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The Number of Steps for Representative
Real-World, Unsupervised Walking Data Using a

Shoe-Worn Inertial Sensor
Jesse M. Charlton , Calvin Kuo, Member, IEEE, and Michael A. Hunt

Abstract— Inertial measurement units are now com-
monly used to quantify gait in healthy and clinical popula-
tions outside the laboratory environment, yet it is unclear
how much data needs to be collected in these highly
variable environments before a consistent gait pattern is
identified. We investigated the number of steps to reach
consistent outcomes calculated from real-world, unsuper-
vised walking in people with (n=15) and without (n=15)
knee osteoarthritis. A shoe-embedded inertial sensor mea-
sured seven foot-derived biomechanical variables on a
step-by-step basis during purposeful, outdoor walking
over seven days. Univariate Gaussian distributions were
generated from incrementally larger training data blocks
(increased in 5 step increments) and compared to all unique
testing data blocks (5 steps/block). A consistent outcome
was defined when the addition of another testing block did
not change the percent similarity of the training block by
more than 0.01% and this was maintained for the subse-
quent 100 training blocks (equivalent to 500 steps). No evi-
dence was found for differences between those with and
without knee osteoarthritis (p=0.490), but the measured
gait outcomes differed in the number of steps to become
consistent (p<0.001). The results demonstrate that collect-
ing consistent foot-specific gait biomechanics is feasible
in free-living conditions. This supports the potential for
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shorter or more targeted data collection periods that could
reduce participant or equipment burden.

Index Terms— Free-living gait, inertial sensor, motion
capture, foot biomechanics, consistent data, osteoarthritis.

I. INTRODUCTION

IN-LABORATORY, optical motion capture has long been
regarded as the gold-standard method to measure biome-

chanical variables related to gait. Though an accurate and
powerful tool, the inherent limitations of these systems and
environments may limit the external validity of the data [1].
This is partly a result of the non-typical walking surfaces,
unfamiliar conditions, and the short, linear walking bouts
associated with laboratory gait analysis.

In recent years, the use of body-worn inertial measurement
units (IMUs) has opened the doors for examining movement
in free-living settings, outside the laboratory. Though the
use of IMUs to measure human motion is far from new,
nearing 3 decades of maturity [2], the exponential increase in
their use is largely due to the improvements in accessibility,
size, and the cost of IMU systems [3]. The field of gait
biomechanics continues to embrace this rapidly developing
technology [4], now using it to record vast amounts of
data over extended timeframes, both inside and outside of
the traditional laboratory setting [5]. This is also true for
clinical populations, such as those with knee osteoarthritis [6],
where longitudinal gait monitoring could provide important
insights into functional aspects of the disease or monitoring
the progress of a gait-related rehabilitation program.

Due to the wearability of IMU systems, it is far easier
to collect many thousands of steps spread over days or
weeks, compared to typical laboratory-based collections which
usually consist of less than 10 steps of over-ground walking,
or up to several hundred when a treadmill is used [3].
Longitudinal, real-world IMU datasets have great potential to
provide rich information on an individual’s gait biomechanics
in natural environments, capturing the inherent variability
associated with real-world gait. With that, we can characterize
a gait pattern that represents the persons walking in normal
daily conditions while capturing day-to-day fluctuations. Since
indefinite data collections are generally not possible, limited
by factors such as patient burden, data storage, and device
battery capacity, it is important to establish when enough data
is collected. One approach to determining this is identifying
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how much data must be recorded such that the outcome of
interest for a given individual is consistent (i.e., no longer
changes when more datapoints are added). In the present study,
we conceptually defined a consistent outcome in this way,
where adding more data to a dataset does not appreciably
change the distribution of an outcome. Having a guideline
of this nature could assist with lowering the burden on
study participants, researchers and the equipment involved in
real-world data collections by reducing overcollection of data.

