorithm
divides EEG signals into several frequency bands through
bandpass filtering, which achieves a great deal [32]. The con-
tinuous validation of publicly available datasets has confirmed
the undoubted advancement of the FBCSP algorithm and has
led to a gradual increase in interest in methods combining
filtering and CSP [33], [34], [35]. Existing methods use a priori
knowledge to fix the optimal filter range or filter bank, which
improves the efficiency of the algorithm. And Xu et al. [36]
used a search tree to determine the optimal narrow band to
add personalized frequency domain information, providing an
idea to solve the subject specificity problem. Support vector
machine (SVM) and linear discriminant analysis (LDA) are
recognized as the most commonly used classifiers to handle
the mentioned above features [37].

With the rapid strides that have been made in deep learning,
it can achieve satisfactory classification results without or
with simply feature extraction, offering a potentially attractive
approach in the field of MI-based BCI. Currently, deep learn-
ing such as convolutional neural networks (CNN), recurrent
neural networks (RNN), long short-term memory (LSTM), and
gated recurrent neural networks (GRNN) have been applied
to the MI-EEG classification in measuring space [38], [39],
[40], [41]. Amin et al. [43] proposed a lightweight network for
extracting EEG dynamic spatial context information and time
series by inception-attention module and Bi-LSTM. Luo et al.
[41] generated time slices through a clipping strategy to form
spatial-frequency-sequence relations, which were incorporated
into RNN for classification. Autthasan et al. [42] integrated
deep metric learning into an autoencoder to build end-to-end
multi-task learning, which provided innovative solutions with-
out pretreatment. Besides, it is worth mentioning that CNN
is considered to be one of the most promising networks for
solving classification problems in the MI-based BCI field [44].
For example, end-to-end CNN was used to extract temporal
and spatial information from EEG signals [45]. Multi-branch
CNN was used to classify three-dimensional representations of
EEG signals [46]. Although the above methods reduce the bur-
den of feature extraction, poor interpretability and structural
lightness dictate that they cannot differentiate subject-specific
information and there is little room for model robustness
improvement.

B. Decoding Methods Based on Source Space
It was not until the emergence of source space analysis

methods based on ESI technology that dominance of mea-
suring space as the dominant means of analysis was broken.
However, due to a large number of sources, it would be
extremely burdensome to introduce them all into the sub-
sequent calculation. Therefore, it becomes crucial to focus
on the effective information from thousands of sources. For

example, Fang et al [14] transformed signal classification into
an image classification problem by mapping cortical activation
at specific frequencies. And returning to signal processing
itself, researchers have chosen to label the sensorimotor cortex,
which is closely related to MI, as the region of interest (ROI)
on a physiological basis. Noirhomme et al. [47] reconstructed
the source with a simple head model and manually extracted
the dipole of the motor cortex to classify the MI-EEG.
Hou et al. [20] created 10 scouts according to gyri markers
in the motor cortex to form the ROI and extracted Morlet
wavelet features.

As mentioned in part I, numerous works have confirmed
the superiority of source space decoding compared to the
measuring. However, it achieves high resolution while losing
the wholeness of using all channels. At the same time, existing
ROI selection ways do not take into account the issue of
inter-subject-specific differences in source distribution, and we
believe that it is more promising to take full advantage of the
spatial activation of source signals to form data-driven ROIs.

To combine the advantages of measuring and source space
decoding, also take full account of subject variability, we pro-
posed a CS-CNN. In the measuring space, CSP features after
customized EEG rhythms description were extracted. In the
source space, customized ROI time series in a highly activated
state are formed by data-driven. The global information of the
measuring space and the detailed information of the source
space were input into CNN simultaneously. In the convolution
process, the intrinsic pattern of the signal was further extracted
to finish the cross-space fusion, and ultimately achieved
high-precision classification of four MI tasks.

III. METHODS

This section first describes our private dataset and public
dataset. After that, we elaborate proposed algorithm which
includes feature extraction of two spaces and a cross-space
fusion network. Finally, we present a comparative protocol
for evaluating experimental results as a whole.

