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Abstract— We propose a digital biomarker related to
muscle strength and muscle endurance (DB/MS and
DB/ME) for the diagnosis of muscle disorders based on
a multi-layer perceptron (MLP) using stimulated muscle
contraction. When muscle mass is reduced in patients
with muscle-related diseases or disorders, measurement of
DBs that are related to muscle strength and endurance is
needed to suitably recover damaged muscles through reha-
bilitation training. Furthermore, it is difficult to measure
DBs using traditional methods at home without an expert;
moreover, the measuring equipment is expensive. Addition-
ally, because traditional measurements depend on the sub-
jectb’s volition, we propose a DB measurement technique
that is unaffected by the subjectb’s volition. To achieve
this, we employed an impact response signal (IRS) based
on multi-frequency electrical stimulation (MFES) using an
electromyography sensor. The feature vector was then
extracted using the signal. Because the IRS is obtained
from stimulated muscle contraction, which is caused by
electrical stimulation, it provides biomedical information
about the muscle. Finally, to estimate the strength and
endurance of the muscle, the feature vector was passed
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through the DB estimation model learned through the
MLP. To evaluate the performance of the DB measurement
algorithm, we collected the MFES-based IRS database for
50 subjects and tested the model with quantitative evalua-
tion methods using the reference for the DB. The reference
was measured using torque equipment. The results were
compared with the reference, indicating that it is possible
to check for muscle disorders which cause decreased phys-
ical performance using the proposed algorithm.

Index Terms— Digital biomarker, diagnosis of muscle
disorders, stimulated muscle contraction, impact response
signal, multi-frequency electrical stimulation, deep neural
network.

I. INTRODUCTION

SKELETAL muscles are essential organs in the human
body that consists of contractile tissues [1], [2], [3].

Muscle contraction is responsible for movement during daily
activities, and ensures quality of life. Myopathic conditions,
including sarcopenia and muscular dystrophy, are accompa-
nied by loss of muscle contractility, which leads to severe
weakness. For rehabilitation in patients with muscle disorders
due to disease and aging, physiatrists prescribe therapeutic
exercise, as well as electrical stimulation [4], [5], [6], [7].
However, patients may have a better chance of recovery if
they are diagnosed at an early stage. In addition, it is crucial to
monitor the therapeutic effects using unbiased measurements,
including assessments of muscle strength (MS) and muscle
endurance (ME) [8], [9], [10], [11].

Pharmaceutical companies have developed new drugs for
the treatment diseases and disorders, and have conducted
clinical tests to prove the efficacy of these drugs. After a
patient is prescribed a drug, the patient must periodically visit
an institution for its effect to be confirmed through physical
checkups. To measure digital biomarkers (DBs) related to
the MS and ME (DB/MS and DB/ME), various equipment
and scales are used in clinics to evaluate the muscle dis-
orders of patients, for example, torque measurement, timed
up and go (TUG) test, five times sit-to-stand test (FTSST),
electromyography (EMG), Levettb’s test, and Asworthb’s scale
[12], [13], [14], [15], [16], [17]. Torque measurement and
physical scales, including the TUG, FTSST, EMG, Levettb’s
test, and Asworthb’s scale, require time and lead to physical
fatigue. Some equipment for measuring torque are large and
expensive for personal use, making them unsuitable for use at
home.
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In order to continuously receive some drugs, patients who
have rare muscle diseases need to undergo periodic checkups
to assess the condition of their muscles. To acquire drugs
at lower costs, patients must sustain the required condition
of their insurance, including undergoing test to determine
whether the condition of their muscles improve after the
administration of such drugs. However, because it is difficult
to measure the patient’s condition daily at the hospital, the
patient’s condition might have been underestimated by external
factors when performing a medical checkup at regular inter-
vals. In addition, if the patients can measure the muscle condi-
tion at home, misjudgment by underestimation is minimized.

In addition, to reliably check the condition of patients’
muscles, patients that require specific clinical tests must visit
a research institution, which introduces unnecessary expenses.
Hence, to reduce the cost of clinical tests, it is imperative
to develop a novel measurement technique to conveniently
evaluate DBs related to MS and ME at home. Conventional
EMG records the electrical activities of muscle fibers, but
EMG cannot be used to measure MS [18]. In addition, the
signals from the muscle contraction in conventional EMG are
influenced by the patient’s volition, which inevitably increases
the likelihood of variability in the measurements.