Several studies have sought to identify the length of gait
assessment recordings to establish consistent outcomes. In the
context of gait variability research, treadmill walking has
been shown to require 400 steps before accurate estimates
of step time or step width variability could be made [7].
Another study assessed over-ground walking both in a hallway
and over 48 hours of unsupervised activity using a waist
mounted IMU [8]. The authors suggested that several days
of recording were required to establish consistent gait data,
but further details were not provided. More recently, Benson
et al. [9] identified the number of individual outdoor running
bouts that were needed to observe consistent outcomes from
a waist-mounted IMU (e.g., cadence, pelvis kinematics). The
results indicated that four running bouts (∼15-20 mins each,
equating to approximately 2550 steps per bout at a cadence of
170) was enough. While these studies suggest that consistent
gait outcomes can be identified, the applicability of the results
to real-world, unsupervised walking remains unclear.

The influence of variability (or lack of) arising from person-
related factors could affect the amount of data that is needed
in these real-world data collections. Unfortunately, none of
these studies considered the effects of clinical populations
who may have altered gait variability, potentially requir-
ing different sized datasets from health counterparts. Knee
osteoarthritis is particularly known to affect various aspects of
gait biomechanics including kinematic, kinetic, and variability
outcomes, which can differ based on the severity of the
disease [10], [11] or with respect to healthy adults [12],
[13], [14]. This population could act as a useful model to
identify potential differences in data collection requirements
when gait-influencing musculoskeletal disease is present in
one’s population of interest.

Placing the IMU on the low back is most common in
the extant literature that has examined gait feature validity
and reliability [15], [16]. However, placement on other body
segments may have more relevance for certain populations or
clinical applications. For example, measuring or modifying the
orientation of the foot while walking and running has relevance
to clinical rehabilitation of knee pathologies like osteoarthritis
or patellofemoral pain [17], [18]. Foot kinematics at the
start and end of the stance phase also have relevance, both
with respect to quantifying impacts [19] or foot trajectories,
which may be influenced by variable terrain underfoot [21].
Moreover, IMUs located on the foot result in very reliable
spatiotemporal outcomes, and in some cases can outperform
IMUs mounted on the low-back in laboratory conditions [15].
Therefore, our study objective was to determine the number
of steps that need to be collected to establish consistent
gait outcomes from unsupervised, real-world and purposeful

Fig. 1. Inertial sensor module embedded in the sole of a generic walk-
ing shoe. The entire module was encased in epoxy resin for durability.
A relief was cut into the sole such that the sensor press fit tightly within
and was flush with the inside of the shoe (illustrated by cut-away image).
Created with BioRender.

walking in populations with and without knee osteoarthritis,
using a shoe-embedded inertial sensor.

II. METHODS

Two distinct participant samples were recruited for the
present study: a group with symptomatic knee osteoarthritis
(KOA, n=15) and a healthy adult group (HA, n=15). The
KOA group was included to examine the effects of symp-
tomatic musculoskeletal disease on the consistency of gait
outcomes. All participants were required to be 19 years of age
or older, able to walk for 30 minutes, and fit into shoe sizes
between women’s US5 and men’s US13. Further eligibility
for the HA group required them to be free of pain, injury,
or surgery in the lower extremities in the last 12 months.
Inclusion in the KOA group required that the participants
were ≥50 years of age, exhibited radiographic evidence of
predominantly medial compartment knee osteoarthritis (Kell-
gren & Lawrence grade 2 or greater) [22], and self-reported
average knee pain over the past week (≥1/10) on an 11-point
numerical rating scale with anchors of 0 being “no pain at
all” and 10 being the “worst pain imaginable”. Any individual
who required a gait aid, had a history of knee surgery or joint
replacement, had recent (within past 6 months) corticosteroid
injections, inflammatory arthritis, were on a waitlist for knee
joint replacement, or had any other condition that affected
normal gait were ineligible to participate. Informed consent
was obtained prior to data collection, and the study was
approved by the Institutional Clinical Research Ethics Board
(H19-02323).

