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Abstract— Postural control is usually assessed by exam-
ining the fluctuations of the center of pressure (COP).
Balance maintenance is based on sensory feedback and
neural interactions, deployed over multiple temporal scales
and producing less complex outputs with aging and dis-
ease. This paper aims to investigate postural dynam-
ics and complexity on diabetic patients, since diabetic
neuropathy (DN) affects the somatosensory system and
impairs postural steadiness. A multiscale fuzzy entropy
(MSFEn) analysis, over a wide range of temporal scales,
was performed on COP timeseries during unperturbed
stance in a group of diabetic individuals without neu-
ropathy and two groups of DN patients, with and without
symptoms. A parameterization of the MSFEn curve is also
proposed. A significant loss of complexity was recognized
for the medial-lateral direction in DN groups with respect
to non-neuropathic population. For the anterior-posterior
direction, symptomatic DN group showed a lowered sway
complexity for longer time scales with respect to non neu-
ropathic and asymptomatic patients. The MSFEn approach
and the related parameters highlighted that the loss of com-
plexity might be attributed to different factors depending on
sway direction, i.e. related to the presence of neuropathy
along the medial-lateral axis and to a symptomatic state
on the anterior-posterior direction. Results of this study
support the use of the MSFEn for gaining insights into bal-
ance control mechanisms for diabetic patients, in particular
when comparing non neuropathic with neuropathic asymp-
tomatic patients, whose identification by posturographic
analysis would be of great value.

Index Terms— Multiscale entropy, fuzzy entropy, dia-
betes, center of pressure, neuropathy.
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I. INTRODUCTION

HUMAN upright stance maintenance is only deceptively a
straightforward task, being instead the eventual outcome

of a process involving multiple sensory feedback integration
and direct neural regulation, together with a partial reliance
on the passive mechanical properties of muscles and liga-
ments [1]. Degradation of postural stability is one of the first
signs of impairment due to aging and disease [2], [3], [4], with
a jeopardized capability of adapting the balance response to
environmental and internal demands, leading to a higher risk
of falls and related concerns [2].

The instrumented static posturography still remains the
favorite way to investigate quiet standing [1], [2], [5], being a
relatively simple experimental setup, suitable for clinical set-
tings [2]. Further, it does not represent a physical challenging
task, being thus suitable for elderly and pathological individ-
uals [6], [7], [8]. Moreover, the sources of disturbance are
mainly internal and can be referred as a whole to the upright
stance mechanical characteristics [1], [3]. Thus, unperturbed
posture analysis can provide insights about the ultimate goal
of the balance control system, i.e. to stabilize an intrinsically
unstable system [1].

In posturographic investigations, two fundamental quantities
are taken into account, namely the body center of mass
(COM) displacement and the center of pressure (COP) fluctu-
ations. Despite it is well acknowledged that they are strictly
related [1], [3], [9], actually COM and COP mirror quite
different balance features. The former represents an actual
movement that can be estimated but not directly measured [1],
whereas the latter reflects the torque exerted at the lower limb
joints, which is the result of descending motor commands
acting through skeletal muscles [3]. Hence, the COP encom-
passes information relative to the balance regulation, partially
dependent on mechanical properties but mainly governed by
the nervous system [1], [5]. Therefore, investigating the COP
trajectory has a key role in gaining insights about the neural
schemes of postural control [5], [10], [11], [12] and for a better
comprehension of the development and adverse outcomes of
diseases affecting balance [2], [4].

During quiet standing, the time course of the COP exhibits
a strongly erratic and non stationary behavior [13], [14] but
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traditional stabilometry methods provide parameters related
to amplitude, temporal, and frequency content of the COP,
thickening its entire trajectory into a single scalar-valued
index [4], [5]. These quantities have a narrow perspective,
since they reflect only specific characteristics of balance
maintenance [5] and cannot account for the inner dynamics
of COP timeseries [13], [14], [15]. A number of studies
has been thereby devoted to the analysis of temporal and
structural patterns of sway, exploring its fractal and correlation
properties by different descriptors and stochastic models [12],
[16]. Other approaches adopted a deterministic paradigm,
extracting nonlinear indexes related to variability, stability,
and repeatability of COP patterns [14], [15], [17], whereas
other studies dealt with the chaotic behavior of such data [13].
However, biological timeseries can hardly be viewed as purely
deterministic or stochastic, being instead the result of a com-
bination of the two components [12], [18].