To address these major issues, we obtained stimulated mus-
cle contraction signals called impact response signals (IRS)
using a medical device certified by the Ministry of Food and
Drug Safety, called the Korea Food and Drug Administration
(KFDA). The medical device was equipped with an electrical
stimulator and EMG sensor. To record the stimulated muscle
contraction signal, while we stimulated the muscle using
the medical device, we recorded the EMG signal, i.e., the
IRS. Skeletal muscles are composed of type I and type II
fibers, which are related to MS and ME, respectively. Type
I fibers are slow-twitch fibers that are resistant to muscle
fatigue, and are closely related to exercise endurance. Type
II fibers are fast-twitch fibers that can produce powerful con-
tractions but are vulnerable to fatigue. The fibers are related to
MS [19], [20], [21]. Therefore, we stimulated the muscle
to obtain biomedical information that correspond to these
two characteristics. The stimulated muscle contraction signal
depends on the electrical stimulation frequency parameter.
Furthermore, to comprehensively analyze the muscle char-
acteristics, we collected the multi-frequency IRS (m-FIRS),
which included the IRS recorded by the electrical stimula-
tion set using various frequency parameters. The proposed
algorithm employs the m-FIRS recording method to estimate
the DB using an artificial intelligence model based on a
multi-layer perceptron (MLP) to measure the DB/MS and
DB/ME. In addition, to determine the reference value for the
m-FIRS, we measured DB/MS and DB/ME using equipment
for isokinetic systems, under guidance of a medical profes-
sional. Because the m-FIRS may be contaminated by muscle
fatigue, we first measured the m-FIRS and then collected the
reference values using isokinetic equipment.

Our approach in this study was to estimate DB/MS and
DB/ME using an MLP model with a medical device. There-
fore, we first recorded the m-FIRS using the medical device,
and the signal was passed through the preprocessing algorithm
to suppress the artifacts caused by the electrical stimulation.

To extract a feature for the measurement of DB/MS and
DB/ME, we extracted a feature vector from the m-FIRS
and suppressed the noise signal. Therefore, we analyzed the
frequency components of the m-FIRS and extracted the feature
vector to manifest the variation in the muscle contraction while
changing the frequency parameter of the electrical stimulation.
We also analyzed the temporal components of m-FIRS and
extracted the time domain feature vector. When all the features
are employed as the input of the MLP model, overfitting may
occur because of the large size of the feature vector. Hence,
we performed feature selection to reconstruct the extracted
input vector to estimate the DB in order to improve the
performance of the technique. Thus, to select the features
correlated with the DB/MS and DB/ME, we analyzed the
Pearson correlation of the features. Finally, we extracted the
feature vector for the MS and ME, and fed the feature vector
to the MLP model to estimate the DB.

Finally, we trained the classification and regression models
using the MLP scheme to train the MLP model to estimate the
DB. We evaluated the performance of the proposed algorithm
by comparing it with a conventional machine-learning method.
In addition, to evaluate the performance of the proposed
algorithm, we conducted an n-fold cross-validation. Further,
after the m-FIRS was collected through a medical device
called ExoRehab, the signal was transmitted to a mobile device
via Bluetooth. Subsequently, the DB/MS and DB/MS were
measured using the MLP model on the mobile device. Because
our technique does not require patientsb’ voluntary movements
during measurements, it provides unbiased measurements.
Therefore, the proposed DB measurement method can be
adopted as an objective method for muscle evaluation. In short,
our technique does not depend on the subject’s volition since
we only used stimulated muscle contraction signal without
voluntary muscle contraction caused by the subject’s voluntary
action.

In addition, our technique can be used conveniently in
home care settings without trained personnel. Furthermore,
the production cost of conventional equipment for measuring
torque, such as Biodex is high because the equipment is huge.
Moreover, because it is difficult to produce the equipment in
large quantities, the unit price of each equipment is often high.
However, the production cost of our device is much lower than
that of conventional equipment owing to its small size. The
unit price of our device is also low because mass production
is possible. Hence, it is possible to check the DB using our
system at home.

This paper is further organized as follows: The proposed
algorithm is described in section II. Section III presents the
results of the study. Section IV presents a discussion, and
Section V concludes the paper. The acronyms used are listed
in Table I.

II. METHODS

A. Concept of Proposed Algorithm
Myofibrils are composed of myosin and actin filaments, and

are a major component of muscle fibers. Muscle contraction
occurs when the myofibril interval is narrowed by crosslinking
between filaments. The quantity of myofibrils is correlated
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TABLE I
LIST OF ACRONYMS

with the tension that the muscle fibers can produce. Therefore,
the amount of myofibrils must be increased to improve MS.

Muscles were made to contract involuntarily using elec-
trical stimulation. IRS data were then collected using an
EMG sensor to record the muscle contraction. Type I and
type II fibers bionically responded to the electrical stimu-
lation, and biomedical information was captured using an
EMG sensor. The proposed algorithm consists of a stimulated
muscle contraction signal and an MLP model that estimates
DB/MS and DB/ME. The stimulated muscle contraction sig-
nal was defined as electricalb-physiological data, and we
employed electrical stimulation with various frequency param-
eters to search for biomedical information from the signal.
Therefore, we expected that the proposed algorithm would
electricallyb-physiologically estimate biomedical information,
such as DB/MS and DB/ME.

