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Abstract— Steady-state visual evoked potential (SSVEP)-
based brain-computer interfaces (BCIs) have been sub-
stantially studied in recent years due to their fast
communication rate and high signal-to-noise ratio. The
transfer learning is typically utilized to improve the
performance of SSVEP-based BCIs with auxiliary data
from the source domain. This study proposed an inter-
subject transfer learning method for enhancing SSVEP
recognition performance through transferred templates
and transferred spatial filters. In our method, the spatial
filter was trained via multiple covariance maximization
to extract SSVEP-related information. The relationships
between the training trial, the individual template, and
the artificially constructed reference are involved in the
training process. The spatial filters are applied to the
above templates to form two new transferred templates,
and the transferred spatial filters are obtained accordingly
via the least-square regression. The contribution scores of
different source subjects can be calculated based on the
distance between the source subject and the target subject.
Finally, a four-dimensional feature vector is constructed
for SSVEP detection. To demonstrate the effectiveness
of the proposed method, a publicly available dataset and
a self-collected dataset were employed for performance
evaluation. The extensive experimental results validated
the feasibility of the proposed method for improving SSVEP
detection.

Index Terms— Brain–computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), transfer learning, cross-subject.
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I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG)-based brain-
computer interfaces (BCIs) provide humans a direct

communication path between brain activities and external
equipment without the need to move peripheral nerves or
muscles [1], [2], [3]. Steady-state visual evoked potential
(SSVEP) is one of the most popular paradigms in the
research area of BCI due to its high signal-to-noise
ratio (SNR), reliability, and minimal set up requirement
[4], [5], [6], [7]. SSVEP-based BCI has been broadly
employed in various applications, such as communication [5],
robot [8], [9], and smart home [10].

By analyzing the information from the measured SSVEP
signals, the visual stimulus that the user is gazing at can
be detected, and the corresponding control command can
be output accordingly [11]. In recent years, many target
recognition methods have been proposed for SSVEP-based
BCI systems. Canonical correlation analysis (CCA) is the
most popular method to classify stimuli due to its ease of
use and robustness [12], [13]. However, as a training-free
method, its performance is easily influenced by interference
from spontaneous brain activities. To alleviate this issue,
many improved approaches have been proposed for SSVEP
detection. In the direction of template optimization, to name a
few, the L1-regularized multiway CCA (L1-MwayCCA) [14],
Multiset CCA (MsetCCA) [15], individual template-based
CCA (ITCCA) [16] and multi-layer correlation maximization
(MCM) [17]. Alternatively, several spatial filtering methods
have also been reported to lower the misclassification rate in
SSVEP detection, such as a combination method of CCA and
ITCCA [18], the sum of squared correlations (SSCOR) [19],
and task-related component analysis (TRCA) [20].

Although the performance of SSVEP-based BCI systems
was significantly boosted by these templates- or spatial filter-
based methods, EEG usually suffers from inter-subject non-
smoothness and variability problems [21]. Therefore, trained
templates or spatial filters can only be used for a single
subject and it is difficult to transmit knowledge directly across
subjects. It would prevent the broad and practical usage of
BCIs in our real lives. Recently, the transfer learning (TL)
technique was explored in BCIs to transfer knowledge from
old sessions or subjects (the source domain) to new sessions
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or subjects (the target domain) so that the performance of
the target domain can be boosted [22], [23]. As one of the
research directions, training data is usually transferred across
different domains to augment the size of calibration data
for new users [24], [25]. Template-based transfer learning is
also a popular study area, and several approaches are listed,
such as transfer template-based canonical correlation analysis
(tt-CCA) [26], adaptive combined-CCA (Adaptive-C3A) [27]
and inter- and intra-subject template-based multivariate
synchronization index (IIST-MSI) [28]. In these methods, the
transferred template is simply generated by averaging multiple
trials from source subjects, which may not contain sufficient
SSVEP features. Alternatively, there are multiple BCI transfer
learning studies cooperating on spatial filters to learn the
common feature representations across different domains
[13], [29]. Liu et.al [30] proposed an all-to-one method to
use data from all source subjects to train TRCA-based spatial
filters. Wang et.al [31] presented an inter-subject maximal
correlation method to improve the robustness of SSVEP
classification. Wong et.al [32] proposed a subject transfer
based CCA method which utilizes the knowledge within-
subject and between subjects. However, these methods rarely
consider the correlation among the training data, the individual
template, and the predefined sine-cosine signal simultaneously
to enhance the effectiveness of the spatial filter [33].

