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Abstract— Alzheimer’s disease (AD) is one of the
most common neurodegenerative diseases in the world.
To reduce the incidence of AD, it’s essential to quantify
the AD conversion risk of mild cognitive impaired (MCI)
individuals. Here, we propose an AD conversion risk
estimation system (CRES), which contains an automated
MRI feature extractor, brain age estimation (BAE) module,
and AD conversion risk estimation module. The CRES is
trained on 634 normal controls (NC) from the public IXI
and OASIS cohorts, then it is evaluated on 462 subjects
(106 NC, 102 stable MCI (sMCI), 124 progressive MCI (pMCI)
and 130 AD) from the ADNI dataset. Experimental results
show that the MRI derived age gap (AG, chronological
age subtracted from the estimated brain age) significantly
distinguish NC, sMCI, pMCI and AD groups with p-value =

0.000017. Considering AG as the primary factor, incor-
porating gender and Minimum Mental State Examination
(MMSE) for more robust Cox multi-variate hazard analysis,
we concluded that each additional year in AG is associated
with 4.57% greater AD conversion risk for the MCI group.
Furthermore, a nomogram was drawn to describe MCI
conversion risk at the individual level in the next 1 year,
3 years, 5 years and even 8 years from baseline. This work
demonstrates that CRES can estimate AG based on MRI
data, evaluate AD conversion risk of the MCI subjects, and
identify the individuals with high AD conversion risk, which
is valuable for effective intervention and diagnosis within
an early period.

Index Terms— Alzheimer’s disease, conversion risk
prediction, brain age, cox hazard analysis, nomogram.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is one of the most common
neurodegenerative diseases and the incidence increases

exponentially [1]. There will be 1 in 85 persons living with
it by 2050 [2], which will greatly increase the global social
burden. Mild cognitive impairment (MCI) is a transitional state
of normal aging to dementia [3] and individuals with MCI may
at high conversion risk to AD [4]. Predicting AD conversion
risk of MCI individuals is crucial for disease early intervention
and delaying the pathology process [5], [6], [7].

Abnormal changes in brain are associated with cognitive
decline [8], [9], [10]. Brain age has been developed
as an effective AD biomarker to estimate the patients’
faster neurodegenerations compared to normal controls
[11], [12], [13], [14]. Compared with the neuroimaging
biomarkers, such as the cerebrospinal fluid (CSF) and MRI
biomarkers, brain age performs better in detecting cognitive
decline [15] and has stronger clinical interpretability and
applicability. In this study, we introduce the “Age Gap”
(AG) [16], [17], formulated as the difference between the
estimated brain age and the individual’s chronological age.
A positive AG value represents that the individual’s estimated
brain age is older than his/her chronological age, indicating
the accelerate neurodegeneration.

Many studies have utilized CSF biomarkers, including
amyloid-β (Aβ42), total tau (P-tau), and phosphorylated tau
(T-tau) to evaluate the conversion risk of MCI [18], [19]. MCI
individuals with high CSF tau and no proportional increase in
p-tau-181 are at a higher conversion risk to AD [19]. However,
the detection of the CSF biomarkers is invasive and may
cause discomfort and side effects in subjects, thus limiting the
application of this method in early AD diagnosis. In addition,
classification of MCI into progressive MCI (pMCI) and stable
MCI (sMCI) is also currently popular method for MCI
conversion risk prediction [20], [21], [22], [23], [24]. These
studies construct deep learning models based on the extracted
neuroimaging features, such as tissue volumes and cortical
thickness, etc. The accuracy of pMCI identification is up to
86% [23]. However, the construction and operation costs of
the models are relatively high, requiring a large amount of
raw data and strong computing power as support. The common
deficiency of all the above studies is that little is known about
the quantitative conversion risk. Therefore, this study sets out
to predict the conversion risk to AD in MCI population based
on Cox proportional hazards analysis.
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Cox proportional hazards model (Cox regression model)
[25] has been widely used in the medical research for multi-
variate survival analysis. Compared with machine learning
models, Cox model performs better in dementia risk prediction
[26]. Available studies [27], [28] applied it based on
neuroimaging features to analyze the correlation between
neuroimaging features and risk probability but lack studies
of individualized prediction. Based on the Cox regression or
other multi-variate regression analysis, the nomogram was
used widely in disease diagnosis [29] due to its ability
to reduce the complex statistical prediction into a single
numerical estimation of the probability of outcome event. The
nomogram transforms the complex regression equation into
a visual graph, making the results of the prediction model
more readable and interpretable. Therefore this study intends
to utilize AG as the main risk variate of the Cox regression
model to analyze the hazard of MCI converting to AD and
then build a nomogram to quantify and visualize the individual
conversion risk. To our best knowledge, this is the first study
applying nomogram based on the Cox regression for AD
conversion quantitative prediction at individual level.