B. Biomedical Signal and Preprocessing

In this section, we describe the DB measurement algorithm
based on the MLP model using m-FIRS. We used five elec-
trodes connected to the medical device via an extension line,
and electrode pads were connected to each electrode. Two
electrodes were used to generate the electrical stimulation
and two electrodes were used to record the EMG signals.
The remaining electrode functioned as the reference electrode.
To record the m-FIRS, electrode pads connected to the device
were attached to the target muscle (thigh), as shown in
Fig. 1. Finally, while we stimulated the skeletal muscle of
the thigh using the electrical stimulation device, we recorded
a biomedical data signal called the m-FIRS using an EMG
sensor. The electrical stimulation frequency parameter was set
to 10, 15, 20, 25, and 30 Hz, and then the IRSs were collected
for each frequency in a sequence. Initially, to measure the DB,
preprocessing was performed to remove artificial noise, such
as electrical stimulation, as shown in Fig. 2. Since we design
the muscle contraction signal which involuntarily occurs after
electrical stimulation, the other signal except for the muscle
contraction signal was defined as noise. In addition, because
the noise signal may negatively affect the output of the feature

Fig. 1. Outline of the m-FIRS data-acquisition method. The red, yellow,
and blue wires are the electrodes for the EMG, electrical stimulation,
and reference of the EMG sensor, respectively. The figure shows the
concept of IRS data collection. While the electrical stimulation stimulates
the muscle, the muscle response signal is captured by the EMG sensor,
as indicated by the blue arrow line.

extraction procedure, preprocessing was required in order to
improve the performance of the proposed algorithm.

Therefore, because the m-FIRS was obtained from the
EMG sensor while the muscle was subjected to electrical
stimulation, the signal was contaminated by artificial noise.
The noise signal made it difficult to analyze m-FIRS, and
the performance of the proposed algorithm was degraded by
the noise signal. Thus, we applied a preprocessing method
to suppress the artificial noise signal using label data, where
the medical device recorded the time information when the
electrical stimulation occurs. Finally, the suppressed EMG
signal y was obtained as follows:

y(t + i) = (x(t + i − 2) + x(t + i − 1) + x(t + i)

+x(t + i + 1) + x(t + i + 2))/5, 1 ≤ i ≤ 15 (1)

where t and i are the time and filter sliding indices, respec-
tively, and x represents the input EMG signal. The preprocess-
ing method employs a moving averaging filter on the order
of five, and the method is iteratively applied to 15 samples
after electrical stimulation occurs. Because the artificial signal
appeared prominently until after 15 samples, we iteratively
applied the filter to 15 samples. The parameter of moving
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Fig. 2. Block diagram of the proposed algorithm.

TABLE II
SUMMARY OF FEATURE VECTOR TO EXTRACT THE MUSCLE

CONDITION. ABBREVIATIONS; LEVEL CROSSING COUNTING (LCC),
PERCENTILE OF SPECTRAL CUMULATIVE SUM (POSCS), STATISTIC

(STAT), SPECTRAL BAND POWER ENVELOPE (SBPE)

averaging filter were empirically determined to extract the fea-
ture vector which entirely had high correlation with reference.
Since we needed to extract high correlation features to train the
best performance model, the filter length and iteration number
were determined with five and fifteen.

C. Feature Extraction
To determine the characteristics of the muscle using

m-FIRS, we extracted the feature vector from the stimu-
lated muscle contraction signal, where the artificial noise
was suppressed. Two types of features (time-domain and the
frequency-domain features) were used to extract the feature
vector, as shown in Table II. We also extracted the feature vec-
tor from the IRS for each frequency and extracted additional
feature vectors using the integrated m-FIRS, which concate-
nated each IRS sequentially. In the time-domain feature-
extraction step, we first extracted the power pattern PP(n) and
variance PV as follows:

PP(n) =

Tn∑
t=0

|yn(t)|, for 1 ≤ n ≤ 5 (2)

where n is the index of the frequency parameter, that is, 10 Hz,
15 Hz, . . . , 30 Hz. In Addition, Tn represents the length of

the input signal. We extracted the variance PV of the power
pattern vector. Thus, we can obtain the variation features of
the energy of the stimulated muscle contraction in accordance
with the electrical stimulation frequency using PP(n) and PV.

We extracted the level crossing counting (LCC) pattern
LP(n) for the m-FIRS as follows:

LP(n) =

Tn∑
t=1

(s(t) − s(t − 1)), for 1 ≤ n ≤ 5 (3)

s(t) =

{
1 if (yn(t) − α) > 0
0 if (yn(t) − α) ≤ 0 (4)

where s(t) indicates a positive or negative sign of yn(t) − α,
and α represents a constant that is a natural number between
1 and 30. The maximum amplitude of yn(t) is expressed until
almost 30-40; therefore the constant value is determined to be
between 1 and 30. Furthermore, because the characteristic of
the muscle that responds minutely to electrical stimulation is
expressed in the IRS, we calculated the LCC with an increase
in α to investigate the minute movement of the muscle.