A. Data Description
We verified our proposed algorithm with a private dataset

and BCI competition IV-2a dataset [48]. The experimental
paradigm adopted by the self-test dataset is shown in Fig. 2.
Other details are explained as follows:

1) Private Dataset: 20 non-disabled volunteers, aged 30±6,
participated in the experiment. There are 12 males and 8
females. They are all right-handed and have no BCI expe-
rience. All subjects who volunteered for this study received
informed written consent. The EEG signals are recorded by a
system with 64 active electrodes (BioSemi B.V., Amsterdam,
Netherlands) at a sampling frequency of 512 Hz. The electrode
locations are shown in Fig. 1. The system replaces the ground
electrode with two separate CMS/DRL electrodes. The gel is
injected to reduce the impedance of electrodes. In addition,
in order to discuss the effect of the presence or absence of
real MRI information, we divide all subjects into two groups
of 10 individuals each, with subjects’ T1-weighted MRIs with
1mm thickness provided by Suzhou Science City Hospital in
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Fig. 1. 64-channel electrode positions.

Fig. 2. Experimental paradigm for the private dataset. A sliding window
strategy was adopted to expand the data for the first 2 s of the MI task.
The Sps represents the samples.

the private dataset 1 and no MRI information in the private
dataset 2.

The subjects sit in a comfortable position in front of the
computer and are instructed to avoid blinking, eye-rolling, and
any form of body movement while executing the MI tasks.
Fig. 2 shows the paradigm adopted by the experiment. Each
trial lasts 10 s. First, there is 1 s for preparation, followed
by a white fixation cross on the black screen and a beep
that lasts for 500 ms to prompt the subjects to pay attention
to the appearance of the task sign. Next, up/down/left/right
arrows appear randomly, instructing subjects to perform the
corresponding MI tasks of tongue curl/feet up/left hand in
fist/right hand in fist. The cue disappears after 2 s, and at
the same time, subjects engage in motor imagination for 4 s.
The imagination ends when the fixation cross reappears on the
screen, and subjects enter a relaxed resting state waiting for
the start of the next trial. Each subject’s experiments consist
of three blocks, spaced a day apart to ensure that the brain is
fully rested. Each block contains 4 sessions, with an interval
of 3 minutes to avoid excessive visual fatigue. Each session
contains 60 trials, with each of the four task threads appearing
15 times. Each subject performs a total of 720 (60 × 4 × 3)
trials.

2) BCI Competition IV-2a Dataset: It is one of the most
commonly used public datasets in the field of MI-BCI and con-
tains data from 22 EEG electrodes(FC3,FC1,FCz,FC2,FC4,
C5,C3,C1,Cz,C2,C4,C6,CP3,CP1,CPz,CP2,CP4,P1,Pz and
P2) sampled at 250 Hz for 9 subjects. And the data has
been preprocessed by bandpass filtering of 0.5∼100 Hz [48].
Consistent with our dataset, it contains four MI tasks (left
hand, right hand, tongue, and feet). In this paradigm, subjects
perform MI for 3 s. The data contains 2 sessions on different
days, designated as training set and test set respectively. Each
session contains 288 trials, thus a total of 576 (288 × 2) trials
are performed for each subject.

B. Data Preprocessing
EEGLAB toolbox is used to preprocess signals, including

50 Hz notch filtering, 0.1-32 Hz bandpass filtering, indepen-
dent component analysis (ICA) for ocular artifacts removal,
and baseline correction. The mentioned above operations are
carried out in sequence. In addition, data amplification is a
crucial part of the training of deep models [49]. The sliding
window strategy through time series clipping has been proven
to improve MI-EEG classification performance effectively
[33]. Considering that subjects may not be able to keep their
attention for a long time during the experiment, we select a
2 s period after the beginning of imagination to expand data
in the way of setting a sliding window. The step length is
50 sampling points, the window width is 1 s, and the time
series is divided into 11/6 segments for the private/public
dataset, as shown in Fig. 2. The same preprocessing operation
is performed for both datasets. Formally, we define C × T
a single-trail filtered MI-EEG, where C is the number of
channels and T is the number of sampled time points. The
impact of sliding windows on classification performance will
be discussed in section IV. A.

C. Proposed Architecture
An overview of our proposed CS-CNN is illustrated in

Fig. 3. This algorithm consists of three modules as a whole:
the measuring space module, the source space module, and the
cross-space module. The pre-processing operation is consid-
ered to be part of the measuring space module which is also
shown in Fig. 3. The specific structure of the CNN is drawn
in Fig. 4.