In this study, we aimed to explore and exploit a transfer
learning architecture to improve the recognition performance
in the SSVEP-based BCI system. The main contributions
of this paper are as follows: 1) a cross-subject scheme is
proposed which incorporates SSVEP knowledge from source
subject to effectively strengthen the recognition performance
for the target subject. 2) a powerful and informative feature
vector is constructed under this scheme. The multidimensional
feature vector is driven partly by the transferred spatial filter
and the transferred SSVEP template from source subject,
and partly by spatial filter of target subject obtained by
multiple covariance maximization. 3) a contribution score is
introduced to each source subject by further exploring the
distance between the source subject and the target subject.
Validation of the performance of the proposed method was
performed on a publicly available 40-class dataset [34] and
a self-collected 12-class dataset. Extensive evaluations were
conducted to demonstrate its effectiveness in comparison
to some well-known methods. The efficiency and reliability
were demonstrated with an average classification accuracy of
89.98% and 94.61% on the two datasets, respectively.

This paper is organized as follows: Section II introduces the
SSVEP dataset and the proposed method. Section III presents
the experimental results. Discussion and conclusion are shown
in Section IV and V, respectively.

II. METHODS AND MATERIALS

A. SSVEP Datasets
In this study, the proposed method and comparing methods

were evaluated on a publicly available benchmark dataset [34]
and a self-collected SSVEP dataset. The benchmark dataset
was recorded from thirty-five healthy participants. The user

Fig. 1. The SSVEP experimental paradigm.

interface includes forty visual stimuli, which were coded
utilizing a joint frequency and phase modulation (JFPM)
method. The frequencies range from 8 to 15.8 Hz with a 0.2 Hz
gap. There is a 0.5π difference between two nearby stimuli.
For each subject, the experiment contains six blocks, and each
block consists of forty trials corresponding to forty stimuli.
More details about the benchmark dataset can be found
at [34]. Information about the self-collected dataset is shown
below. Hereafter, the two datasets are named Dataset I and
Dataset II.

1) Participants: In Dataset II, eleven healthy subjects (five
females and six males, mean age: twenty-five years) took part
in this experiment. All participants had normal or corrected-
to-normal vision. The experiment has been approved by the
Research Ethics Committee of the University of Leeds. Each
participant read and signed an informed consent form.

2) Visual Stimulus Presentation: In Dataset II, there was
a 4 × 3 stimulus matrix on a 23.6-inch LCD monitor
with a resolution of 1920 × 1080 pixels and a refresh rate
of 60 Hz. Twelve stimuli were coded using JFPM approach.
The frequencies ranged from 9.25 Hz to 14.75 Hz with an
interval of 0.5 Hz. The phase differed from 0 π to 1.5 π ,
and the interval was 0.5 π . For each subject, the experiment
included five blocks, and each block contained twelve trials
corresponding to twelve visual stimuli. Each trial began with a
0.5 s target cue (a red dot). After the cue, all targets flickered
for 5 s simultaneously. The subject is required to focus on
the target stimulus and avoid eye movement. The subject can
have a rest between two neighboring blocks. Fig. 1 describes
the SSVEP experimental paradigm.