In the frequency-domain feature-extraction step, yn(t) is
transformed into frequency data in the discrete Fourier trans-
form domain Yn(k), where k represents the index of the
frequency bin. First, we extracted the percentile of the spectral
cumulative sum (PoSCS) PoSCS(a1) using Yn(k) as follows:

PoSCSn(a1) = argmin(| fn − 0.01a1|),

for 1 ≤ a1 ≤ 95, 1 ≤ n ≤ 5 (5)

fn(k) =
1

fn(K − 1)

k∑
m=0

Yn(m),

for 0 ≤ k < K , 1 ≤ n ≤ 5 (6)

where m and a1 are indices of the frequency bin and horizontal
lines, respectively. In addition, fn(k) denotes the function
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of the spectral cumulative sum (SCS), and K was set to
4096. We can analyze the variation in the muscle that reacts
with the electrical stimulation in terms of the frequency data
through the function of the SCS; therefore it is possible to
observe the frequency response of the muscle at a specific
percentile of the total energy in the frequency domain. At this
time, the input length for extracting all features was set to
6800 samples to analyze each IRS entirely. Hence, to analyze
the statistical properties of the muscle variation in accordance
with time variation, we extracted PoSCS-STAT PoSn,µ(a2),
PoSn,σ (a2) using m-FIRS. We first calculated the PoSCS
pattern PoPn(a2, j) as follows:

PoPn(a2, j) = argmin(| fn, j − 0.05a2|),

for 1 ≤ a2 ≤ 19, 1 ≤ j ≤ 8, 1 ≤ n ≤ 5 (7)

where j and a2 represent the frame and horizontal line
indices, respectively. To extract PoSn,µ(a2) and PoSn,σ (a2),
we calculated the average µ and standard deviation σ of
PoPn(a2, j) as follows:

PoSn,σ (a2) =

√√√√√1
7

8∑
j=1

(PoPn(a2, j) − PoSn,µ(a2))2,

for 1 ≤ a2 ≤ 19, 1 ≤ n ≤ 5 (8)

PoSn,µ(a2) =
1
8

8∑
j=1

PoPn(a2, j),

for 1 ≤ a2 ≤ 19, 1 ≤ n ≤ 5. (9)

PoPn(a2, j) was extracted from the fn of each frame, and
then we calculated µ and σ to investigate the statistical
characteristics of each PoSCS for all the frames. Additionally,
because each IRS of the m-FIRS was recorded for 8 s through
the EMG sensor, the number of frames for each IRS was eight.

SEn( j) = log(

b1∑
k=0

|Yn( j, k)|,

b2∑
k=b1+1

|Yn( j, k)|,

. . . ,

b5∑
k=b4+1

|Yn( j, k)|), 1 ≤ j ≤ 8, 1 ≤ n ≤ 5

(10)

where b1, . . . , and b5 are the frequency indices of the band.
The frequency range was divided equally into five bands.
To measure the activity volume of each frequency band over
time, we extracted SBPE for each IRS. We recorded the
EMG signal while stimulating the muscle using electrical
stimulation, and the data were repeatedly recorded for various
electrical stimulation, where the frequency parameter was set
to 10 Hz, 15 Hz, . . . , 30 Hz. To extract the change in activity
volume between the IRSs, we calculated SBPE-GAP SG(l) as
follows:

SG(l) = SEl+1 − SE1, for 1 ≤ l ≤ 4 (11)

where l denotes feature index. SG(l) indicates the variation
between two IRSs and implies the changed activity volume
of the muscle when the electrical stimulation for 10 Hz is

compared with that of other frequencies. Finally, we extracted
the features including PoSCS, PoSCS-STAT, SBPE, and
SBPE-GAP using the integrated m-FIRS, and all of the
features were concatenated into one vector to employ the
input of the deep-learning model. In addition, the m-FIRS was
collected five times per subject, and average of each feature
of the vectors extracted for the five data were used as the
input of the MLP model. Afterwards, the feature vector was
reconstructed using the feature-selection procedure, where we
select features that have a high correlation coefficient with
the reference. At this time, as shown in Fig. 2, because the
MLP models for estimating the DB/MS and DB/ME were
trained, each feature vector for the DB/MS and DB/ME were
reconstructed by feature selection in accordance with the MS
and ME labels, respectively.

D. Model Training
Although the features were extracted from the m-FIRS,

which includes biomedical information for the DB, it was
difficult to estimate the DB/MS and DB/ME using only the
feature vector without the MLP model. In particular, we had
to train the model to robustly estimate the DB indicators
related to MS and ME using the feature vector. Therefore,
we respectively trained two MLP models to estimate the
DB/MS and DB/ME as shown in Fig. 2.