The contributions of the current research are organized as
following. Firstly, we proposed a novel and fully automated
AD conversion estimation system (CRES). Secondly, we con-
sider AG as the primary variate and incorporate other clinical
factors, such as gender and MMSE score, to build more robust
Cox hazard model. Lastly, we implemented risk estimation at
the individual level which is of great clinical significance for
early intervention of Alzheimer’s disease.

II. METHODS

A. Data Acquisition
1) Training Data: All neuroimaging data used in this study

are structural T1-weighted MRI scans. To increase the robust
and generalization of brain age prediction, MR images
of 634 cognitively normal controls (NC) subjects from
two independent cohorts were used in the training task.
The first cohort was Information Extraction from Images
(IXI) http://brain-development.org/ixi-dataset/ and 562 T1w
MRI scans of NC were selected. The second cohort
was Open Access Series of Imaging Studies (OASIS)
https://www.oasis.brains.org and 72 T1w MRI scans were
selected. The same pre-processing procedure was conducted
to ensure consistency among images from different cohorts.

2) Evaluating Data: Data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset
www.loni.ucla.edu/ADNI/ were used for evaluating,
including 106 NC subjects, 207 mild cognitive impairment
(MCI) and 130 Alzheimer disease subjects (AD). The AD
subjects were diagnosed as AD at baseline and had no
reversion at follow-up. These MCI subjects were diagnosed
as MCI during the baseline visit. Adopting the diagnostic
classification at baseline and follow-up, MCI subjects were
grouped as: (i) sMCI (stable MCI), if diagnosis was MCI
at all available time points (n=102); (ii) pMCI (progressive
MCI), if diagnosis was MCI at baseline but converted to
AD at follow-up without reversion to MCI (n=125). The
demographic information are shown in Table I. All studies
are approved by their respective Institutional Review Boards.

And informed consent has been obtained from all study
participants or their authorized representatives before data
collection.

B. The Overview of CRES
This work proposes the AD conversion risk estimation

system (CRES) to estimate the AD conversion risk of
MCI individuals, as shown in Fig. 1. This system consists
of the automated MRI feature extractor, brain age esti-
mation (BAE) module and AD conversion risk estimation
module. First, individual MRI scans in the training and
evaluating dataset were pre-processed with the SPM12 pack-
age https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ and the
standard CAT12 toolbox http://dbm.neuro.uni-jena.de/cat/
under the Matlab. We obtained the segmented and smoothed
grey matter (GM) and white matter (WM) images. Second,
we applied the Principal Component Analysis (PCA) to refine
the features of the processed images. On the basis of the
refined features of the NC samples in the training dataset,
different regression models were established and compared
and the best one was chosen as the final brain age estimation
(BAE) model. The BAE model was performed on the refined
features in the evaluating data to estimate the individual brain
age. We obtained and analyzed the AG values for groups at
different cognitive stages. Finally, considering the AG, gender,
MMSE score of sMCI and pMCI samples as risk variables,
Cox proportional hazard analysis was conducted. We analyzed
the cumulative conversion risk of MCI subjects to AD in the
following ten years. Then a nomogram was drawn to visualize
the complicated Cox analysis. It can be easily and intuitively
observed of the conversion risk for any MCI patient at any
year-point in the next decade.