3) SSVEP Signal Recording: In Dataset II, data was
recorded by the equipment from g.tec medical engineering
GmbH. The SSVEP data was sampled at 256 Hz by g.USB
amplifier. SSVEP signals mainly appear over parietal and
occipital regions since they are closer to the visual cortex
of the human brain [35], [36], [37]. Some studies presented
that SSVEP signals near these areas have larger amplitude
and SNR [34], [38]. Therefore, nine electrodes (i.e., Pz, PO3,
POz, PO4, PO7, O1, Oz, O2, and PO8) located in parietal and
occipital areas were used to record EEG signals. The ground
electrode and reference electrode were placed over FPz and
the right earlobe, respectively.

B. Data Preprocessing
Due to the effect of visual latency in the human visual

system, the data was extracted in [0.14 (0.14 + d)]s, where d
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Fig. 2. The diagram of the cross-subject transfer learning method for enhancing SSVEP detection. For i-th stimulus, the spatial filter for n-th source
subject ŵn

i and for the target subject ¨̂wi are firstly calculated based on the correlation maximization between any two of the three kinds of signals
(training trials, the individual template, and the reference signal) as well as themselves via (1) - (13). The transferred template Ini , Rn

i and transferred
spatial filter Ŝ

n
i , T̂n

i are then be obtained via (14) - (19). The contribution score pn,1
i , pn,2

i are assigned to correlation coefficients of n-th source
subject via (22) - (25). Finally, four-dimensional feature vector ρi can be formed by (26) and recognition results are determined via (27) - (28).

refers to the data length selected for performance analysis. The
data were filtered by the Chebyshev Type I Infinite Impulse
Response (IIR) filter to pass signals between eight Hz and
forty Hz for Dataset II.

C. The Proposed Method
Assume that the four-dimensional EEG signal is denoted

as χ ∈ RNt ×N f ×Nc×Ns , where Nt represents the number of
training trials, N f indicates the number of visual stimuli,
Nc is the number of channels, and Ns is the number of
samples. Hereafter, i and j refer to the index of stimulus
and training trial, respectively. Therefore, the two-way tensor
χ i, j ∈ RNc×Ns represents the individual EEG signal for the
i-th stimulus and the j-th training trial. The continuous
training data is denoted as χ̂ i = [χ i,1, χ i,2, . . . ,χ i,Nt ] ∈

RNc×(Nt ·Ns ) which is constructed by concatenating Nt training
trials. The single-trial individual template is obtained by
averaging multiple training trails, i.e., χ i =

1
Nt

∑Nt
j=1 χ i, j ∈

RNc×Ns . SSVEP signals can also be characterized by a series
of artificial sine-cosine waves, so the reference signal Y i ∈

R2Nh×Ns is defined as:

Y i =


sin(2π f t)
cos(2π f t)

...

sin(2π Nh f t)
cos(2π Nh f t)

 , t = [1/Fs, 2/Fs, . . . , Ns/Fs]

(1)

where Nh is the number of harmonics, Fs represents the
sampling rate, and f is the visual stimulation frequency.

The spatial filter wi = [uT
i , vT

i , zT
i ]

T
∈ R2(Nc+Nh)×1 can

be computed by maximizing the inter-trial covariance, the
covariance between training trials and individual template,
the covariance between training trials and artificial reference,

as well as the covariance between individual template and
artificial reference. Therefore, the covariance matrix C could
be represented as:

C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (2)

where C11 is denoted as the inter-trial covariance:

C11 =

Nt∑
j,h=1,i ̸=h

cov(χ i, j , χ i,h) ∈ RNc×Nc (3)

C12 and C21 refer to the covariance between the SSVEP
training trials and the individual template, which can be
represented as:

C12 = CT
21 =

Nt∑
j=1

cov(χ i, j , χ i ) ∈ RNc×Nc (4)

The similarity between the training trials and artificially
constructed reference is also incorporated, which can be
denoted as:

C13 = CT
31 =

Nt∑
j=1

cov(χ i, j , Y i ) ∈ RNc×2Nh (5)

C23 and C32 are the covariance between the individual
template and reference signal:

C23 = CT
32 = cov(χ i , Y i ) ∈ RNc×2Nh (6)