A further way for investigating COP dynamics, without
assuming any underlying model, is the quantification of
repeatability and regularity of sway through entropy mea-
sures [19], [20], [21], [22], which reflect the rate of occurrence
of different patterns within the data series [18], [23]. However,
entropy measures give maximized outputs for uncorrelated
random data, e.g. white noise, and assign the lowest value to
totally predictable signals, e.g. periodic waves, whilst neither
of them encompasses structurally complex content, i.e. mean-
ingful patterns enclosing information about the underlying
dynamics [18], [24]. Furthermore, entropy measures operate
on each data point given the earlier one, i.e. on a single scale,
and thus the information related to scales different from the
shortest one cannot be fully captured [18], [23]. However,
the functions of a physiological system are deployed through
the interactions between different control dynamics, across
multiple spatial and temporal scales [18], [25].

In order to deal with these issues, the multiscale entropy
(MSEn) was proposed [18], [26]. Basically, the MSEn per-
forms an entropy analysis over multiple time scales, providing
a measure of the complexity of a timeseries rather than only
straightforward quantification of its regularity [18], [27]. The
MSEn has been widely employed for treating biological series
and it was applied to the COP displacement in order to
gain insights about the adverse effects on postural control
of diseases affecting the neural system [6], [8] and of aging
and frailty as well [25], [28], [29]. Although many evidences
indicate that the balance control process operates with different
temporal dynamics [5], [12], [13], [14], [24], few studies inves-
tigated COP fluctuations over relatively large time scales [6],
[8]. Further, when wider scales were considered, this was
joined to prolonged and unconstrained postural tasks, not
easily feasible for elderly or pathological patients [7].

Among the diseases that affect stance maintenance, type-2
diabetes is one of the most widespread, in particular within
the older adults population [30], [31]. Neuropathy is a com-
mon complication recognizable in almost 50% of diabetic
individuals [4], impairing peripheral sensory perception [32],
[33]. Diabetic neuropathy is an acknowledged factor which
negatively impacts on balance control, leading to a degraded

stability during static and dynamic stance [10], [11], [30]
and a higher risk of fall [31], [34], which might be shared
also with diabetic subjects without neuropathy [35], [36].
This motivated a number of studies devoted to the evaluation
of postural features of diabetic individuals, mainly through
traditional measures [4], [35], [37] whereas few efforts were
devoted to explore nonlinear and stochastic features of COP
time evolution [22], [34] and no previous works dealt with
the diabetic postural sway in terms of its complexity over
multiple time scales. The latter may provide clues about the
breakdown of physiological functions and systems interactions
governing balance stability [24]. Hence, such approach appears
of interest in this context, since diabetes impairs mostly the
somatosensory system, with a possible involvement also of
the vestibular one [10], [35] and a decline in the integration
of the sensory feedback information is expected [10], [11].

This study aimed to investigate the complexity of balance
control in three groups of diabetic patients, i.e. affected by
non neuropathic diabetes, asymptomatic, and symptomatic
neuropathic diabetes, analyzing COP data collected during
static posture trials through a MSEn approach, in order to
explore complex dynamics deploying over large temporal
scales. As a measure of regularity for the multiscale analysis,
the Fuzzy entropy (FEn) was used. This represents an entropy
metric yet employed for biological signals [22], [38], [39] and
whose embedding in a MSEn framework was applied to EEG
and gait timeseries [40], [41] but not to human sway data.

II. METHODS

Data belonging to forty-three patients affected by type-2 dia-
betes mellitus were retrospectively analyzed [4]. Eighteen sub-
jects were affected by symptomatic neuropathy (NSD group),
eight suffered asymptomatic neuropathy (NAD group) and sev-
enteen were non neuropathic (NND group). Average values for
age and body mass index were 71±5 years and 27.4±3.6 kg

m2

for the NND group; 69±8 years and 30.8±4.2 kg
m2 for the NAD

group; 67±10 years and 28.4±4.6 kg
m2 for the NSD group. Each

patient performed two posture trials standing barefeet on a
dynamometric force plate (Kistler 9281) and each trial lasted
120 s. More details of the experimental setup are reported
in [4].

A. Multiscale Entropy
The MSEn was introduced as a method to calculate entropy

over multiple time scales [18], [26]. The MSEn is based on
entropy computation, integrating a coarse-graining procedure
of the original timeseries, which allows to observe dynamics
that may exist over different temporal scales. Given a N -length
timeseries x(n) and an integer scale factor τ , consecutive
coarse-grained timeseries are computed by dividing the origi-
nal timeseries into non overlapping windows of length τ . Each
element of a coarse-grained timeseries is obtained averaging
the samples of the original series xi within each considered
window:

z(τ )
j =

1
τ

jτ∑
i=( j−1)τ+1

x(i)
(

1 ≤ j ≤
N
τ

)
(1)
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where z(τ )
j is the j th element of the coarse grained timeseries

and x(i) is the i th element of xi . For τ = 1, the corresponding
coarse-grained timeseries z(1) is equal to the original time-
series. The length of each z(τ ) is N

τ
. Then, the selected entropy

measure is computed for each coarse-grained time series and
considered as a function of the scale factor τ .