The data in this study were collected using a custom
designed IMU that was embedded in the sole of an athletics
shoe [23], hereafter called the sensorized shoe (Fig 1). The
module consisted of a magneto-inertial sensor (MPU-9150,
InvenSense, CA, USA) equipped with a 3-axis accelerom-
eter (AC; signal range: ±4g), 3-axis gyroscope (GYR;
signal range: ±500◦/s), and 3-axis magnetometer (signal
range: ±1200µT). A microprocessor (STMicroelectronics,
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STM32F401; clock rate=84 MHz, Switzerland) sampled the
sensor data at 100Hz. The sensor’s y-axis axis was aligned
with the long axis of the shoe (mid point of the heel counter
to the midpoint of the toe box), the x-axis was aligned to
point mediolaterally, and the z-axis pointed in a downward
direction following the right-hand rule. The data were recorded
to an onboard 8 gigabyte microSD (microSDHC Class 4,
Transcend, China) and the Qi-wireless charging equipped
lithium-ion battery allowed for up to 16 hours of continuous
data collection. An on-off switch was manually operated to
power the device before and after a walking bout.

Seven days of unsupervised, real-world walking were col-
lected using the sensorized shoes on the dominant limb
(HA group) or the affected (unilateral osteoarthritis) or most
symptomatic (bilateral osteoarthritis) limb (KOA group). The
participants were asked to walk in their usual manner and at
their preferred pace during all collections. Instructions were to
walk with the sensorized shoes for a minimum of 20 minutes
per day during their normal walking activity and in their
normal walking environments. However, more walking was
permitted if desired. We specifically requested that they not
wear the shoes during short and sporadic walking, such as
doing chores around the home or while doing office work,
but instead to only wear the shoes during extended bouts
of walking, such as walking exercise, walking to the store,
or similar.

The datasets extracted from the seven days of real-world
walking were processed using custom scripts (MATLAB,
v2021b, Mathworks Inc., Natick USA). First, the datasets were
classified to identify data that corresponded with walking and
non-walking activity. To do this we split the datasets into
segments based on the mid-swing foot pitch peak. A single
data segment from a known bout of over-ground walking
(collected from a walking bout in the hallways adjacent to
the laboratory) was used as a representative walking segment
and was compared to all other segments by a cross-correlation
algorithm. Briefly, the signal energy of the Euclidean norm
acceleration signal (squared magnitude of the signal) was
calculated for every data segment, and each signal was cross
correlated with the representative walking segment’s signal.
For every data segment, the percent difference between the sig-
nal energy and the maximum cross correlation was calculated.
All segments with a percent difference ≤27% were retained
as walking segments, while all others were removed from the
dataset. The 27% difference threshold was the optimal value
for separating walking from non-walking data based on our
development of the classification [24] using outdoor, linear
walking data from a previously published study [25] (See
Supplementary File 1 for details).

Next, we identified gait events within each walking seg-
ment based on the most accurate signal variables from a
previously published automated process [26]. Each segment
spanned mid-swing to mid-swing; therefore, the heel-strike
(HS), start of foot flat, mid-foot flat, end of foot flat, and
toe-off (TO) were calculated. Each data segment contained
a single stance phase (described as a “step” hereafter), from
which we calculated seven gait-related outcomes detailed
in Table I.

TABLE I
EXTRACTED GAIT OUTCOME DEFINITIONS

We adapted methods from previous research [9] to identify
when an outcome was consistent, where adding more walk-
ing data would not change the outcome’s distribution. This
consistency point was calculated by comparing the similarity
between a training block (comprising an increasing number of
steps used to form the training block) with all other unique
sets of steps (testing blocks) that were not in the training
block. A univariate normal distribution was fit to the training
block containing the data from a single gait outcome and the
95% confidence intervals (CI) were calculated. The percent
similarity was calculated based on the proportion of testing
block steps with an outcome value that was within the 95%
CI bounds of the training block (Fig 2).