In addition, C22 and C33 are denoted as:

C22 = cov(χ i , χ i ) ∈ RNc×Nc (7)

C33 = cov(Y i , Y i ) ∈ R2Nh×2Nh (8)

Therefore, the objective function is represented as wT
i Cwi .
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The constraint is incorporated in above optimization
problem, i.e., wT

i Qwi = 1, where covariance matrix Q is
denoted as follows:

Q = blkdiag( Q1, Q2, Q3) ∈ R2Nh×2Nh (9)

where

Q1 = cov(χ̂ i , χ̂ i ) ∈ RNc×Nc (10)

Q2 = cov(χ i , χ i ) ∈ RNc×Nc (11)

Q3 = cov(Y i , Y i ) ∈ R2Nh×2Nh (12)

Therefore, the constrained optimization problem can be
formulated as:

ŵi = arg max
wi

wT
i Cwi

wT
i Qwi

(13)

The spatial filter ŵi = [ûT
i , v̂

T
i , ẑT

i ]
T is obtained as the

eigenvector of the matrix Q−1C corresponding to the largest
eigenvalue. The N f spatial filters are concatenated to make
spatial filters ṽ = [v̂1, v̂2, . . . , v̂N f ]

T
∈ RN f ×Nc and z̃ =

[ ẑ1, ẑ2, . . . , ẑN f ]
T

∈ RN f ×2Nh . Hereafter, the variable with a
right superscript n, (n = 1, 2, . . . , Nsub) refers to the fact that
it is provided by the n-th source subject. Nsub is the number
of transferred source subjects. Therefore, the two kinds of
transferred templates, i.e., transferred individual template In

i ∈

RN f ×Ns and transferred reference template Rn
i ∈ RN f ×Ns ,

provided by n-th source subject can be represented as:

In
i = ṽ × χ i (14)

Rn
i = z̃ × Y i (15)

Let the variable with the double-dot superscript denote that
it is provided by the target subject. The transferred spatial
filters ŝi j and t̂ i j for the i-th stimulus and the j-th training
trial corresponding to the two kinds of transferred templates
can be calculated by solving the following formula:

ŝn
i j = arg min

si j

∥In
i − sT

i j χ̈ i j∥
2
2

(16)

t̂n
i j = arg min

t i j

∥Rn
i − tT

i j χ̈ i j∥
2
2

(17)

ŝn
i j and t̂n

i j can be estimated via least-squares regression [29]:

ŝn
i j = (χ̈ i j χ̈

T
i j )

−1
χ̈ i j In

i
T (18)

t̂n
i j = (χ̈ i j χ̈

T
i j )

−1
χ̈ i j Rn

i
T (19)

The final transferred spatial filters Ŝn
i and T̂ n

i provided by
n-th source subject can be obtained by averaging all training
trials. Suppose that X refers to the test data from the target
subject, the two correlation coefficients can be calculated as:

rn,1
i = corr((Ŝn

i )T X, In
i ) (20)

rn,2
i = corr((T̂ n

i )T X, Rn
i ) (21)

According to the distance between the source subject and
the target subject, weights will be assigned to correlation
coefficients corresponding to different source subjects. For i-
th stimulus and n-th source subject, the distance is measured

by the correlation coefficient between the spatially filtered
training trials of the target subject and the corresponding
transferred template:

dn,1
i =

Nt∑
j=1

corr((Ŝn
i )T χ̈ i j , In

i ) (22)

dn,2
i =

Nt∑
j=1

corr((T̂ n
i )T χ̈ i j , Rn

i ) (23)

Therefore, the weights also called contribution scores are
represented as:

pn,1
i =

dn,1
i∑Nsub

h=1 dh,1
i

(24)

pn,2
i =

dn,2
i∑Nsub

h=1 dh,2
i

(25)

Therefore, for i-th stimulus frequency, the correlation vector
ρi is denoted as follows:

ρi =


ρ

(1)
i

ρ
(2)
i

ρ
(3)
i

ρ
(4)
i

 =



∑Nsub

n=1
pn,1

i corr((Ŝn
i )T X, In

i )∑Nsub

n=1
pn,2

i corr((T̂ n
i )T X, Rn

i )

corr( ¨̂uT
i X, ¨̂vT

i χ̈ i )

corr( ¨̂uT
i X, ¨̂zT

i Y i )


(26)

The above correlation coefficients are employed to construct
the final feature for target recognition:

βi =

4∑
l=1

sign(ρ
(l)
i )(ρ

(l)
i )2 (27)

Therefore, the frequency of test trial can be determined by the
following formula:

f = arg max
fi

βi , i = 1, 2, . . . , N f (28)

The framework of the proposed cross-subject transfer learning
method was shown in Fig. 2.

III. RESULTS

A. Performance Evaluation
Average classification accuracy and information transfer

rates (ITR) are two widely used indicators to evaluate the
performance of SSVEP-based BCIs. ITR (bits/min) can be
calculated as follows:

I T R =

(
log2 N f + P log2 P + (1 − P) log2

[
1 − P
N f − 1

])
×

60
T

(29)

where P is the accuracy of target identification, and T is
the average time for a selection, including gaze shifting time
(0.5 s) and gaze time. Fig. 3 shows the average accuracy and
ITR for the proposed method and comparing methods. The
sampling rates are different in the two datasets, thus different
data lengths were used to keep the number of samples without
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Fig. 3. The average accuracy and ITR obtained by SSCOR, TRCA,
and the proposed method at different time windows on (a) Dataset I
and (b) Dataset II. The error bars represent standard error of mean
(SEM). The asterisks indicate significant difference between the three
methods obtained by one-way repeated-measures ANOVA (∗: p < 0.05,
∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001, ∗ ∗ ∗∗: p < 0.0001).

decimals. The data lengths ranged from 0.2 s to 1 s with an
interval of 0.2 s for Dataset I and 0.25 s to 1 s with an interval
of 0.25 s for Dataset II. The accuracy and ITR were obtained
via a leave-one-out cross-validation, where five or four blocks
were used for training and a left-one block was used for
testing on Dataset I and II. For the proposed method, source
subjects are selected randomly for transfer. In order to get a
general performance of the proposed method, each process
was conducted ten times for Dataset I and five times for
Dataset II. The different numbers of repeat times depend on the
size of the two datasets being different. The averaged results
were shown for performance evaluation. The number of source
subjects is five for both datasets. The reason was clarified
in Section III-B. It is obvious that the proposed method
can achieve higher accuracy and ITR than TRCA/SSCOR
with different time windows (TWs) on two datasets. One-
way repeated-measures ANOVA was conducted to explore the
similarity of classification performance among the methods on
two datasets. The statistical analysis results show that there are
significant differences among these methods on accuracy and
ITR with each data length.

Fig. 4 shows the probability density of classification
accuracy for three methods on (a) Dataset I and (b) Dataset II
via violin plots. The plots analyzed SSVEP signals with
different data lengths. The violin plot focuses on illustrating
the distribution of quantitative data in a visually intuitive way.
The thick black line in the middle represents the median value,
and the black lines on either side represent the interquartile
range (25% and 75% percentiles). The wider regions of
the violin plot denote values that appear more frequently.
As shown in Fig. 4(a) and Fig. 4(b), the violin plots provided
by the proposed method (i.e., the pink) generally present
higher median values and more concentrated distributions.
Therefore, the experimental results indicate that, the proposed

TABLE I
ACCURACY COMPARISON AMONG THREE METHODS WITH DIFFERENT

NUMBERS OF TRAINING BLOCKS

method can achieve a more stable and superb classification
performance on various subjects compared with TRCA and
SSCOR.