C. Data Pre-Processing
The data format from the IXI cohort was NIFTI

and the others were DICOM. MRIcron https://www.
nitrc.org/projects/mricron was used to convert DICOM to
NIFTI. Pre-processing of the T1w MRI scans were performed
using the SPM12 package and the standard CAT12 toolbox.
All of the T1w-MRI scans were linearly registered into a
standard space (MNI152), segmented into the white matter
(WM), grey matter (GM) and cerebrospinal fluid (CSF)
tissues. Then segmentations were bias corrected of intensity
non-uniformities and modulated by scaling with the amount
of volume changes due to spatial registration. To improve
the signal-to-noise ratio of the image, the WM and GM
images were smoothed with an 8mm full-width-half-maximum
(FWHM) smoothing kernel [16], [30]. The voxel intensities of
the smoothed WM and GM were used as MRI features.

D. Data Reduction
There are lots of redundant voxels due to the spatial

correlations in voxel-based sMRI [16]. So, dimension
reduction or feature refining is necessary for the follow-
up brain age estimation modeling. PCA is a widely used
dimension reduction method [16], [30], [31]. We applied PCA
on the pre-processed WM and GM images in the training
dataset. And the same PCA transformation was used on the
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TABLE I
CHARACTERISTICS OF SUBJECTS IN THE STUDY

evaluation images. We reduced the dimensions of the original
80*80*80 image to 421 principal components and retained
98% of the feature information

E. Brain Age Estimation and Model Validation
The support vector regression (SVR) algorithm was widely

used to estimate the brain age in a series of neuroimaging
studies and shown to be a robust estimation model [11], [32],
[33], [34], [35]. We also made the performance comparison
analysis of the SVR model with other similar regression
models. For each regression method, the GM and WM features
of the NC samples in the training dataset were as independent
variables respectively and the individual chronological age as
the dependent variable. We used 10-fold cross validation [36]
to assess the reliability of the brain age estimation frameworks
and the accuracy of each framework was validated by the mean
absolute error (MAE), and r2 score (between chronological
and estimated brain age). The expression of MAE and r2 are
shown in Eq. 1-2.

M AE =
1
m

m∑
i=1

∣∣ŷi − yi
∣∣ (1)

r2
= 1 −

(
∑

i (ŷi − yi ))
2∑

i (ŷi − yi )2 (2)

where m is the number of total subjects, ŷi is the estimated
brain age and yi is the individual chronological age. MAE is
used to evaluate the degree of closeness between the predicted
result and the real value. The smaller MAE value represents
the better prediction performance. r2 score is to explain the
variance score of the regression model. The closer r2 to
1 represents the better regression.

The best framework was chosen as the final brain age
estimation (BAE) model. Then the BAE model was applied
to estimate the brain age in the evaluating dataset and analyze
the AG at different cognitive stages.

F. Cox Proportional Hazards Analysis
Cox proportional hazards model (Cox regression model)

[25] is a common procedure for multi-factor survival analysis
and has been widely used in medical research [15], [28], [37].
We counted the AG, gender, and MMSE scores of all MCI
patients in the evaluating dataset, including sMCI and pMCI.
Then we utilized AG as the main risk variable, gender and
MMSE score as additional variables, conversion to AD as the
outcome event and whether the outcome event occurs as the
survival state. In this study, the observation period was ten

years. The survival time is the time interval from the baseline
visit to first visit with AD diagnosis for pMCI and the time
from baseline to the last follow-up for sMCI. Then the risk
variables, survival state and survival time were adopted to
establish the Cox regression model for evaluating the hazard
of MCI patients converting to AD in the follow-up decade.
The Cox regression can be denoted as:

h(t, X) = h0(t)eβ1x1+β2x2+β3x3 (3)

where h(t, X) is the hazard rate function, that is, the
probability of the outcome event occurring at time t. x1,
x2 and x3 represent gender (male or female), AG (years)
and MMSE score respectively, β is the partial regression
coefficient of the independent variable and h0(t) is the baseline
hazard rate. Before applying the Cox regression model,
we need to determine whether the proportional hazards (PH)
assumption is satisfied, that is, the hazard rate (HR) of each
risk variable does not change over time. And we checked the
PH assumption [38] by Schoenfeld residuals. Cox analysis
was performed using R language. In order to evaluate the
performance of the Cox model, concordance index (C-index)
was applied to estimate the probability of the predicted result
consistent with the actual result.

G. Nomogram
To transform the complex Cox regression equation into a

simple and visual graph, making the results of the prediction
model more readable and more valuable, the nomogram was
applied based on the Cox analysis for quantitative prediction of
the AD conversion risk in the MCI population. The principle
of the nomogram is to assign a score to each variable based
on the contribution (regression coefficient) of the variable
to the outcome, and then sum up these scores to the total
score. Through the functional relationship between the total
score and the probability of the outcome event, the predicted
probability of the individual outcome event was calculated.
In this study, the nomogram was developed using the rms
package of R language. A total score can be calculated for each
MCI patient, and then the probability of AD conversion risk at
any time-point in the next decade can be obtained. The “rms”
package was used to draw and calculate the calibration curve
for evaluating the prediction credibility of the nomogram.

III. RESULT

A. Brain Age Estimation Model
To estimate the brain age, we built SVR, Linear and

Bayesian regression frameworks using the refined features
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Fig. 1. An illustration of the novel AD conversion risk estimation system. First, all MRI scans were pre-processed by the automated MRI feature
extractor, and the segmented and smoothed GM and WM images were obtained as the MRI features. Second, PCA was applied to refine the
MRI features and reduct the dimension. Taking the refined features of the NC samples in the training dataset as independent variable and the
individual chronological age as dependent variable, different regression models was established and the best one was chosen as the brain age
estimation(BAE) model by comparison. The trained BAE model was performed on the evaluating features to obtain the brain age and calculate
the AG values. Finally, Cox hazard analysis was conducted according to the AG, gender and MMSE score of the MCI samples and Nomogram
was draw to visualize the complex hazard model. The conversion risk for any MCI patient at any year-point in the next decade can be easily and
intuitively observed.

of GM and WM respectively in the training set. MAE and
r2 score were used to compare the performance of the brain

age estimation frameworks based on 10-fold cross-validation.
The MAE (r2) values was 4.336 (0.897) for SVR training on
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TABLE II
THE PERFORMANCE COMPARISON OF THE

BRAIN AGE REGRESSION FRAMEWORKS

Fig. 2. Chronological age versus estimated brain age for NC (blue
spot, blue regression line), sMCI (orange spot, orange regression line),
pMCI (green spot, green regression line), and AD patients (red spot,
red regression line) in the evaluating dataset.

the GM features, which was the best regression model and
chosen as the final BAE model. Table II illustrates the details
of the comparison among different frameworks.