In this study the fuzzy entropy was used as complexity index
for the MSEn analysis. Broadly speaking, the FEn represents a
statistic for quantifying the rate of regularity of a N -length data
series, by measuring the probability that m-length subseries,
with m < N , which are similar within a certain threshold
value, remain similar also for m + 1. Note that m is the
distance of points to be compared, defining the length of
each embedding vector and the temporal resolution of the
analysis [27], [42]. The FEn was proposed by [39] and the
pivotal difference with respect to the other entropy measures,
such as the sample entropy (SEn), lies in the function used
for assessing similarity. Indeed, for the SEn the Heaviside step
function is used [39] whereas the FEn employs an exponential
function, that allows to obtain the maximum of the self-
similarity, avoiding abrupt changes in similarity values [39].
Given a N -length timeseries x(n), (N −m) embedding vectors
are constructed as:

ym
i =

[
xi , xi+k, . . . , xi+(m−1)k

]
(2)

where xi is the i th sample of the original timeseries and k is an
integer time-lag, representing a scaling factor for embedding
vector computation. Each embedding vector thus contains m
samples of the original timeseries, taken at a distance of k
samples. In this study, k was chosen equal to 1, in order to
avoid loss of information about COP temporal dynamics [23],
[27]. For each ym

i the correlation sum is computed as follows:

Cm
i (r, n) =

1
N − m − 1

N−m∑
j=1, j ̸= j

exp
(

−
(Dm

i, j )
n

r

)
(3)

D(·) is a metric for measuring the distance between ym
i and all

the remaining N −m −1 embedding vectors. In this study, the
Chebyshev distance has been used [39]. The FEn computation
depends on three parameters: the first one is the embedding
dimension m, whereas the other two are the width (r ) and
the gradient (n) of the exponential function, that define a
similarity boundary within which neighboring points must fall
for contributing to Cm

i (r, n). Then, the N −m correlation sums
defined for each ym

i are summed up, obtaining 0m(r, n):

0m(r, n) =
1

N − m

N−m∑
i=1

Cm
i (r, n) (4)

The same procedure is then repeated for m + 1 and the FEn
is eventually computed in the following way:

FEn(m, r, n) = − ln
(

0m+1(r, n)

0m(r, n)

)
(5)

When dealing with entropy-based analysis, setting the
embedding dimension m equal to 2 represents the most
common choice for physiological signals [26], [39], [40], [42],
also if COP timeseries are investigated. This is related to the

need for having at least 10m data samples in order to obtain
a reliable entropy computation [19]. Thus, m = 2 allows
a more detailed description of the process dynamics with
respect to m = 1, limiting at the same time the large data
lengths required for m ≥ 3 [39]. To be noted, this choice
results the most common one also when COP timeseries are
investigated [6], [7], [27] and appears quite independent from
the sampling rate, since also for a wide range of recording
frequencies an embedding of 2 was still reported [25], [27],
[29], [43], [44]. This denotes that, within a MSEn approach,
the information on different time scales is retrieved by con-
struction from the coarse graining process and the m value
showed to be instead a function of data logistics, i.e. number
of data samples [27]. Hence, this aspect has to be carefully
considered, since the last coarse-grained timeseries, i.e. that
corresponding to the higher scale factor, must contain itself
enough samples for ensuring a proper entropy computation.
In passing, different m values for COP analysis showed to
not affect the outcomes when comparing multiple groups,
leading only to an expected variation of the entropy numerical
value [21]. However, establishing the best embedding for
COP time course analysis was far beyond the scope of this
study and further work is requested for addressing this issue,
in particular when physiological timeseries are considered,
due to their heterogeneous characteristics which prevent rough
generalizations [22], [27], [39].

For a MSEn analysis, the r value is a fraction (unitless)
of the timeseries standard deviations and it is commonly
set between 0.1 and 0.2 [7], [27], but higher values were
considered for human sway data [20]. However, since r can be
viewed also as a threshold to filter out timeseries glitches [42],
it should be small enough to prevent information loss but
too low r values could lead to an undesired influence of
noise [23], [39]. In what follows, the unitless value of r itself
is reported rather than the product r ×SD, as common practice
in related works [18], [21], [27], [43]. The same considerations
hold for the gradient (n) of the exponential function in FEn
computation [39]. In addition, FEn was originally developed
as a single-scale complexity measure [39] but its validity in
recognizing the correct amount of complexity on multiple time
scales remains a still discussed issue [40], [41].