1) Measuring Space Module: In measuring space, we pro-
pose a customized band common spatial pattern (CBCSP) to
first study the inherent customized EEG rhythms by wavelet
packet decomposition (WPD), and then followed by the glob-
ally spatial representations by CSP. The CBCSP consists of
three parts as shown below.

Step 1: MI-EEG sub-band calculation. Inspired by [50],
we utilize WPD to decompose signals into several high and
low-frequency sub-bands subtly. As displayed in Fig. 2, the
preprocessed MI-EEG (0.1-32 Hz) is decomposed by a four-
layer wavelet packet, and 16 sub-frequency bands with a width
of 2 Hz are acquired. Daubechies wavelet basis is adopted, and
the filter length is 4. Sub-band energy coefficient is defined by
E j , where j is the node. It’s defined by

E j =

√∑
k

∣∣c j (k)
∣∣2

/ 16∑
j=1

√∑
k

∣∣c j (k)
∣∣2 (1)

where c j is the wavelet packet coefficient of the j th sub-band,
and k is the sampling point.

Step 2: Customized MI-EEG connected-band selection.
We select the specific MI-EEG rhythms using the seed-
growing method. The connected band consists of several sub-
bands dependently. We set Em = max(E j ) as the seed, and
the growth direction alternates between downward (higher
frequency) and upward (lower frequency). The neighboring



1558 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 3. An overview of proposed CS-CNN. (A) displays preprocessing operation of MI-EEG input and CBCSP in measuring space. (B) exhibits the
process of ESI of MRI input and DMSClustering which is responsible for extracting the high-dimensional feature matrix of source space. And the
features of measuring space and source space are deeply mined and fused in (C). The structure of CNN is shown in Fig. 4.

Fig. 4. The illustration of the proposed CNN architecture.

bands are gradually absorbed to form a connected-band set
V . The growth stops when the total energy is greater than the
threshold δ. The growth process is shown in (2).

V =

cm+s

∣∣∣∣∣∣
∑

s=0,1,−1,2,−2,...

Em+s > δ

 (2)

where s is the displacement.
Connected-band in V is reconstructed to form a new

MI-EEG with customized rhythmical information. We set δ in
(2) as 0.90, which has been proved to be the optimal parameter
by our previous study [51].

Step 3: Global spatial representations. We use OVRCSP
to maximize the gap between different MI-EEGs for the
representation of global spatial information. The basic idea
is to construct two kinds of signals by analogy with the
traditional CSP and transform the four-class tasks into four
binary classification tasks. Define s, s′

∈ {1, 2, 3, 4} as the
MI-EEG of four types, where s contains one class of signals
and s′ contains the remaining three classes of signals. For
example, when s = 2, s′

= {1, 3, 4}. In this way, the best
spatial feature distinguished from the other classes of class
2 can be obtained. Spatial features of four categories are
calculated in turn and joined to shape the overall OVRCSP

features. We set the optimal number of spatial filter pairs as 5,
so the OVRCSP feature dimension of a single-trail MI-EEG
is # spatial filter ×2×# category number (5 × 2 × 4).

2) Source Space Module: In source space, we focus on the
customized spatial characteristics in detail and time-related
information which are not represented in measuring space by
mapping scalp MI-EEG to the cortical source space based
on ESI.

Step 1: ESI. It converts MI-EEG into neuronal activity
with the high spatial resolution by combining EEG with
precise information on head anatomy and source localization
algorithms. ESI involves the solution of two crucial problems:
the forward problem and the inverse problem. The forward
problem is responsible for determining the potential of each
scalp electrode generated by known sources in the brain.
Firstly, personalized real head models and source models are
constructed based on the anatomical information provided
by each subject’s MRI for the private dataset 1. And the
common template in Brainstorm is used for the public dataset
and private dataset 2. Secondly, the registration of electrode
distribution and head model is carried out manually. Finally,
we use the finite element method (FEM) to solve the lead field
matrix which is in charge of converting scalp EEG [52]. The
solution to the inverse problem is carried out after the forward
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problem. The relationship can be expressed as (3), which M
represents MI-EEG, L the lead field, N the measuring noise,
and C the source signal:

M = LC + N (3)

The equivalent current dipole model shows good applicability
in solving the inverse problem by equivalenting local neurons
in the brain to a current dipole with several parameters (posi-
tion and pole phase). Thus, we choose the weighted minimum
norm estimation (WMNE) to calculate the distribution of
cortical current dipoles [53]. 7344 (5001) dipoles are obtained
for private (public) datasets. Finally, we complete the mapping
of MI-EEG from scalp measuring space to source space, which
improves the spatial resolution of signals and provides more
detailed spatial information for subsequent classification.