B. Brain Age Estimation in the Evaluating Group

The trained BAE model was applied to the GM features of
NC, sMCI, pMCI and AD samples in the evaluating dataset.
Fig. 2 illustrates the estimated brain age versus chronological
age at different cognitive status. The dashed line represents
brain age equal to chronological age. We found that the
predicted brain age of NC was close to the actual chronological
age, which verified the predictive accuracy of our BAE
model. From NC to AD, with the decline of cognition, the
difference between brain age and chronological age becomes
larger. The AG value can be calculated by subtracting the
chronological age from the brain age. A positive AG indicates
that the individual’s estimated brain age is older than his/her
chronological age. Conversely, a negative AG represents
younger brain age. The box plot showing the mean of AG for
NC and sMCI, pMCI, AD patients is presented in Fig. 3. The
details are as follows: NC (-0.147±5.118 years), sMCI patients
(1.287±5.099 years), pMCI patients (2.805±6.247 years)
and AD patients (4.769±5.943 years). With the decline of
cognitive ability, the mean of AG values increases. F−test is
applied to verify the significance of these AGs after removing
the outliers, the p-value is 0.000017 (p < 0.05), as shown
in Table III, indicating that the AG of different groups were
significantly different.

Fig. 3. Comparison of AG values of NC, sMCI, pMCI and AD patients.

TABLE III
ANALYSIS OF SIGNIFICANT DIFFERENCES OF AG AMONG

GROUPS AT DIFFERENT COGNITIVE STAGES

C. Analysis of the Conversion Risk to AD for MCI
Patients

The Schoenfeld residuals was checked to determine
whether the PH assumption was met for the cox regression
model. Normally, the Schoenfeld residuals should be time
independent. As shown in Fig. 4, the p-value of gender,
AG and MMSE are 0.5368, 0.3219 and 0.1298 respectively,
which are all greater than 0.05, indicating that the harzard
rate of each variable has no significant relationship with time,
so the PH assumption is satisfied. The same result can be
drawn from the fitted curve. The solid line is the fitted spline
smooth curve, and the dashed line represents the standard
deviation of 2 units above and below the fitted curve. The
proportional hazards assumption is not satisfied if the curve
deviates by 2 standard deviations. We can concluded that there
is no time-dependent change in each risk variables, indicating
that the variables satisfy the PH assumption.

The statistics of cox hazard analysis are shown in Table IV.
The overall Wald test is significant (p<0.001). The p-value
for AG is 0.00195, with a hazard rate (HR=eβ ) = 1.0457,
indicating a strong relationship between the AG and the AD
conversion risk in the MCI population. Each additional year
in AG was associated with a 4.57% greater risk. Similarly, the
p-value of MMSE was less than 0.001 indicates a significant
correlation between MMSE score and conversion risk. The HR
corresponding to MMSE is 0.8027, indicating that the higher
the MMSE score, the lower the conversion risk. By contrast,
the variable gender fails to be significant (p=0.0743). The
C-index of the cox model was 0.7506 indicating the
good discriminating ability. Fig. 5 reflects the MCI survival
condition when each varibale is averaged. We can see that as
time goes on, the survival probability (SP, interpreted as the
probability of non-convert to AD) in MCI is getting lower,
that is, the AD conversion risk is getting higher.

Nomogram was applied to visualize the Cox model and
intuitively display the quantitative AD conversion risk for the
MCI population at the individual level. We can calculate the
total risk points corresponding to the three variables (gender,
AG and MMSE) to obtain the 1-year, 3-year, 5-year and 8-year



LIU et al.: RISK PREDICTION OF AD CONVERSION IN MCI POPULATION BASED ON BAE 2473

Fig. 4. Schoenfeld residuals test of gender, AG and MMSE for PH assumption. The solid line is the fitted spline smooth curve, and the dashed line
represents the standard deviation of 2 units above and below the fitted curve. The PH assumption is not satisfied if the curve deviates by 2 standard
deviations.