The latter aspect led to a preliminary evaluation of the
multiscale fuzzy entropy (MSFEn) for distinguishing between
different signals with known levels of complexity, over large
time scales. Hence, MSFEn has been tested on a set of
synthetic signals, with known stochastic and deterministic
behaviors (see Appendix A). MSFEn resulted able to recognize
processes characterized by different dynamics and in partic-
ular showed to be reliable in distinguish different levels of
complexity also for large scale factor, being thus suitable for
the following analyses.

B. Parameters Selection
The parameters selection for MSFEn computation was

based on the criterion proposed in [39], where the variability
of the entropy measure was evaluated for different r and
n. In order to obtain a parameters selection not biased by
the properties of human sway data to be further analyzed,
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Fig. 1. Average variance of MSFEn computed on 30 random walk
signals according with the r and n parameters of the exponential
function. The embedding dimension was m = 2.

synthetic signals have been considered. The COP trajectory
can be modeled as a random walk process [12] and 30 different
random walk processes of length N = 104 were generated.
The average variance of MSFEn was evaluated for r ∈

[0.1, 0.2, . . . , 1] and n ∈ [1, 2, 3, 5], with τ from 1 to 100.
For n ≥ 2, the variability of entropy value was poorly
affected by the r values (Fig. 1), which instead was strongly
reduced if n = 1. For r ≥ 0.5 and n = 1 the entropy
variability showed an almost constant trend, being the lowest
among the other n values. Therefore, for MSFEn computation,
r = 0.5 and n = 1 were chosen. Incidentally, the selection of a
r value greater than those commonly used for MSEn analyses
(between 0.1 and 0.2) agrees with what was reported in [20],
where r = 0.3 was employed for SEn analysis on human sway
data.

C. Data Processing and Analysis
Kinetic data were acquired at 100 Hz, resulting in

12000 data samples and COP trajectories in both anterior-
posterior (AP) and medial-lateral (ML) directions were consid-
ered. COP data were low-pass filtered at 20 Hz, for removing
high-frequency artifacts [6]. Then, since the non-stationarity
of COP data can affect the reliability of an entropy-based
analysis [14], [20], each timeseries was checked in order
to assess the presence of low-frequency trends [28]. The
latter identify long-range correlated processes [20] for which
the power spectrum follows a decaying power law of the
type P( f ) ∝

1
f β .

Both COP components showed a clear linear fit in the
log-log PSD representation (Fig. 2), which is a reliable sign
of long-term correlations [20]. It has been suggested that
computing the increment of COP timeseries can contribute
in reducing data correlations [20], [45], since a long-term cor-
related process upon increment becomes anti-correlated [45].
However, this procedure could alter the complexity character-
istics of data [45]. Thus, long-term correlation was removed
by detrending COP data through a high-pass filter (4th order
Butterworth digital filter). The cut-off frequency was chosen
according to [7] as ten times the lowest possible frequency in
the data (0.008 Hz).

MSFEn was computed on both COP components, coarse
graining the timeseries according to (1) with the integer scale

Fig. 2. Power spectral density represented on a log-log scale for
COP component in the anterior-posterior direction for a representative
subject.

Fig. 3. Graphical representation of the parameters computed on the
MSEn curve (black line). Fitting lines are reported in gray. CPt indicates
the temporal change point, obtained as the scale factor in correspon-
dence of the intersection point between the fitting lines, whereas the
CPa is the entropy value in correspondence of the CPt. CI1 and CI2
represent the two areas of the MSEn curve in which the CPt divides the
total area CI.

factor τ from 1 to 100. Since the τ value itself is independent
from experimental variables as the sampling rate and data
collection time, in order to ease the comparison with different
studies the scale factor will be reported also as time scale [24].
Then, the area under the curve was computed for each MSFEn
trace, representing the complexity index (CI) [6], [7], [8]. The
MSFEn curve presents two distinct epochs characterized by a
different rate of change of entropy value and thus the initial
and final parts were linearly interpolated in order to detect the
time scale where the complexity shifts from a growing rate
to a quasi-stationery rate (Fig. 3). Hereafter the latter time
scale is indicated as the temporal change point (CPt ) and the
entropy value in correspondence of the CPt as the amplitude
change point (CPa). Further, since the CI thickens in a single
index all the considered time scales, providing a poorly timely
located measure of complexity, also the CIs encompassing
the time scales ranging from 1 to CPt (CI1) and from CPt
up to the last time scale (CI2) were computed (Fig. 3). Note
that MSEn values and related parameters are without physical
unit, since entropy is a function of the data series probability
distribution [23] and its final value (see Eq. (5)) is the ratio of
the same quantity computed for m and m + 1. The normality
of data distributions for each population and each sensory
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Fig. 4. MSFEn curves of the center of pressure in the AP (a, b, c) and ML (d, e, f) directions for a representative NND (a, d), NAD (b, e), and NSD
(c, f) patient. Black dots represent FEn values for each scale. Linearly interpolated lines are indicated by solid gray lines whereas vertical dashed
line divides small and large scale areas.