Step2: Customized ROI extraction. We propose a duplex
mean-shift clustering (DMSClustering) to screen out the cus-
tomized ROI, in which dipoles are highly relevant to MI tasks.
Before DMSClustering, the four types of source signals are
superimposed separately for sub-ROIs clustering of different
MI-tasks. And the final ROI is the union of the four sub-ROIs.

DMSClustering is a data-driven method to cluster dipoles by
considering both activation intensity and distribution location,
ensuring that the ROI is sufficiently active and concentrated
clusters. We establish an abstract spherical window with the
core c and radius r by simultaneous constraints of distance
factor Sq and intensity factor It , as shown in (4), (5), and (6).

Sq =
∥xi − xc∥2 + ∥yi − yc∥2 + ∥zi − zc∥2

N∑
i=1

(∥xi − xc∥2 + ∥yi − yc∥2 + ∥zi − zc∥2)

(4)

It = ∥Ai − Ac∥2

/ N∑
i=1

(∥Ai − Ac∥2) (5)

Sk =
{
(x, y, z, A)

∣∣Sq(x, y, z) + It (A) < r
}

(6)

where (x, y, z) represents the position coordinates of dipoles,
A represents activation intensity, and N the total number of
dipoles. The radius r is set to 0.1.

The core drifts towards the mean value of all dipoles’
intensities in the window until it converges. Each drift is
determined by an average displacement vector M, whose
direction is always from the highly activated state to the hypo-
activated state, which is expressed in (7).

M =
1
n

∑
xi ∈Sk

(A(xi ) − A(xc)) (7)

where n the number of dipoles collected in Sk.
We take the dipole with the highest activation intensity as

the initial core c, and the clustering process ends when the
number of visited dipoles exceeds the percentile of N .

Step 3: Spatiotemporal characterization. The ROI time
sequences are clipped by the same sliding window strategy in
measuring space to obtain several high-dimensional spatiotem-
poral feature matrices. Without any algorithmic processing,
they provide the most discriminating time and space scales
of original details. For example, the source space feature
dimension of a single-trail signal of subject 1 in the private
dataset is # ROI dipoles × # window length ×1 (316×512×1).

3) Cross-Space Module: The module takes charge of the
hidden information extraction and fusion of the mentioned
above feature matrices from measuring space and source
space by a multi-layer CNN. The network structure is
shown in Fig. 4.

In the measuring branch, we adopt a shallow network
structure that contains three convolutional layers to further
learn the implicit global spatial feature information. We select
a 1D convolution kernel (1×5) to match the input size (1×40),
and its length is equivalent to that of the CSP spatial filter.
Following the learning rules from low complexity to high
complexity, the number of three convolution kernels is set to 8,
16, and 32 respectively. There is no feature map compression
during the whole process, so the size of the feature matrix in
the measuring space after convolutional is still (1 × 40).

In the source space branch, spatially separable convolution
and variable receptive field strategies are used to better match
the network input characteristics. Inspired by the MobileNet,
we split the n × n convolution kernel into 1 × n and n ×

1 for extracting the detailed temporal and spatial information
provided by cortical source input respectively [54]. In addition,
we set up three convolution layers composed of kernels
with different sizes in both time and space directions to
prevent repeated learning in local areas from redundancy,
n = 5, 10, 15. It is foreseeable that with the increase of the
receptive field, the more information obtained, the better global
features obtained. The varied receptive fields can learn rich and
diverse features at different levels. The number of convolution
kernels per three is the same as in the measuring space.
Two maximum pooling layers are set respectively after three
consecutive convolution layers of time and space to reduce
the amounts of data and parameters and prevent over-fitting.
The sizes of two pooling kernels are (1 × 75) and (75 × 1),
and strides are 13. The additional purpose is to reduce the
length of the input matrix in the time series to 40 through
dimensionality reduction, which can match the length of the
measuring feature and facilitate subsequent feature fusion.
Activation locations represented by higher intensity values in
the spatiotemporal feature map are important classification
criteria, so max pooling provides better performance than
average. In general, the network structure which is responsible
for deep information mining in source space is composed
of six convolution layers and two maximum pooling layers.
Finally, taking subject 1 as an example, the dimension of the
source space feature matrix after the multi-layer convolution
operation is (38 × 40).