Testing blocks were constructed by grouping all a par-
ticipant’s steps into unique blocks of five. For example,
a participant with n=100 steps would have 20 (n÷5) testing
blocks. Larger and larger training blocks were then constructed
by combining testing blocks in increasing amounts (training
block 1 = 5 steps, training block 2 = 10 steps, etc.). For a
given training block size, the mean percent similarity score
was calculated for every unique combination between the
training and testing blocks. This was repeated for every
training block size, generating a mean percent similarity score
for each training block increment.

To define when an outcome was consistent, we adapted def-
initions and recommendations from previous research.Benson
et al. [9] examined several running-related outcomes collected
across 10 running bouts (approximately 2550 steps per bout)
and defined this consistency point (which the authors termed
“stability”) as the minimum number of running bouts in which
adding another running bout to the training block did not
change the percent similarity of that block more than 5%.
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Fig. 2. Illustrating the training block distributions, 95% CI and relation to testing block step comparisons. As the number of steps within the training
block increases, a greater percent of the testing step outcomes are within the 95% CI resulting in a larger percent similarity value. For each training
block size, comparisons were made to all testing block steps not in the training block. The figure depicts an example of what an increase in the
training block size may do to the similarity between the distribution and testing block step outcomes. Created with BioRender.

Fig. 3. Illustrating the consistency point criteria from four representative
participants, two from the HA group (dashed) and two from the KOA
group (solid), for one gait outcome. The rectangle represents the moving
window of 100 training blocks (equivalent to 500 steps, 100 blocks
x 5 steps per block). The circle identifies the first training block of
the moving window when the percent similarity change is <0.01% for
the entirety of the 100 training block moving window. Created with
BioRender.

For the present study, we defined the consistency point when a
moving window of 100 consecutive training blocks (equivalent
to 500 steps) had a percent similarity slope that was <0.01% to
ensure the percent similarity had plateaued (Fig 3). The small
slope threshold in our definition reflects the much smaller data
size increment (5 steps) compared to the running bouts in
previous analyses (>2000 steps) [9]. Finally, we recorded the
number of steps in the training block when this threshold was
met. As the resulting dataset of step counts was right-censored
due to some participant-outcome combinations not reaching
the consistency point, we accounted for this by replacing
these censored data with the participants total number of steps
recorded plus 5 (five was used as the resolution for step counts
was in intervals of five). This uncensored dataset was used in
all subsequent analyses.

Our primary analysis was calculating the median (IQR;
interquartile ranges) of the consistency points for each study
group and gait outcome, and the percentage similarity at each
consistency point. However, we were secondarily interested in
statistical differences between the groups and gait outcomes.
Therefore, we fit generalized linear mixed effects models using
a negative binomial distribution and log link function (Poisson
modelling exhibited poor fit and overdispersion). Fixed effects
included the group (2 levels), the gait outcomes (7 levels), and
their interaction, while a random intercept on the participant
variable was included. The AC-HS outcome and the HA
group were set as the referent levels for the models. The
Wald χ2 statistics were used to examine the main effects
(group, gait outcomes, interaction) for significance and the
model parameters were individually assessed using Wald’s
Z statistic (see Supplementary File 2 for model parameters
results). A significant main effect prompted examination of
contrasts among the levels of that effect. We adjusted these
contrasts for multiplicity using a Bonferroni correction. The
number of steps to the consistency point for each outcome
and group are reported as the raw step count values. Alpha
was set at 0.05 for all tests (Bonferroni corrected alpha =

0.0024 for the gait outcome contrasts). Statistical analyses
were completed in R stats (v. 3.6.0) [27], [28], [29].