condition was established by the Kolmogorov-Smirnov test.
Differences between groups were evaluated by the one-way
ANOVA and Kruskal-Wallis test in case of gaussian and non
gaussian distributed data, followed by Tukey’s post hoc test.
Significance was set at 5%.

III. RESULTS
The MSFEn curves for three representative patients belong-

ing to NND, NAD, and NSD groups are reported in Fig. 4,
for anterior-posterior and medial-lateral COP components. The
parameters computed on the MSFEn curves for the three
populations are reported in Fig. 5.

The CI, CI1, and CPa parameters resulted not signifi-
cantly different between the three groups in the AP direction
whereas in the ML direction NND population showed a
significantly (p<0.01) higher CI with respect to NAD and NSD
(Fig. 5(a), 5(b), and 5(d)). No significant differences were
detected between NAD and NSD groups for the above men-
tioned parameters. The CI2 parameter remained significantly
higher (p<0.01) in the NDD population for the ML component
of COP and it showed significant differences also for the AP
component (Fig. 5(c)), where NSD group presented a lower
CI2 value with respect to NND and NAD groups (p<0.01).
Between the latter two groups, no significant differences
were observed for CI2. Finally, CPt exhibited no significant
differences between groups for the AP or ML components of
COP (Fig. 5(e)).

IV. DISCUSSION
A. Non Neuropathic (NND) and Neuropathic (NAD and
NSD) Patients: Medial-Lateral Sway

The CI on the ML direction was significantly lower for both
groups affected by neuropathy (NAD and NSD) if compared

with the NND group and this holds also whether CI1 and
CI2 are considered (Fig. 5). This finding matches with the
marked ML instability observed in diabetic subjects [46], sug-
gesting that the neuropathy itself, irrespective of the presence
of symptoms, is the main factor affecting balance along the
ML axis. Incidentally, a lower complexity on ML direction was
reported also for elderly and patients affected by neurological
disorders [47]. The significant differences obtained on the
ML direction could reflect the enhanced role of the hip joint
for controlling balance and an increase of the sensitivity
towards the ML sway information in diabetic patients with
neuropathy [30], [31], [37]. Indeed, the latter primarily affects
peripheral areas [32] and the postural information available
at the ankle level becomes degraded [33], leading the sub-
ject to rely more on a balance control focused around the
hip [30], [37].

In addition, the balance control on the ML direction, based
on the trunk orientation in space, heavily depends on sensory
information provided by the vestibular system [30], [37].
When a somatosensory loss occurs, as happens for diabetic
neuropathy [32], an increase of the sensitivity and the depen-
dence toward the vestibular information is expected [10]. The
lower CI obtained for NAD and NSD populations with respect
to NND (Fig. 5(a)) could thereby be partially attributed
also to the presence of vestibular dysfunctions, which have
been often associated with diabetes, in symptomatic and
asymptomatic patients [36]. It is interesting to note that
Novak et al. [48] investigated also diabetic COP traces with
the stabilogram diffusion function (SDF) [12], reporting that
patients showing white matter hyperintensities (WMHs) had
less correlated and more stochastic fluctuations over the
long-term region for the ML sway [48]. These findings appear
in agreement with the lower CI of NAD and NSD groups
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Fig. 5. Boxplots of the parameters extracted from the MSFEn curve for both COP components and the three groups. Double asterisk symbol
denotes statistically significant differences with p<0.01.

and in particular for the CI2 index (Fig. 5(c)), since the latter
encompasses time scales larger than 1 s, where a balance
control driven by sensory feedback information is assumed
to take place [12].