The concatenate layer is adopted to fusion two feature
matrices of the measuring space and source space. To realize
the re-mining of the deep-level information of the splicing
matrix, a residual network (ResNet) module is added after
the fusion matrix. It can directly transfer the shallow features
to the deeper layers, ensuring that the original information is
not lost while achieving rapid feedback and feature fusion.
The size of the convolution kernel in this module is (2 × 2).
And the last two fully connected layers are used to integrate
the aforementioned features and map the learned feature rep-
resentation to the sample marker space. Ultimately, the four-
class classification is achieved by relying on the softmax layer
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to map the outputs of the four neurons [y1, y2, y3, y4] into
the interval of (0,1). Softmax’s output represents the relative
probabilities between different categories, it can be defined as
follows:

Si = eyi

/ 4∑
i=1

eyi
(8)

Another point to note is that we do not want the original fea-
ture matrix to incur dimensionality reduction losses except for
the pooling operation, so the stride sizes of all convolutional
layers are set to 1 in both width and height.

Batch normalization is used to prevent the over-fitting phe-
nomenon in network training, avoid the problem of gradient
disappearance, and speed up network convergence. The fea-
tures after convolution are normalized so that the input of each
layer can keep the same distribution. The total training samples
are divided into smaller batches. Parameters are updated after
completing a batch of sample learning. To find the best balance
between memory efficiency and memory capacity, we set the
batch size to 16. The rectified linear units (ReLu) activation
function is chosen because of the advantage of sparsity. It can
be expressed as:

Re Lu(x) =

{
x i f x > 0
0 i f x ≤ 0

(9)

The cross-entropy loss function is used to measure the
difference between the prediction effects. We use the Adam
optimization algorithm as the optimizer and minimize the loss
function with an initial network learning rate of 1×10−5. The
maximum epoch is set as 128, and the learning rate of every
9 epochs is attenuated by a factor of 0.9 to ensure accelerated
convergence in the early stage and stable performance in the
later stage.

D. Experimental Evaluation
For the matter of four classification tasks, accuracy, Kappa

value, and confusion matrix were used to evaluate classi-
fication results. The merging of all trials for each subject
ensured a five-fold cross-training to eliminate randomisation of
results. Wilcoxon rank sum test analysis was used to determine
whether there was a significant difference. To evaluate the
proposed CS-CNN on three datasets (private dataset 1 and 2,
BCI competition IV-2a), we set up the following comparative
experiments.

1) Experiment I: Parameter Comparison: To explore the
influence of the sliding window strategy on the experimental
results of data amplification, we set three different sliding
window steps for comparative experiments based on the pro-
posed CS-CNN. Since the EEG signal length was fixed for
each subject in a single trial (2 s), longer sliding window
steps meant fewer sliding windows, in other words, fewer
amplifications of the MI-EEG. The sliding window step was in
the unit of the sampling point. We used the accuracy to judge
the merits of the four classification results on three datasets.

2) Experiment II: Customized Characteristics Verification:
One of the highlights of this paper is paying attention to the
intrinsic difference in EEG rhythms and source distribution
of subjects. Therefore, to further verify the superiority of the

customized characteristics in this paper, which can also be
regarded as the robustness of the algorithm, the following three
groups of ablation experiments were set up.

Group1: CSP with fixed bandpass filtering instead of
CBCSP in the measuring space module and cortical motor
area instead of customized ROI in the source space module.

Group2: customized ROI is instead of motor region in the
source space module.

Group3: CSP with fixed bandpass filtering instead of
CBCSP in the measuring space module.

3) Experiment III: Space-Based Classification Performance:
To verify the superiority of cross-space compared to single-
space decoding, the measuring and source space modules are
ablated to compare classification performance of the three
datasets. Single-space based decoding consists of two groups,
with only one module (measuring or source) used for feature
extraction, and the classification network consists of the cor-
responding branch directly connected to the fully connected
and output layers, discarding the concatenate connection and
ResNet module. The cross-space based decoding refers to the
proposed CS-CNN algorithm.