III. RESULTS

The real-world walking datasets consisted of median (min,
max) 9159 (4180, 24495) total steps over the seven-day assess-
ment period; the HA group recorded 10964 (4180, 23312)
steps, while the KOA group recorded 9156 (5216, 24495)
steps. The HA group was a mean (SD) 29.5 (8.2) years of
age, 1.72 (0.09) m tall, had a body mass index of 23.8 (2.7)
kg/m2, and was comprised of 10 (67%) males. The KOA group
was 67.4 (6.9) years of age, 1.67 (0.09) m tall, had a body
mass index of 26.7 (8.2) kg/m2, and had 4 (27%) males. There
were nine with mild, four with moderate, and two with severe
structural knee osteoarthritis and they reported average knee
pain while walking over the week prior to data collection equal
to 4 (2), where 0 represented no pain and 10 represented the
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TABLE II
PARTICIPANT MEAN (SD) GAIT OUTCOME VARIABLES BY GROUP

worst pain imaginable. The gait outcome values are reported in
Table II for reference, though no comparisons between groups
were performed on these data.

The number of steps to the consistency point are reported
in Table III and illustrated in Fig 4 for all 30 participants split
by group and gait outcome. Across all gait outcomes and
participants, the mean (SD) of the percent similarity at the
consistency point was 93.9% (2.8), 93.7% (2.6), and 93.8%
(3.0) for all participants, the HA group, and the KOA group,
respectively. Not all participant-outcome combinations were
consistent enough to meet our criteria, and the number of
individuals that did not reach the consistency point differed
between gait outcomes, with the median number of partic-
ipants not reaching consistency being 8 (AC-HS=11, AC-
TO=9, GYR-HS=9, GYR-TO=4, ST=8, FSA=1, FPA=0).

The number of steps needed for consistent outcomes did not
differ between groups (χ2

= 0.098, df=1, p=0.754), but there
were significant differences between the gait outcomes (χ2

=

52.42, df=6, p<0.001). Across both groups and all outcomes
of interest, the median (IQR) number of steps to reach the
consistency point was 1140 (725, 3230), while the minimum
and maximum were 250 and 23237, respectively.

Contrasts between the gait outcomes (alpha=0.0024) high-
lighted that the FSA and FPA outcomes required significantly
lower steps to reach the consistency point compared to all
other outcomes (p<0.001) except for the GYR-TO outcome
(FSA: p=0.006, FPA: p=0.206). All contrast comparisons are
reported in Supplementary File 2 Table II. The censored model
results and contrasts can be found in Supplementary File 3.

IV. DISCUSSION

The collection of real-world, unsupervised data is becoming
more viable and common place in the field of gait biome-
chanics. While it is an important tool to advance the field
and our understanding of gait, there are many methods and
measurement questions that still need addressing. Our study

estimated the number of steps required to observe consistent
outcomes when using a shoe-embedded IMU to record real-
world walking. Our primary finding suggests that the number
of steps during purposeful walking required to see consistency
differed based on the outcome being measured. The median
number of steps to obtain consistent data was between 615 and
3720 when looking across all gait outcomes. Assuming a
cadence of 58 steps per minute for a given limb based on
data from adults with and without knee osteoarthritis [30],
a data collection need only comprise anywhere between 11 and
65 minutes of walking, depending on the outcome of interest.
This is well within feasible data collection bounds, especially
in the context of unsupervised, real-world collection spread
over days or weeks. These findings can guide study design
and potentially minimize the over-collection of data that could
be problematic for clinical populations who may have limited
mobility or capacity to walk due to pain. Notably, this analysis
does not replace a traditional sample size estimate which
is bounded by the particular statistical modelling approach
that would be used in the study. Instead, these consistency
estimates are complementary to sample size estimates and
should be considered before new data collection protocols are
conducted.