Furthermore, a more random behavior of the ML sway in
diabetic patients with respect to healthy controls was observed
for the short-term region of the SDF [34], matching with
the lower complexity recognized over the smaller time-scales,
identified by CI1 (Fig. 5(b)). Indeed, a lowered complexity,
combined with an increase of irregularity, has been reported
for many different physiological data with compromised func-
tions [18], [26], [29]. This is coherent with the loss of com-
plexity paradigm, that postulates a lowered complexity of the

output of a physiological system when a functions’ breakdown
occurs, due to aging or disease [6], [18]. The diminished ML
complexity of NAD and NSD populations thereby reflects a
reduced capability to cope with balance demands under free-
running conditions, relying on few and repeatable postural
patterns with a limited physiological adaptability. This aspect
appears to be unrelated to the neuropathy symptoms insur-
gence, since no differences were detected between NAD and
NSD groups (Fig. 5). In passing, this can comply also with the
interpretation that a lower regularity mirrors a more efficient
control, since higher entropy values and complexity were
reported when the visual sensory feedback is available [6],
[17], [20] and thus the subject can rely on the full information
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about the environment, fully exploiting its own automatic
strategies for maintaining balance.

Reading the present results under the foregoing theoretical
framework underlines the additional value provided by a
MSEn analysis, compared with a single scale entropy investi-
gation. The latter method gives a measure of regularity [23],
i.e. the more a signal exhibits uncorrelated structures, the
higher is the assigned entropy value [18]. Instead, a MSEn
analysis offers a measure of complexity, which is minimized
for perfectly ordered or completely unpredictable series, since
both of them do not enclose complex structures [26]. This
can account for the apparent discrepancies with the results
obtained when balance is investigated with a single scale
entropy approach. For instance, young adults showed the
lowest entropy value among elderly and elderly fallers, who
in turn had the highest entropy for all the tested balance
conditions [19], [21]. Actually, a higher entropy reflects an
enhanced irregularity on a single time scale, which likely
mirrors a poorer and less structured balance control of fallers
with respect to non-fallers and young adults [21]. Instead,
a loss of physiological complexity becomes evident with a
MSEn approach for diseases affecting balance capabilities [6],
[8], [29], possibly related also to a less automatic and efficient
control, due to the need for increasing awareness-based mech-
anisms devoted to keep upright stance. Although the relations
between COP complexity, regularity, and postural regulation
dynamics is still object of investigation [15], [24], [47] and
merits further studies for gaining additional insights, present
outcomes confirm that a multiple scale approach should be
adopted when the matter of interest is to address the long-term
dynamics of a physiological system and structural complexity.

An increased sway is a known feature of neuropathic
individuals, being a marker of a degraded postural con-
trol [30], [31], [34], [35], but an increased postural sway
associated to a poor complexity content of COP fluctua-
tions was reported [29]. This is not in contrast with the
lowered complexity observed for the neuropathic patients
(NAD+NSD) in the ML direction (Fig. 5), since the com-
plexity is not necessarily coupled with spatial and geometrical
properties of a timeseries. A larger sway for neuropathic
patients can therefore be related to the need for counteracting
the somatosensory deficit, by raising the minimum amount
of sway required to ease perception [30]. Indeed, a certain
amount of postural sway, termed exploratory sway, is required
for easing the upright stance maintenance by exploring towards
the spatial limits of stability [30]. Thus, the exploratory sway
in neuropathic patients could occur in a poorer complex way,
being more irregular and less arranged and preventing to fully
develop a proper postural control. This is supported also by the
higher risk of falling in diabetic subjects [34]. Although this
hypothesis deserves to be further investigated, it is remarkable
that also in this case the ML sway dynamics appear of primary
importance.

Present findings confirm the role of the ML COP component
for the diabetic balance control and the merit of not limiting
the analysis to the AP direction alone [30], [35], [37]. In addi-
tion, a symptomatic state does not appear to affect the com-
plexity of the ML postural sway, since a significantly lower

complexity in both neuropathic groups was recognized with
respect to NND patients but all the CI indexes showed similar
values for NAD and NSD groups (Fig. 5). This aspect appears
of particular importance, indicating that the complexity of the
medial-lateral sway is able to highlight significant differences
between NND and NAD groups, revealing signs of neuropathy
even without a symptomatic state of the disease.

B. Asymptomatic (NND and NAD) and Symptomatic
(NSD) Patients: Anterior-Posterior Sway

In the AP direction, a significant lower CI2 was observed
in symptomatic patients (NSD) with respect to those without
symptoms (NND+NAD, Fig. 5(c)). A possible interpretation
of this finding might refer to the impairment of group II spindle
fibers, suited to detect the low frequency body sway around
the ankle joint in the AP direction [49]. As reported in [11],
postural instability due to neuropathy depends on what kind
of spindle fibers are affected and, for diabetic neuropathy,
abnormal balance sway arises only when group II fibers are
degraded [11], [49]. Hence, the lower complexity of symp-
tomatic patients (NSD group) could mirror the impairment
of the above cited spindle fibers, whose functionality could
be worsened when the neuropathy manifests a symptomatic
state. However, this hypothesis warrants further investigation,
focused on the degree of fibers degradation for symptomatic
and asymptomatic neuropathy.