Fig. 5 as an example, shows the accuracy comparison
between the proposed method, TRCA, and SSCOR for
different target subjects. The source subjects were randomly
selected, and the indexes are [7 12 18 19 33] in this case.
The remaining thirty subjects were used as target subjects for
performance comparisons. The experiment result shows that
the proposed method achieves higher SSVEP classification
accuracy for almost all target subjects.

Fig. 6 illustrates the feature values of forty stimuli provided
by the proposed method and TRCA for an example target
subject (S17) with 0.6 s data length. Compared with SSCOR,
the performance gap between TRCA and the proposed method
is closer, so we further compared these two methods. The
feature values of the proposed method were calculated via
(27). Each sub-figure represents a test trial, and the sub-title
represents the accurate recognition result. The first four trials
were selected and amplified for better viewing details. For each
test trial, forty feature values were calculated, and the stimulus
corresponding to the largest value was determined as the target
via (28). The blue and orange circles represent the decisions
of the proposed method and TRCA. The hollow circles turned
to solid circles as the decisions were accurate. Obviously, the
proposed method provided more accurate recognition results.
Besides, for those trials where both methods provide correct
results, the proposed method shows more distinctive and
apparent feature values, such as 2, 6, 8, 14, and 16-th stimuli.
It indicates the effectiveness of the proposed feature vector
construction strategy in (26).

B. The Effect of Parameters
1) The Number of Training Blocks: An important purpose

of the proposed method is to reduce the need for individual
training data. The proposed method should classify SSVEP
responses with sufficient accuracy even with a reduced number
of individual training data blocks. Fig. 7 uses heat maps to
show the SSVEP classification accuracy comparison between
TRCA, SSCOR, and the proposed method with various
numbers of training blocks on (a) Dataset I and (b) Dataset II.
The heat map acts as a graphical representation of data,
displaying values by color in two dimensions. It provides
a more visual path to describe numeric values. In the heat
map, the x-axis refers to the classification method with a
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Fig. 4. Violin plots represent the distributions of classification accuracy of subjects achieved by the three methods with various TWs on (a) Dataset I
and (b) Dataset II. Thick black line in each violin indicates median, and two black lines in each side represent interquartile ranges (25% and 75%
percentiles).

Fig. 5. Comparison between the accuracy of the proposed method, TRCA and SSCOR for different target subjects with 0.6-long data length. The
source subjects were selected randomly. In this case, the source subjects are [7 12 18 19 33], and the rest are target subjects.

Fig. 6. Feature values of the forty stimuli obtained by the proposed method and TRCA using a 0.6 s time window for an example subject (S17).
The source subjects were selected randomly. The blue and orange circles represent the recognition results of the proposed method and TRCA.
The hollow circles turned to solid ones as the results were accurate.

corresponding number of training blocks, and the y-axis
indicates the subject index. The accuracy of the target subjects
is provided here. The number range of training blocks is [3, 5]
for Dataset I and [2, 4] for Dataset II. The heat maps visualize

the highest classification accuracy and lowest accuracy using
colors on a scale from light to dark. As shown in Fig. 7(a) and
Fig. 7(b), the proposed method generally provides the squares
with the lightest color regardless of the number of training
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Fig. 7. Heatmaps of the classification accuracy of three methods with
different number of training blocks on (a) Dataset I and (b) Dataset II.

Fig. 8. Barchart of the classification accuracy of three methods with
different number of electrodes on (a) Dataset I and (b) Dataset II. The
error bars represent SEM. The asterisks indicate significant difference
between the three methods obtained by one-way repeated-measures
ANOVA (∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001, ∗ ∗ ∗∗: p < 0.0001).

Fig. 9. Bar chart of the classification accuracy with different number
of source subjects on (a) Dataset I and (b) Dataset II. The error bars
represent SEM. The asterisks indicate a significant difference between
the there methods obtained by one-way repeated-measures ANOVA
(∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001, ∗ ∗ ∗∗: p < 0.0001).

blocks. Besides, with the increasing training data scale, the
squares generally turn lighter.