The amount of data needed to see consistent outcomes
differed based on the underlying signal. We did not observe
significant differences among the AC, GYR, and ST outcomes,
all requiring more steps to reach consistency than tan the
FSA and FPA outcomes. All of these outcomes had individual
participants not reach a consistency point, leading to higher
median step count estimates, larger interquartile ranges, and
ultimately less ability to detect differences. A larger sample
size, both in population and in the amount of gait data
collected, would be necessary to more accurately quantify the
number of steps to reach consistency in these outcomes. The
GYR-TO outcome only had 4 individuals who did not reach
consistency while also exhibiting a potentially (not statistically
significant) lower median step count. It is possible that the
differences in rotational and linear motion of the foot across
the gait cycle can result due to variable terrain and features
of the built world. The terrain underfoot, such as a sidewalk,
gravel, or dirt trail can lead to differences in foot trajectories
in the horizontal and vertical planes [21], while walking
direction changes can affect foot trajectories, as well [31],
[32]. Ultimately, gathering enough data to characterize a
participant’s foot dynamics may demand different amounts
of walking data depending on the outcome, and significantly
more than measures of foot orientation.

Foot segment orientation outcomes readily met the consis-
tency criteria we set in this study. The FSA was consistent
with a median of 662.5 steps across all participants, and
only 1 participant did not reach our threshold. This suggests
that the foot pitch angle at HS is consistently patterned over
time despite variable terrain conditions. As our data were
specific to walking, it is unclear if these results would transfer
to running contexts where FSA may have more relevance
[33]. While more steps were needed to observe consistent
FPA (985 steps) data compared to the FSA, every participant
reached the threshold. The higher relative variability in FPA
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Fig. 4. The number of steps to observe consistent data for each group and gait outcome combination. Circles represent individual participant data
while the box and whisker plots indicate the median (horizontal line), interquartile range (box) and 150% of the interquartile range (whisker). Circles
with dots within indicate data beyond the 150% of the interquartile range.

magnitudes (Table II) relative to the other gait outcomes may
be a direct product of walking direction changes that can
alter FPA magnitude on a step-to-step basis [32]. Despite this
variability, it appears the FPA follows a regular within-subject
pattern that is more consistent than the linear acceleration,
angular velocity, or spatiotemporal outcomes we examined.

In populations with knee osteoarthritis, altering the FPA is
being investigated as a rehabilitation strategy to improve the
loading environment within the knee joint [17]. Most of the
research to date has examined the FPA in laboratory settings
though, limiting our knowledge of how changes to the FPA are
integrated into daily walking. Based on our analysis, consistent
FPA required 985 steps, which equates to approximately
17 minutes of walking with an ipsilateral cadence of 58 steps
per minute. Considering that typical optical motion capture-
based laboratory data collections can exceed this amount of
collection time in total, when including participant preparation
and calibration (despite only recording less than 10 steps for
analysis), collecting this amount of data in real-world settings
using IMUs is certainly feasible. However, not all data that are
recorded during unsupervised data collections will be walking,
so we suggest using the estimates from the present study as
minimum guidelines.

The influence knee osteoarthritis was statistically inconse-
quential in our results. While there was not a main effect
for group, there did appear to be more steps to see con-
sistent stance time outcomes for the KOA group. Previous
investigations have shown conflicting evidence for differences
in the variability of spatiotemporal and kinematic gait out-
comes between groups with and without knee osteoarthritis,
or among groups with knee osteoarthritis [11], [12], [13], [33].

However, these studies were conducted over one laboratory
testing session which cannot capture daily fluctuations in
osteoarthritis disease or gait. If the fluctuations are separated
in time by a large amount, more steps over longer timeframes
may be needed to see consistent variables in this population.
Generally, our results indicate that the time commitment for
collecting consistent data are not appreciably different between
people with and without knee osteoarthritis. This supports the
generalizability of our findings beyond healthy adults.