Furthermore, different sensory inputs are related to different
frequency bands of human sway spectrum and the somatosen-
sory feedback control is deployed within the 0.5−1 Hz
band [50]. Since for each group the CPt resulted about 0.7 s
(Fig. 5(e)), CI2 spans roughly the 25 ≤ τ ≤ 100 interval,
encompassing the frequency content from ∼1.3 to ∼0.3 Hz.
Hence, CI2 accounts for the complexity of the stance control
which relies on the feedback information provided by the
somatosensory system, degraded by a symptomatic state of the
disease. In this case a less complex postural sway appears to
be related to the insurgence of symptoms, rather than the pres-
ence of the neuropathy itself. Accordingly, between patients
without neuropathy (NND) and those with neuropathy but
without symptoms (NAD) no significant differences have been
observed (Fig. 5(c)). Instead, the similar values of CI1 between
groups (Fig. 5(b)) may indicate no dysfunctions in the way the
central nervous system governs stance maintenance, since this
is recognizable on frequencies above 1 Hz [50] and thus for
τ < 30, agreeing with the fact that type-2 diabetes affects
mainly peripheral pathways [30], [31].

Interpreting CI2 as an indicator of the complexity of balance
related to the integration of afferent sensory information is
in agreement with [12], which reported a closed-loop neuro-
muscular regulation, on the long-term region of the SDF. Fur-
thermore, the latter exhibits an anti-persistence behavior [12]
and the higher value of CI2 (Fig. 5) agrees with the lower
stochasticity of this SDF region, mirroring a more tightly
regulation of balance, due to afferent sensory feedback. This is
highlighted also by the almost constant level of complexity for
scales >CPt (Figs. 3 and 4), which indicates that new struc-
tured information is present across multiple time scales [18].
The deployment over large time scales of a stance control
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driven by neural integration of sensory inputs is supported also
by Yamamoto et al. [5], who indicated that high frequency
components of body sway account for the biomechanics of
stance, whereas slow oscillations reflect postural strategies
governed by neural activity. In addition, the short-term region
of the SDF [12] exhibited a more stochastic and random
behavior with respect to the long-term region and these two
regions are separated by a critical time of ∼ 1 s [12]. This
aligns with the low complexity for small time scales measured
by CI1 (Fig. 5), where an open-loop neuro-muscular control
of balance is advocated, characterized by persistence [12].

The CPt resulted the only parameter without significant
differences between groups (Fig. 5(e)) for either COP com-
ponents. Such CPt value (∼0.7 s) is very close to the time
between peaks (MT ∼0.6 s) of the sway density plot (SDP)
proposed by Baratto et al. [3]. MT depends on stance biome-
chanics and resulted pathology independent [3], in agreement
with present results. In particular, MT is related to the rate of
production of postural commands, aimed at avoiding fall [3].
Thus, it appears reasonable that CPt defines two MSEn regions
(CI1 and CI2), with higher complexity for time scales ≥CPt ,
where active balance regulation is deployed.

Outcomes provided by the proposed MSFEn parameter-
ization hence agree with those reported in previous stud-
ies, regarding the scaling laws governing COP time course.
However, the MSEn was originally designed for assessing
the complexity of a data series, overcoming the often mis-
leading equivalence between irregularity and complexity [18]
and being able to describe dynamical properties not identi-
fied by other statistics, as the detrended fluctuation analysis
(DFA) [26]. Thus, albeit MSFEn offers some advantages, such
as the absence of preliminary assumptions on the scaling
regimes, needed by the SDF [51], and the continuous and
convex fuzzy function that avoid abrupt changes in similarity
assessment, sometimes observed for the DFA [52], further
studies are required for assessing the relationship between
present findings and those provided by other timeseries anal-
ysis tools regarding COP fractal and scaling properties, also
by a numerical viewpoint.

In summary, a less complex postural sway on the
anterior-posterior direction seems to be related to the symp-
tomatic state of the disease, rather than the presence of the
neuropathy itself. Significant differences were observed only
for long time scales (CI2), which account for the somatosen-
sory feedback control of balance, and no differences arose if
only the common CI index is considered. Furthermore, only
posture trials in eyes open condition were analyzed, for which
structural measures showed no predictive power [4]. This
underlines the value of the proposed MSEn curve parameteri-
zation (Section II-C) and, in general, of investigating structural
regularity of balance data over long time scales.