4) Experiment IV: Algorithm Performance Verification: To
verify the superiority of CS-CNN without the impact of data
quality, we collected the state-of-the-art studies using BCI
Competition IV-2a data for four classifications in recent years
as the baseline.

FBCSP-RNN: Luo et al. [41] applied FBCSP to extract
features and then used a sliding cropping technique to generate
spatial-frequency-sequences for input into RNN.

NSL-EEGNet: Raza et al. [55] combined neural structured
learning (NSL) and EEGNet to standardize neural network
training by using relational information in data.

MBCNN: Altuwaijri and Muhammad, [39] classified EEG
signals without any processing by adopting a multi-branch
CNN (MBCNN)model with different convolution kernels.

3DCNN: Zhao et al. [46] generated a 3D representation by
keeping the MI-EEG in a sequence of 2D arrays of the spatial
distribution of sampled electrodes. For the 3D representation,
a multi-branch 3D CNN was designed.

Inception-CNN: Zhang et al. [56] amplified the data by
adding noise to be fed in an improved CNN containing
inception and ResNet modules.

CNN-LSTM: Amin et al. [43] proposed a CNN framework
based on the inception-attention mechanism to extract spa-
tial context information and dynamic features and connected
bi-LSTM which was responsible for time series information.

SHNN: Liu et al [58] proposed to learn different time
window CSP features and perform sparse representation for
classification by a SincNet-hybrid neural network (SHNN).

IV. RESULTS

This section presents the results and statistical analysis of
experiments I, II, III, and IV to validate the effectiveness.

A. Experiment I
Fig. 5 shows the influence of different sliding window

steps on classification accuracy in three datasets. Solid dia-
monds represent the accuracy of all subjects in each dataset.
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TABLE I
CUSTOMIZED EEG RHYTHMS AND SOURCE DISTRIBUTION IN THREE DATASETS

TABLE II
CLASSIFICATION PERFORMANCE(ACCURACY ± SD IN % AND KAPPA ±SD) OFCUSTOMIZED CHARACTERISTICS ABLATION EXPERIMENT

Fig. 5. Accuracy of different sliding window steps of three datasets. The
solid diamond represents the classification accuracy for each subject.

We observed that as the sliding window step decreased from
100 sampling points to 50, the classification accuracy showed
an upward trend gradually. And when marking the step as 50,
the CS-CNN achieved the best performance for all datasets
(p<0.001). It is proved that data amplification is a powerful
approach to improving the final classification accuracy. As a
result, we choose the sliding window step size to be 50 and
used it in the subsequent experiments.

B. Experiment II
Table I shows the customized EEG rhythms and source

distribution. They are displayed visually by the specific band
range screened by CBCSP and the number of dipoles obtained
by DMSClustering. In addition, Table I includes the general

frequency bands and the number of dipoles in the motor
cortex for comparison. Note that, the selected bandwidths
were narrower than the general one on the whole. And lower
frequency bands (6Hz) were screened in nearly half of the
results, which were considered highly relevant to the MI tasks.
The total number of activated dipoles per subject fluctuated
within a certain range.

Table II illustrates the classification performance of the
customized characteristics ablation experiment in the three
benchmark datasets, using customized and general characteris-
tics displayed in Table I. In this regard, the standard deviation
of inter-subject accuracy (SDA) and the inter-subject accuracy
range error (ARE) were calculated to assess the robustness
of the CS-CNN. It can be found that the proposed CS-CNN
algorithm achieved the highest classification accuracy and
Kappa value, as well as the lowest SDA and ARE value
in all three datasets compared to Group 1, Group 2, and
Group 3 (p<0.05). It also demonstrated that both the proposed
customized EEG rhythm and ROI approach worked.

C. Experiment III
Table III shows the classification performance of three

datasets based on space-based decoding. Consistent with the
findings of existing studies, we validated that source space
decoding outperformed measuring space. In addition, the
cross-space decoding reached the best performance in all
datasets as we expected, with the two private datasets showing
significant differences (p<0.05).