Table. I shows the numerical classification accuracy of
three methods and corresponding one-way repeated-measures
ANOVA analysis results. The results revealed that there was a
statistically significant difference (i.e., P < 0.0001) between
the compared methods with all numbers of training blocks
for Dataset I and Dataset II. In conclusion, this table further
demonstrates the effectiveness of the proposed method by
providing more quantitative evidence.

2) The Number of Channels: We further investigated how
the number of electrodes affects the performance of the
proposed method and the compared methods. Fig. 8 shows
the classification accuracy results for (a) Dataset I and
(b) Dataset II. As the number of channels increases, the
recognition accuracy generally increases for all methods.
As indicated in Fig. 8(a) and Fig. 8(b), the proposed method
always provides the highest classification accuracy with a
different number of channels ranging from five to nine for
each dataset. Besides, the statistical analysis results show that
there is a significant difference between the three methods.

3) The Number of Source Subject: Fig. 9 shows how the
number of source subjects affects the performance of methods
on (a) Dataset I and (b) Dataset II. The classification accuracy
in Fig. 9(a) and Fig. 9(b) is calculated by the target subjects,
which does not include source subjects. Therefore, to make
the comparison more reasonable, TRCA and SSCOR also
show various accuracy values for a different number of source
subjects. As the number of source targets increases, the
recognition performance of the proposed method generally
improves slightly and then decreases. The highest value
typically occurs at five, so the number of source targets is set
at that in the analysis. The figure also shows that the number
of source targets does not have a significant effect on the
performance of the proposed method, making this parameter
choice representative and reasonable. The [31] also has the
same setting for the same publicly available dataset.

C. Filter-Bank Analysis
Filter-bank analysis was used to further compare the

recognition performance of the proposed method and other
methods in this study. The filter-bank technology decomposes
the SSVEP signals into Nb sub-band to investigate the
information embedded in the harmonic components [39]. The
cut-off frequency range was set between b × 8 Hz and 90 Hz
for the b-th sub-band, where b = 1, 2, . . . , Nb refers to the
sub-band component number. The feature βb

i was extracted
from b-th sub-band signals and then a weighted summation
was obtained from all sub-bands as: 3i =

∑Nb
b=1(b

−1.25
+

0.25) ·βb
i [32]. The target frequency can be recognized by the

formula:

f = arg max
fi

3i , i = 1, 2, . . . , N f (30)

Fig. 10 shows the classification performance comparison
of the proposed method and other methods with different
numbers of sub-band on (a) Dataset I and (b) Dataset II.
The proposed method provided the highest accuracy and ITRs
for all data lengths. One-way repeated-measures ANOVA was
conducted to further compare these methods. The statistical
analysis results indicate that there are significant differences
among the three methods in terms of accuracy and ITRs in
each dataset.

D. Performance Comparison With Data Augmentation
Methods

In this study, the proposed method incorporates SSVEP data
from the source subject to effectively improve the recognition
performance for the target subject. In other words, the data
in the target domain was augmented via auxiliary data from
the source domain. In this subsection, the proposed method
was further compared with two data augmentation methods,
including multi-stimulus eCCA (MSCCA) [40] and task-
discriminant component analysis (TDCA) [41]. The number
of channels and training blocks are set to nine and five for all
methods. For TDCA, the number of subspaces and the number
of delayed points are eight and one, respectively. In accord
with the comparison shown in Fig. 11, the proposed method



ZHANG et al.: CROSS-SUBJECT TRANSFER LEARNING FOR BOOSTING RECOGNITION PERFORMANCE IN SSVEP-BASED BCIs 1581

Fig. 10. Barchart of the classification accuracy and ITR of three
methods with a different number of sub-band. The error bars represent
SEM. The asterisks indicate significant differences between the three
methods obtained by one-way repeated-measures ANOVA (∗: p < 0.05,
∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001, ∗ ∗ ∗∗: p < 0.0001).