TABLE IV
STATISTICS OF COX REGRESSION MODEL FOR ALL BASELINE SCORES

Fig. 5. The survival condition of MCI samples in the next decade
according to the Cox analysis. The x-axis represents time and the y-
axis represents the number of surviving MCI samples in our collection.
Survival represents that the MCI individual didn’t convert to AD.

predicted risk (Pr) of the individual, as shown in Fig. 6. Pr can
be interpreted as the predicted AD conversion risk at the
follow-up time. For example, there is a man diagnosed with
MCI, whose AG value is 10 years and the MMSE score is 28.
From the nomogram we can obtain the point corresponding to
each variable (Gender, AG and MMSE) is 35, 49, 27 and the
total points is 101. It could be concluded that in the next year,
the person has an 12.5% risk probability of developing AD.
Similarly, in the next 3 years, 5 years or even 8 years, the AD
conversion risk probability of this person is 33%, 58%, 74%,

respectively. As the follow-up time increases, MCI patients are
more likely to developing AD.

Calibration chart was used to calibrate the prediction
nomogram in Fig. 6. It verifies the predictive performance
of the nomogram based on the Bootstrap resampling method
in the internal dataset. The x axis represents the nomogram-
predicted survival probability (SP), and the y axis represents
the actual survival probability. The closer the blue line is to the
dashed line, the more accurate the prediction is. Fig. 7 shows
the calibration of the nomogram, where we can see that the
prediction of 1-year SP, 3-year SP and 5-year SP is relatively
accurate, but the prediction of 8-year SP is not.

IV. DISCUSSION

This study proposed a quantitative framework for AD
conversion risk prediction of the MCI based on the baseline
MRI. We merged the gender, AG index and MMSE of
MCI samples as the reliable predictors to establish a Cox
hazard regression model. The Cox model can analyze the
specific relationship between each predictor and the conversion
risk and then predict the overall AD conversion risk of
the MCI subjects. A nomogram was performed to visualize
the complicated Cox model and quantitatively display the
risk probability for each MCI patient. Experimental results
demonstrated that the quantitative prediction framework had
a good performance for predicting the AD conversion risk of
the MCI.

To date, several studies have utilized brain age as a reliable
biomarker in predicting the abnormal brain changes in AD
pathological progress [15], [35], [39], [40]. The increase of
chronological age will cause changes in brain structure. AG is
calculated by subtracting the physiological age value from the
estimated brain age, and only the abnormal brain structure
changes are retained for analysis. Using the structural MRI,
the complex patterns of aging across the whole brain were
aggregated into a single value, AG, based on our proposed
CRES. In order to achieve robust and high-precision brain age
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Fig. 6. The nomogram based on the Cox model for quantitative risk prediction of developing AD in the MCI population. We can calculate the total
risk points corresponding to the three variables (gender, AG and MMSE) to obtain the 1-year, 3-year, 5-year and 8-year predicted risk (Pr) of the
individual.

Fig. 7. Nomogram-predicted probability of n-year SP versus actual n-year SP. The dotted lines on the diagonal represent the perfect prediction of
the ideal model, and the blue lines represent the performances of the nomogram prediction model. The closer the blue line is to the dotted line, the
better the predictive effect. SP is the survival ability (not converting to AD). The x axis represents the nomogram-predicted survival probability, and
the y axis represents the actual survival probability.

estimation, we selected NC samples from two independent
cohorts, age spanning from 20 to 93 years old and verified
kinds of regression models. Evaluated on NC smaples from
ADNI, it was found that the average AG was -0.147, which
confirmed the prediction accuracy and stability of the CRES
trained on the IXI cohort and OASIS cohort. As the cognitive
decline, the abnormal structural changes are being significant
(see Fig. 3).

It can be seen from the previous study [15] that the greater
difference between brain age and chronological age indicates
the higher risk of developing AD, which is consistent with
our experimental results. However, the specific relationship
between AG and cognitive decline risk remains to be explored.

Our AG predictions and cox analysis are all based on the
baseline. From our cox analysis, we concluded that each
additional year of AG indicates a 4.57% higher risk (see
Table IV) of developing AD for MCI individuals, which
is highly valuable for early intervention and treatment of
cognitive decline. This study has demonstrated the feasibility
and the good performance of CRES.