The MLP model consists of three or more hidden layers and
two or more hidden unit between the input layer and output
layer, and the hidden layer and hidden unit are expressed
with the weight matrix and bias vector. Furthermore, the
MLP architecture which emulates the human brain enables
efficient modeling of complicated non-linear relationship data.
Hence, for modeling data consisting of our complex features,
we trained the estimation model using the MLP architecture.
For the MLP model learning, the feature vector was normal-
ized using the mean and standard deviation of each feature.
This required two stages: the model parameter initialization
stage and a fine-tuning stage to train the MLP model for
DB indicators. In the MLP parameter initialization stage,
we randomly initialized the model parameters of the hidden
layers with a uniform distribution (mean of 0) and then
fine-tuned them using a backpropagation technique. In the
backpropagation scheme, the model parameters obtained at the
initialization stage are updated. To do this, the exponential
linear unit (ELU) function g(x) was used as an activation
function for the MLP model, and it was given as

g(x) =

{
x x ≥ 0

γ (ex
− 1) x < 0 (12)

where x denotes the index of the activation function and γ is
the parameter of the function, which is set to 1. The parame-
ters, including the weight matrix and bias vector, were updated
at each layer of the model based on the binary cross-entropy
loss function [22]. To do this, the binary cross-entropy loss
function L was defined as

L = −
1
M

M∑
m=1

[Qm ln(Q̂m) + (1 − Qm)ln(1 − Q̂m)] (13)
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Fig. 3. Experimental equipment. (a) Electrode pads: (a-1) electrode pads for the electrical stimulation and EMG sensor; (a-2) electrode pad for the
reference. (b) Device for the electrical stimulation: (b-1) ExoRehab (sensing device); (b-2) electrode for the electrical stimulation; (b-3) electrode for
the EMG; (c) torque equipment for the hospital.

where m and M represent the index and the size of the
mini-batch, respectively. Additionally, Qm and Q̂m denote
the DB reference and prediction results of the trained MLP
model, respectively. Subsequently, the parameters are repeat-
edly updated using adaptive moment estimation to optimize the
model [23]. Finally, the MLP learning procedure is repeated
for a high-performance model until a specific epoch, after
which the model classifies the weak and strong in terms of
MS Ostr and ME Oend as follows:

Ostr = g(g(g(Qstrw1,str + b1,str)w2,str + b2,str)w3,str

+ b3,str)wo,str + bo,str (14)
Oend = g(g(g(Qendw1,end + b1,end)w2,end + b2,end)w3,end

+ b3,end)wo,end + bo,end (15)

where Qstr and Qend are the feature vectors for DB/MS
classifier and DB/ME, respectively. w denotes the weight
matrix, and b denotes the bias vector. To estimate the Ostr
and Oend with the model parameters, we first multiplied the
normalized feature vector and weight matrix of the first hidden
layer, and added the multiplication result and bias vector
of the first hidden layer. Subsequently, the sum of the bias
vector of the first hidden layer and the multiplication result
passes through the ELU function. Because the number of
hidden layers was set to three, the calculation procedure was
repeated three times until the third layer was reached. In the
output layer, the output value is calculated without the ELU
function. Finally, DB/MS and DB/ME were classified in terms
of weakness and strength according to the threshold.

III. RESULT

A. Statistics
To evaluate the performance of the proposed algorithm,

we first trained a classification model based on MLP that dis-
tinguished weak from strong in terms of DB/MS and DB/ME.
We trained a regression model to estimate the quantitative
value of the reference for DB/MS and DB/ME. To validate
the performance of the classification model based on MLP,
we employed a confusion matrix, the area under the receiver
operating characteristic curve (AUC), and a boxplot between
the classification result and the reference value. In addition, the

regression models were validated using the Pearson correlation
coefficient r between the regression results and the reference
values. Finally, we compared the proposed algorithm with
conventional algorithms, including a support vector machine
(SVM), Gaussian mixture model (GMM), and an artificial neu-
ral network (ANN), using measurements for performance eval-
uation. All statistical analyses were performed using MATLAB
R2020b software.

B. Data Collection Protocol and Data Sets
All participants signed an informed consent form before

data collection. For the experiment involving the DB mea-
surement algorithm shown in Fig. 3, we employed a medical
device (ExoRehab, Exosystems, Seongnam, Gyeonggi-do,
Republic of Korea), which was installed in the electrical
stimulation generator and was approved as a medical device by
the Korean government. In addition, we used electrode pads
[width: 60 mm, height: 44 mm; contact surface component:
hydrogel; resistance: 50 � per 20 mm] (StiMus Electrode,
HUREV Corp., Wonju, Gangwon-do, Republic of Korea),
as shown in Fig. 3. Because the DB measurement technique
had to be applied in the ExoRehab device, the electrode pads
were cut in a manner similar to the planned commercialization
product.