Fig. 11. The average accuracy and ITR obtained by MSCCA, TDCA
and the proposed method at different time windows. The error bars
represent SEM. The asterisks indicate significant difference between
the three methods obtained by one-way repeated-measures ANOVA
(∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001, ∗ ∗ ∗∗: p < 0.0001).

achieved the highest accuracy and ITRs among all compared
methods with almost data lengths. A one-way repeated-
measures ANOVA revealed that there was a statistically
significant difference between the compared methods. The
evaluation results further demonstrated the effectiveness and
feasibility of the proposed method in SSVEP recognition of
the BCI system.

IV. DISCUSSION

A. Model’s Performance
Almost recognition methods in SSVEP-based BCI fields

built spatial filters via considering the relationship between
the EEG signal and the artificial reference or the individual

Fig. 12. Performance comparison between the proposed method
and the method without transfer learning at different time windows
on (a) Dataset I and (b) Dataset II. The error bars represent SEM.
The asterisks indicate significant difference between the two methods
obtained by paired t-test. (∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001,
∗ ∗ ∗∗: p < 0.0001).

template, e.g., CCA and IT-CCA [12] or the relation across
training trials, e.g., TRCA and SSCOR [19], [20]. In this
study, the spatial filter was trained with multiple similarity
constraints. Specifically, maximizing the reproducibility across
trials could extract task-related components [20], but it
may also bring task-related noise [42]. It is reasonable
to remove noise and extract more SSVEP-related features
by incorporating the covariance maximization between the
training trial and the individual template, between the training
trial and the artificial reference, as well as between two
templates. As a cross-subject scheme, the transferred template
and transferred spatial filter are used to boost the SSVEP
detection performance for target subject. As shown in Fig. 3,
the accuracy of the proposed method is 7.19% higher than that
of TRCA and 19.05% higher than that of SSCOR on Dataset I
with 0.6 s long data length. Besides, the proposed inter-subject
transfer learning scheme does not require massive amounts of
training data from the target subject and still achieves superior
SSVEP classification performance. As shown in Fig. 7(a), the
accuracy of TRCA with five training trials (i.e., 63.69%) is
close to the accuracy of the proposed method with only three
training trials (i.e., 65.81%) on Dataset I.

B. Feature Vector Construction
In this study, the feature vector (26) includes four types

of correlation coefficients, two of which come from the
source subjects and the other two from the target subject.
We further explored the difference in classification accuracy
and ITR between this design and feature vector information
only provided by the target subject. Fig. 12 shows the
comparison results on (a) Dataset I and (b) Dataset II.
The proposed method shows better SSVEP recognition
performance compared with the method without transfer
learning. Paired t-test was used to measure the similarity
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of these methods. The statistical results show that there
are significant differences in accuracy or ITR between two
methods at each data length on two datasets. It means that
transferred information from source subjects is beneficial to
improving the SSVEP recognition performance of the target
subject.

C. Future Work
The proposed method designed transferred templates and

transferred spatial filters for enhancing the target subject’s
classification performance. The temporal knowledge included
in the source subjects is not considered. The temporal
information hidden in the SSVEP signals may also contribute
to improving the recognition effectiveness of a SSVEP-based
BCI system. Future work will thus explore the spatio-temporal
filtering method to transfer knowledge across subjects.

V. CONCLUSION

In this study, a cross-subject transfer learning scheme was
proposed for enhancing SSVEP classification performance.
The spatial filter was first trained via multiple covariance
maximization. The relationships between training trials, the
individual template and artificial reference were properly
considered in the spatial filter training process. The spatial
filters were then applied to the aforementioned templates
to construct two new transferred templates, on which
the transferred spatial filter can be obtained accordingly.
The contribution scores of different source subjects to the
feature vector were calculated by their distances from the
target subject. Finally, a four-dimensional feature vector was
constructed for each stimulus to achieve SSVEP recognition.
The effectiveness and feasibility of the proposed method
were demonstrated via experimental evaluation on a publicly
available dataset and a self-collected dataset.
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