Many studies focused on the binary classification of
MCI [20], [21], [41], and identifying MCI participants at
AD conversion risk using CSF biomarkers [18], [19], blood-
based biomarkers [42]. However, few studies concerned
when conversion occurs and how likely the conversion risk
possibility. It is crucial to identify the abnormal time onset
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and quantify the risk possibility, which will provide great
help for MCI intervention and treatment. This is the first
study that performed nomogram based on the cox model to
quantitatively predict the probability of the AD conversion risk
for MCI patients at the individual level. The derived predictors
are at the baseline. According to the experimental results,
the quantitative AD conversion risk probability of the MCI
patients in the next 1 year, 3 years, 5 years or even 8 years
are effective. Based on CRES, it is possible to make reasonable
interventions and treatments based on the individual AD risk
evaluation.

We counted the follow-up time of MCI subjects in the ADNI
dataset, details as following: 78 pMCI patients converted to
AD within three years from baseline, 30 patients converted
to AD within five years, and the remaining 16 pMCI patients
converted within 10 years. 69 sMCI patients had follow-up
records within five years, and the remaining sMCI patients
had follow-up records for 10 years or more. To make a more
accurate and longer-term prediction of the AD conversion risk
in MCI patients, we selected 10 years as the study observation
period. As shown in Fig. 7, we validated the prediction ability
of the nomogram. The prediction accuracy is high in 5 years,
but poor in the 8th year. This is because the MRI scans used in
this study were all baseline data, and the impact radiation was
1-5 years. Eight years is too long to predict status at that time
from baseline data, and a fifth year of follow-up data may be
required to calculate conversion risk at the eighth years even
later. But to a certain extent, it can provide a reference for the
current intervention.

Prior to brain age prediction, we used PCA for feature
dimensionality reduction of gray and white matter images.
PCA reduced the dimension of redundant voxels and only
focused on voxels that had a significant effect on the
prediction of brain age. PCA has been applied as a
standard data reduction technique in many studies to extract
principal components associated with brain age prediction
from neuroimaging [1], [6], [7]. It tends to be better when the
dimensionality of the data was reduced via PCA[5]. However,
the disadvantage of PCA is the lack of interpretability. It is
difficult to visualize principal components extracted from 3D
medical images. Therefore, in the future, the application of
feature extraction with deep model to predict brain age and
visualization of intermediate feature map is a direction of
improvement.

Nevertheless, there are still some limitations in the study.
Firstly, simple machine learning models have limited learning
ability for image features. Deep learning has been one of the
mainstream for MR images study with their super learning
ability and high accuracy [43], [44], [45]. Secondly, it’s
unknown that which regions of interest (ROIs) play crucial
roles for brain age estimation. Prior to brain age prediction,
we used PCA for feature dimensionality reduction of gray
and white matter images, which has been applied as a
standard data reduction technique in many studies to extract
principal components associated with brain age prediction
from neuroimaging [15], [31], [46]. However, the disadvantage
of PCA is the lack of interpretability. PCA results in difficult
one-to-one correspondence between subsequent features and
brain regions. Every feature obtained by PCA is the result
of the combined action of all brain regions. In the future,
the application of deep learning model to predict brain age

and visualization of intermediate feature map is a direction
of improvement. Utilizing “saliency maps” or “explanation
maps” to represent the effect of each voxel in the BAE’s
prediction [47], [48], [49] is a helpful approach to this issue.

V. CONCLUSION

This work proposed a comprehensive brain age estimation
and longitudinal AD conversion risk prediction framework,
i. e., the CRES. Results showed that the CRES revealed
significant AG patterns of different clinical groups, which
lays a good foundation for the following AD conversion
risk analysis. The established cox model and nomogram
analysis quantitatively predict the AD conversion risk for MCI
individuals, reveal the AD pathological progress patterns of
MCI patients, and identify the MCI individuals with high
conversion risk to AD. It is valuable for providing effective
interventions in a relatively early period.
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