To collect the database for the DB experiment, we collected
data, including m-FIRS and its reference, verified by experts
at a medical center, including a veteran medical doctor team
from one of the best hospitals (Asan Medical Center) in Korea.
To record the m-FIRS, we attached electrode pads to the right
thigh of the subject, as shown in Fig. 1. The IRS was recorded
using the EMG sensor for 8 s while the muscle was stimulated
using the electrical stimulation generator, as shown in Fig. 4,
and it was additionally recorded with the electrical stimula-
tion set to another frequency after 2 s of rest. In addition,
to collect m-FIRS data using a varying frequency, which was
set from 10 to 30 Hz, we repeatedly recorded the data while
increasing the parameter by 5 Hz. The amplitude of the elec-
trical stimulation was set to 22.10, at which point the subject
could endure the pain of electrical stimulation. Afterwards,
to construct the labeled database for the DB experiment, the
m-FIRS reference was labeled by a medical doctor at the
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Fig. 4. Photographs of m-FIRS collection. (a) Scene for recording the
m- FIRS. (b) Scene for recording the reference.

medical center using a torque equipment (HUMAC NORM,
CSMi, Stoughton, Massachusetts, US), as shown in Fig. 3.
The labeling procedure for interested readers is summarized
in Appendix A. Finally, we collected the labeled database
(DB/MS: 95.4 ± 30.6, DB/ME: 0.18 ± 0.08), which consisted
of 50 subjects (weight: 57.3 ± 7.0 kg, age: 71.6 ± 6.6) at the
medical center.

To evaluate the performance of the proposed algorithm,
we performed n-fold cross-validation. After the reference that
was labeled by the torque data was sorted in ascending order,
each data point, including the m-FIRS and the reference,
was assigned in sequence for the three groups. The DBs of
the two groups were employed to train the model, and the
performance of the proposed algorithm was evaluated using
the remaining group. Thus, the test database did not include
the training database, and we conducted the experiments the
three times according to three combinations to construct two
training groups and one test group.

C. Preprocessing and Data Analysis
While subjecting the muscle to electrical stimulation,

we recorded the EMG signal to obtain the IRS. However, the
EMG signal was contaminated by the electrical stimulation,
and the noisy signal degraded the performance of the proposed
algorithm. Thus, to suppress artifact noise due to electrical
stimulation, the EMG signal was passed through the prepro-
cessing procedure, as shown in Fig. 2. When we applied the
preprocessing method described in Section II-A, we confirmed
that artificial noise with an average signal-to-noise ratio (SNR)
of −12 dB was removed, as shown in Fig. 5. To calculate
the SNR of the noisy signal, the epoch length was set to
1000 samples from the front. After applying preprocessing,
we can obtain a stimulated muscle contraction signal that does
not include the electrical stimulation. Although we expected
that the stimulated muscle contraction signal would be dif-
ferent for each subject according to the characteristics of the
muscle, it was difficult to estimate the DB using the waveform
without the data analysis technique. Therefore, to estimate
the DB using the MLP model, we extracted features from
the m-FIRS using the signal analysis technique described in
Section II-B.

The extracted features were employed as the input of the
MLP model for estimating the DB, and each feature had

Fig. 5. Experimental results for the preprocessing procedure: (a) entire
m-FIRS waveform; (b) magnified m-FIRS waveform.

to represent the correlation between the features and the
reference to robustly estimate the DB, as shown in Fig. 6.
In addition, because the dimension of the feature vector was
too large, it may have caused the curse of dimensionality,
and degraded the model’s performance. Hence, to alleviate
the overfitting problem, we reconstructed the feature vector
using the correlation coefficient between the features and the
reference. Because the fair correlation coefficient was defined
as ±0.3 [24], the features between which the coefficient was
±0.3 were selected for the training database. Moreover, since
three training database sets were constructed by the three-fold
cross validation, each feature vector for the three training
database sets was differently constructed after the feature
selection. To select common feature vector for three-fold
cross validations, the intersection of the feature by voting
approach was then finally determined as the feature vector
for the input of the MLP model. Also, the input length for
DB/MS model and input length for DB/ME model were set
to 241 and 151 after the feature selection procedure. At this
time, the procedure for feature selection were carried out with
training set only. Thus, each feature vector for the two DB
elements was determined through the procedure. The absolute
coefficient r between the features and reference is presented in
Table III. As shown in Fig. 6, the coefficients of the specific
feature were 0.63 in terms of the DB/MS in the training
database, and the coefficients of other features for the DB/ME
were 0.55 in the training database. As a result, when we
analyzed the results for the coefficient, we found that the
selected features moderately expressed the DB reference.