1562 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE III
CLASSIFICATION PERFORMANCE(ACCURACY ± SD IN % AND KAPPA ±SD) OFSPACE-BASED DECODING.

BOLD DENOTES THE BEST NUMERICALVALUES

TABLE IV
CLASSIFICATION PERFORMANCE (ACCURACY IN % AND KAPPA) OF PROPOSED COMPAREDTO THE STATE-OF-THE-ART METHODS IN BCI

COMPETITION IV-2A DATASET. BOLD DENOTES THE BEST NUMERICAL VALUES

D. Experiment IV
Table IV shows the overall performance comparison

between the CS-CNN and the state-of-the-art algorithms for
four-class tasks based on the BCI competition IV-2a. The
training and test sets fixed by the data provider were used in
this experiment. It can be found that CS-CNN outperformed
all other algorithms with average accuracy (90.37%), Kappa
value (0.88), SDA (1.91%), and ARE (5.44%). In detail, the
proposed improved average accuracy by at least 1.98% and
reduced the SDA by at least 5.15% compared to the most
advanced algorithm.

Fig. 6 shows violin plots of classification accuracy for three
datasets, with the horizontal line being the mean and the solid
diamond showing the distribution for each subject. The kernel
density plot of the external parcel has a higher probability
of being distributed around a value the larger the area of the
graph in a region. Due to the strict control of data collection
conditions, the distributions of the two private datasets are
similar and the accuracy of group 1 is slightly better than that
of group 2. The public dataset is more dispersed and slightly
less well classified.

Fig. 7 displays the confusion matrix of the private and
public datasets. The matrices are plotted based on the average
of all subjects’ classification results in each dataset. It can be
seen that the corresponding overall accuracies of the left hand,
right hand, tongue, and feet were 96.68%, 96.45%,96.60%,
and 95.28% in the private dataset 1. And they were 93.20%,
97.07%, 95.64% and 93.48% in the private dataset 2. And they
were 91.18%, 92.42%, 87.45% and 92.30% in public dataset.
By integrating the results of three matrices, we can find that
in the four-class tasks, the mean classification accuracy of the
tongue and feet MI was slightly lower than the other two,

Fig. 6. Violin plot of accuracy for the three datasets, horizontal line
represents the mean, solid diamond is the classification accuracy for
each subject.

Fig. 7. Confusion matrices of four-class MI-EEG classification.

and the likelihood of their mutual confusion was higher as
well.

V. DISCUSSION

A. Effectiveness of Sliding Window Strategy
The most direct and operative way to counteract the over-

fitting problem of deep learning is by amplifying the data
volume. In particular, the restricted amount of data in the
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public dataset limits the proposal of deeper and finer network
architecture, so most of the relevant research has adopted data
amplification strategies [43], [46], [56]. As shown in Fig. 4,
the sliding window strategy used for data amplification has
a great influence on the classification results. It reveals that
utilizing the sliding window to extract the sample during the
period of comparatively concentrated attention of the subjects
(2 s) is an efficient way to portray the time-variant information,
which is conducive to subsequent network learning with more
discriminative features.

B. Analysis of Customized Characteristics
One of the contributions of this paper is to characterize

the frequency and spatial specificity simultaneously. Numerous
studies have proved that the MI-EEG is closely related to
the ERD/ERS from the cortex of the brain, especially the
motor area. According to Table I, we can find that although
each subject shares common characteristics, like the current
physiological findings, they have their own diversity as well.
This diversity is reflected in narrower and lower frequency
bands, or a more restricted or wider source distribution than
in the cortical motor area. The impact of these customized
characteristics on the classification results is also verified in
Table II. Compared with consistent processing using general
characteristics, customized EEG rhythms and ROI optimize
feature representation by fully mining the implicit frequency
and spatial activation information inherent to each subject,
allowing the maximization of valuable information from the
MI-EEG. Focusing on the public dataset with variable data
quality, an important reason for the impressive performance
of CS-CNN is the outstanding contribution of customized
ROI. It has been clearly indicated that the brain activity of
people who are not good at BCI is not only linked to the
motor area, but also has complex connections to multiple brain
regions related to cognition and emotion [57]. It is reasonable
to speculate that this enhancement is due to the data-driven
customized source distribution-based approach that pays good
attention to activation information outside the motion area that
is easily overlooked. Overall, the customized characteristics
can learn and improve the discrimination of MI-EEG among
different classes, which has great significance for achieving a
personalized and robust BCI system.