The results of our study are limited in several ways. First,
we conducted this analysis on healthy adults and people living
with knee osteoarthritis, which may exhibit gait characteristics
that are not generalizable to other populations (e.g., chil-
dren, people living with other musculoskeletal or neurological
pathologies). Further, it is likely that our data arose from
periods of time (or individuals) who had less severe symptoms
overall given the requirements of the walking study. Second,
our results are specific to foot mounted IMUs, which likely
limits generalizability to IMU signals gathered from other
body segments or those that are derived from multiple sensors
(e.g., joint angles). It should be noted that there may have
been clipping of the vertical acceleration signals at heel strike
due to the sensor dynamic range, though an exploratory
post-hoc analysis found no observable effects on the AC-
HS results. Third, our sensorized shoe design involved fitting
the IMU into a relief that was cut into the shoe sole. This
ensured the IMU was correctly and consistently positioned
each time, but meant participants had to walk in the shoes we
provided. Externally mounted IMU systems could allow for
walking in participants’ preferred shoes, but this would likely
result in greater movement artefact and inherent variability
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TABLE III
NUMBER OF STEPS TO OBSERVE CONSISTENT GAIT OUTCOMES

which may lead to different results than we observed. Fourth,
we did not parse our walking data into different terrain
conditions (level ground, inclines, declines, stairs etc.), nor
did we collect other external data (e.g., weather, obstacles,
urban vs rural settings etc.) or internal factors (participant
affect, occupation etc.) which may impact walking behaviour.
Doing so could capture a broader range of walking conditions
but may lead to observing consistent outcomes more readily
than if the analysis was limited to specific terrain/activity
conditions and consistent external/internal factors. However,
limiting the conditions in this way could support more direct
comparisons between studies in the future. Fifth, our data
arose from unsupervised, outdoor walking for longer periods
of time, which may not generalize to short, sporadic walking
bouts. Finally, not all participants reached our definition of
consistency for each outcome. This may have resulted from
people walking in distinctly different environmental conditions
across the week of data collection. Restricting analyses to
specific terrain, as noted above, may reduce this issue in future
studies.

Based on our findings and the above-mentioned limitations,
there are several areas in need of further examination. In order
to capture the upper end of step counts needed to gather
consistent data in some participants, we need to collect larger
datasets over greater timeframes (beyond 7 days). This should
also be done across a more representative population of
people with knee osteoarthritis, comprising the spectrum of
clinical and structural severity. Comparisons with healthy,
age-matched individuals will strengthen our disease-specific
understanding as well. Finally, with larger datasets there will
be support for appropriately powered subgroup analyses that
can identify who, why, and to what extent some people are
more likely to require larger data collection periods to capture
consistent data.

V. CONCLUSION

Sensor-based gait analysis is quickly becoming a popular
method to collect gait data. With this, real-world, unsupervised
gait monitoring is becoming increasingly feasible, providing

researchers and clinicians with diverse and highly relevant
datasets. However, guidelines regarding how data should be
collected are lacking. To our knowledge, this is the first study
to estimate the amount of data needed in real-world, unsuper-
vised walking research to see consistent gait-related outcomes
arising from populations with and without knee osteoarthritis.
Our results support the rapidly expanding research space
related to disease- and rehabilitation-specific gait biomechan-
ics in this population, and the use of IMUs to conduct data
collections outside the laboratory [6]. Researchers should
consider what outcomes they wish to investigate in these
highly variable walking environments, as the amount of data
needed differed by outcome. Overall, our results are promising
in that the number of steps to see consistent outcomes were
well within feasible data collection timeframes, though the
number of participants who did not reach consistency suggests
more work is necessary. This ultimately supports continued
research using IMUs to measure gait dynamics in real-world
settings, which can support the capture of long-term and highly
relevant gait data in healthy and clinical populations.

APPENDIX

Supplementary File 1: Gait signal classification algorithm
Supplementary File 2: Model results
Supplementary File 3: Censored data model results
Supplementary File 4: Censored data median step counts
The study data and statistical analysis are available at:

https://doi.org/10.5683/SP3/PZKWTB
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