D. DB Estimation
To validate the proposed algorithm, we compared it with

conventional methods including SVM, GMM, and ANN.
We then evaluated the performance of the classification models
through objective measurements and trained the regression
models to verify the feasibility of the proposed algorithm
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TABLE III
EXPERIMENTAL RESULTS OF THE CORRELATION COEFFICIENT BETWEEN THE REFERENCE AND FEATURE

Fig. 6. Relationship between the reference value and feature.
(a) Comparison of the DB/MS and SBPE-GAP. (b) Comparison of the
DB/ME and SBPE-GAP.

to quantitatively estimate the reference. To classify the DB,
we trained the classification model based on the MLP tech-
nique described in Section II-C. The number of hidden layers
was set to three, and the number of hidden units was set to
[256, 256, 256]. In addition, to alleviate the overfitting prob-
lem, a dropout set of 0.5 was applied, and we employed L2
regularization when training the model. Since SVM model can
outstandingly classify non-linearly separable dataset in feature
space using kernel function, it was frequently employed in
these machine learning field [25], [26]. Because SVM-based
model might show higher performance than the MLP model by
the merit of SVM, we compared the SVM model with the MLP
model. To train the SVM model, we selected a third-order
polynomial function for kernel function, and the kernel scale
was automatically searched for log-scaled positive values in
the range of [0.001, 1000]. The kernel function was determined
through extensive experiments to determine the optimal model
performance. GMM was a soft clustering approach, and each
data was expressed with probability belonged to each cluster.
GMM was defined by probabilistic model that assumed all data
were generated from a mixture of a finite number of Gaussian

distributions. In addition, GMM algorithm showed superior
results even if training database was comparatively small
[27], [28]. Hence, we verified the GMM model whether it
showed high performance than MLP model. Thus, to train the
GMM model, the number of mixtures for the strong and weak
classes was set to eight and eight, respectively. To verify the
neural network based on single hidden layers, we employed the
ANN model [29], [30]. The number of hidden layers affected
the performance, and the number of hidden layer was set to
three in order to present the best performance in MLP model.
The MLP performance was improved according to increasing
the number of hidden layers, but overfitting issue occurred by
the too much layers. However, although we found the optimal
parameter for MLP, we evaluated the performance of ANN
model in order to definitely verify performance gap between
the multi-layer and single layer. To learn the ANN model,
the number of units was empirically determined to be 256,
and the model parameter of the ANN model was updated using
the loss function called the binary cross-entropy. In addition,
the dropout was set to 0.5 to minimize the overfitting, and
L2 regularization was applied to optimize the model. Finally,
we used the same features extracted from the training database
to evaluate both conventional model and MLP model. The
parameters of the conventional and MLP models were empir-
ically determined through extensive experiments to optimize
performance.

We conducted a performance evaluation using the test
database for the models; the experimental results are presented
in Tables IV and V. The proposed model based on the MLP
technique outperformed the conventional model in terms of
objective measurements. In addition, when the performance
was evaluated through a three-fold cross validation, as shown
in Tables IV and V, the results for all validations indicated
that the proposed model robustly estimated the DB/MS and
DB/ME better than the conventional model. Although the
DB model classifies strong and weak DB elements, the ele-
ments cannot be distinguished using the classification model
based on MLP. Hence, to confirm the feasibility of quanti-
tative measurement, we trained the regression model based
on MLP to estimate the reference value that was labeled
by the expert using the torque equipment in the medical
center. The loss function for the regression DB model was
replaced with the mean squared error (MSE) function, which is
typically employed in the MLP model for the regression task.
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TABLE IV
CLASSIFICATION MODELS PERFORMANCE FOR THE DB/MS. ABBREVIATIONS; EXPERIMENTAL (EXP), REFERENCE (REF), ESTIMATION (EST)

TABLE V
CLASSIFICATION MODELS PERFORMANCE FOR THE DB/ME. ABBREVIATIONS; EXPERIMENTAL (EXP), REFERENCE (REF), ESTIMATION (EST)

TABLE VI
MLP-BASED REGRESSION MODEL PERFORMANCE FOR THE DB/MS AND DB/ME. ABBREVIATIONS; MEASUREMENT (MEAS),

AVERAGE ERROR (AE), ERROR STANDARD DEVIATION (ESTD)

Consequently, the MLP model for regression estimates the ref-
erence value, as shown in Fig. 7, and the experimental results
are summarized in Table VI. By calculating the correlation
between the reference and estimated values, we confirmed that
the model reasonably estimated the reference labeled by the
expert. Thus, the features extracted using m-FIRS can be used
to measure the DBs for MS and ME using an MLP model.

IV. DISCUSSION

Stimulation of muscles using an electrical stimulation gen-
erator causes involuntary muscle contraction. The IRS contains
biomedical information regarding the DB/MS and DB/ME.

A strong correlation between the extracted features and the
reference was confirmed in this experiment. The proposed
algorithm can robustly measure DBs using a feature vector
extracted from the IRS.