C. Analysis of Cross-Space Performance
In general, the measuring space provides real and holistic

signal representation, and the source space can interpret the
neural activity information in a detailed view. There are
certain complementarities between them. Cross-space decod-
ing achieves the optimization of comprehensive multi-view
feature representation by fusing the advantages of both, thus
solving the limitation of single-space decoding. According to
Table III, the classification performance based on different
spaces is in the order of cross-space, source space, and
measuring space, and the advantage of cross-space decoding
is fully demonstrated in the private dataset. However, the
significance analysis conducted for each subject showed that

the CS-CNN classification results for subjects 2, 4, 5 and 6 in
the public dataset were closer to the source space-decoding,
(p>0.05). The reason is that the traceability analysis occupies
the most significant role in improving the classification results,
and the source space module’s interpretation of brain states has
maximized the valuable information in the MI-EEG, making
the fusion less important. This can be further illustrated in con-
junction with the excellent performance of the customized ROI
in Table II based on the above subjects’ data. However, it is
undeniable that in most cases cross-space decoding still shows
a strong competitive edge. To sum up, CS-CNN provides a
powerful new approach for MI four-tasks decoding, which has
absolute power to surpass the widely used measuring space
decoding and has considerable potential to perform better than
the emerging source space decoding.

D. Analysis of Overall Algorithm Structure
Our proposed CS-CNN achieves global high-resolution fea-

ture extraction through cross-space fusion to improve the
accuracy of the algorithm and enhances robustness through
customized feature characterization to address subject speci-
ficity issues. According to Table IV, although the proposed
algorithm did not achieve the best classification accuracy for
the case of good data quality (subjects 3, 7, 8), it did signif-
icantly improve the results for the case of poor BCI ability
(subjects 2, 5, 6). By balancing the performance of different
subjects’ data, CS-CNN obtained the strongest robustness
while accommodating high accuracy. Overall, based on the
comparison results with a variety of other representative algo-
rithms (including FBCSP-RNN, improved EEGNet, innovative
CNN, hybrid networks, etc.), it is confirmed that our proposed
can achieve optimal classification performance under several
evaluation metrics. This proves that the classical structure of
feature representation connected to deep networks can still
show strong competitiveness in the field of MI-based BCI
decoding in the present day when various new hybrid networks
are gradually emerging.

According to Fig. 5, the classification results for private
dataset 1 were excellent, but the need for real MRI information
makes it more suitable for the field of BCI-based intelligent
rehabilitation. Surprisingly, the private dataset 2 without MRI
information also showed quite competitive results. This gives
the CS-CNN a wider and more lifelike application scenario.

E. Future Direction
Although CS-CNN has shown exciting results, there are still

some immature areas that need further study in the future.
First, more in line with the MI-EEG characteristics and more
intelligent data amplification strategies that are needed for
the training of high-performance classifiers. Second, more
complete strategies are required for cross-space feature fusion,
such as considering the attention mechanism to offset the neg-
ative effects of some poor-quality data or features, to ensure
the stable performance of the fusion structure. Third, a more
lightweight network structure is desired for large-scale use and
training of BCI in practical task scenarios.
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VI. CONCLUSION

In this study, a cross-space fusion algorithm with cus-
tomized characteristics is proposed to resolve four classi-
fication tasks of MI-EEG. In this algorithm, we perform
multi-view feature expressions in the time domain, frequency
domain, and space domain (detailed and global) to mine more
comprehensive and richer MI-EEG information. On top of a
fine-grained interpretation of neural activity in source space,
CS-CNN adds real information in measuring space, which
provides a new avenue for MI-EEG classification. Finally,
the CS-CNN achieved an accuracy of 96.05% and Kappa
value of 0.95 in the group with MRI information, and 94.79%
accuracy, Kappa 0.93 in the group without MRI in the private
dataset four classification task. In BCI competition IV-2a, the
average accuracy rate is 90.37%, and the Kappa value is 0.88.
Compared with the most advanced algorithm, the accuracy rate
has increased by 1.98% and the SDA value has decreased by
5.15%, which shows that our proposed is a high-precision and
robust model for multi-task MI-EEG classification.
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