V. CONCLUSION

This study confirmed the value of a MSEn analysis for
human sway data, pointing out the additional merit of con-
sidering a large scale factor, since it allows to observe balance
dynamics related to different feedback control information.
In particular, the loss of complexity on ML sway seemed to

Fig. 6. Average values (± SD) of MSFEn of white noise (circle), 1
f noise

(square), logistic map (dot) and sine wave (asterisk).

reflect the presence of neuropathy itself rather than a symp-
tomatic state, whereas on AP direction it appeared linked to
the presence of symptoms, affecting somatosensory feedback.
These findings could be useful for helping the detection of
diabetic neuropathy, in order to enact therapeutic strategies
for avoiding or limiting the symptomatic development of the
disease.

Possible directions for future work include the assessment
of whether the MSEn-based parameters proposed in this study
can be valuable in clinical settings, by using them for a
computer-aided classification of different stages of diabetes.
In this view, further studies should be devoted to investigate
whether the present MSEn parameters would be able to charac-
terize functional loss also in different pathological populations.

APPENDIX A
SUITABILITY OF MSFEN OVER LARGE SCALE FACTORS

Here is reported the analysis for assessing the suitability of
FEn to be used within a multiscale framework, encompassing
large scale factors. Firstly, the MSFEn was applied to a set of
synthetic signals with different levels of complexity, as in [42].

The selected signals were white noise (WN), 1
f noise, logis-

tic map (LOGMAP) and sine wave (SW). WN is a gaussian
distributed uncorrelated random signal, whereas 1

f noise is a
multiscale correlated signal, whose power spectral density falls
off at 10 dB per decade. LOGMAP is a chaotic deterministic
signal, generated as:

x(i + 1) = α · x(i) · [1 − x(i)] (A.1)

with α = 4. The SW was constructed by adding white noise
to a sinusoidal waveform [41]. For each signal, a total of
30 timeseries were generated, made by 104 samples. Then,
MSFEn was computed on each synthetic signal, and the
corresponding average entropy values were plotted with a scale
factor from 1 to 10 (Fig. 6).

The MSFEn correctly recognized a decreasing complexity
for WN, which mirrors the absence of complex structures
for large time scales, while the almost constant value for
the 1

f noise indicates that new information is present across
multiple scales [18]. Further, MSFEn detected a lower degree
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Fig. 7. MSFEn of MIX signal for different p values. Dark gray line
indicates p = 0.05, black line refers to p = 0.10 and light gray line
stands for p = 0.20. Entropy values are plotted in logarithmic scale for a
better visualization.

Fig. 8. MSFEn of Henon map for different β values. Dark gray line
indicates β = 0.84, black line refers to β = 0.88 and light gray line
stands for β = 0.92.

of irregularity for the LOGMAP with respect to WN and
1
f noise [42], assigning the lowest complexity to the SW

(Fig. 6), which represents a totally predictable signal, without
any complex pattern.

In order to assess whether MSFEn can recognize different
levels of complexity over large time scales, it was applied
to two additional synthetic signals: the MIX process and the
Henon map. Realizations of both processes, characterized by
different levels of regularity, can be obtained by a proper
parameter selection. The MIX signals is a corrupted deter-
ministic process:

M I X (p) = (1 − z) · x + z · y (A.2)

where x is a sinusoidal waveform of period 12 generated
as in [42], y is a gaussian distributed variable within the
set [−

√
3,

√
3] and z is a random variable which is 1 with

probability p and 0 with probability 1 − p. By definition, the
higher is p the less the MIX process is regular and repeatable.
The Henon map represents a chaotic dynamical process [38],
defined as:{

x(i + 1) = β · y(i) + 1 − 1.4 · x2(i)
y(i + 1) = 0.3 · β · x(i)

(A.3)

where increasing values of β lead to chaos dynamics charac-
terized by more complex attractor.

Three signals of 104 samples were generated for MIX signal
and Henon map, with slightly different levels of complexity:
for the MIX signals p was chosen as 0.05, 0.10, and 0.20,
whereas for the Henon map β was 0.84, 0.88, and 0.92. Then
MSFEn was computed with a 1-100 scale factor τ .

For each considered scale factor, the MSFEn assigned an
increasing entropy value for MIX signal and Henon map
characterized by increasing complexity, i.e. for higher p and
β values (Figs. 7 and 8). Despite the limited variations in
terms of complexity of MIX signal and Henon map, MSFEn
correctly recognized different complexity structures, resulting
in higher entropy values for higher p and β parameters
(Figs. 7 and 8). Incidentally, MSFEn was able to detect the
periodic behavior of the MIX signal, being the sudden falls of
complexity in correspondence of the signal period (Fig. 7).
It is noteworthy that the latter feature holds also for each
considered scale factor, larger than those considered by [42],
thus strengthening the suitability of MSFEn over multiple time
scales.
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