Therefore, the proposed algorithm objectively measures
DB/MS and DB/ME using the IRS. These results may reflect
the general health status of the patients. The measurements can
be conducted at home using a portable digital device called
ExoRehab. We expect that intrinsic muscle diseases can be
detected using long-term DB monitoring. We also propose
the use of a DB and its feature vector for the diagnosis
of myopathy. Moreover, we expect that it will be used to
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Fig. 7. Experimental results for the regression model based on the MLP.
(a) Experimental results for the DB/MS in the set1 database. (b) Exper-
imental results for the DB/ME in the set1 database. (c) Experimental
results for the DB/MS in the set2 database. (d) Experimental results for
the DB/ME in the set2 database. (e) Experimental results for the DB/MS
in the set3 database. (f) Experimental results for the DB/ME in the set3
database.

scientifically prove the effects of digital medicine, such as
digital therapeutics.

We proved that the bioinformatic characteristics within the
IRS were related to muscle condition; therefore, we considered
that patients with spinal muscular atrophy (SMA) and myopa-
thy, as well as healthy elderly individual, could be classified
using the IRS. Indeed, when our model estimated the DB using
data from a few patients with SMA, it was confirmed that the
DB of patients with SMA was distinctly separated from that
of the elderly, who belong to the high-risk group of patients
with myopathy. After collecting more data from patients with
SMA and those with myopathy, we plan to extend the DB
measurement technique to patients with SMA and myopathy.
Based on the results of this study, we expect that the IRS of
the DB can be used to classify muscle-related diseases and
objectively estimate disease severity. Finally, because the DB
technique is used to scientifically prove the current muscle
condition of patients, the effects of drugs on muscle diseases
can be proven. Thus, we expect that the DB technique can be
used by patients to obtain insurance approval to obtain drugs
at lower costs.

We observed various muscle properties through the m-FIRS
recorded by the electrical stimulation set to 10–30 Hz for the
frequency parameter. We did not set the electrical stimulation
frequency above 35 Hz because the signal may not have been
properly analyzed if the muscle was not sufficiently relaxed
after a stimulated contraction. In the future, we may need

to prove the effectiveness of m-FIRS at a higher frequency.
In addition, when stimulating the muscle for each subject using
the equivalent electrical stimulation, the IRS was recorded
differently for each subject in accordance with the DB/MS
and DB/ME. And, to obtain various information from the
muscle, we analyzed the muscle with the diverse signal which
consisted of multi-frequency IRS. For this, we preferentially
carried out experiment through the IRS recorded by electrical
stimulation of the designed frequency parameter (10-30 Hz,
in 5 Hz increment) to confirm the feasibility of proposed
system. And, in future, we plan to finely research the frequency
parameter in order to improve performance of the proposed
system. After we carry out the planned research, we expect that
the hyper-parameter can be determined in terms of frequency
of electrical stimulation in order to present best performance.

V. CONCLUSION

To measure the DB of the target muscle, the IRS was
recorded using an EMG sensor while the muscle was stim-
ulated using an electrical stimulation generator. We also
collected the m-FIRS database for the subjects to analyze
various biomedical characteristics, and the muscle response
depended on the frequency of electrical stimulation. To do this,
we extracted the feature vector to analyze the muscle condi-
tion, and the correlation between the features and reference
was strong. Thus, when performing a performance evaluation
using a test database that does not include a training database,
the model can be used to robustly estimate the DB. In addition,
we compared the MLP model with conventional methods,
such as SVM, GMM, and ANN, to verify the performance
of the proposed algorithm. The MLP model can estimate DBs
more elaborately than the conventional method in terms of
complex data; therefore, it performed better in measuring DB
measurement.

APPENDIX A
PROCEDURE FOR THE LABELING OF THE TORQUE DATA

1) We measured the torque data of the subject using torque
equipment set to 60◦/s.

2) The subject performed the leg-extension motion
10 times.

3) We measured the torque data of the subject using torque
equipment set to 180◦/s.

4) The subject performed the leg-extension motion
10 times.

5) An expert refined the torque data for labeling.
6) To evaluate the DB/MS, the peak torque of each

motion in the 60◦/s data was calculated, and then
the %body weight (body weight, %body weight =

peak torque/body weight) was extracted.
7) To evaluate the DB/ME, the average power of each

motion in the 180◦/s data was calculated, and the coef-
ficient of variation (CoV) was extracted.

8) The weak and strong terms of the DB/MS and DB/ME
were defined as follows:

a) Strength-strong is defined by %body weight ≥ 100
b) Strength-weak is defined by %body weight < 100
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c) Strength-strong is defined by CoV < 0.17
d) Strength-weak is defined by CoV ≥ 0.17

9) To divide equivalently the number of data for each class,
the threshold was determined as above.
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