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Extensor Digitorum Communis Compartments
With a Double Compensation Synergy

Strategy for Constant Force Control
of the Index Finger

Zhixian Gao , Yehong Zhang, Yun Zhao , Yinping Wei, Shiyang Lv, Zhenpeng Shao, Zongya Zhao ,
Chang Wang, Xuezhi Zhou, Junqiang Zhao, Wensheng Hou , and Yi Yu

Abstract— Precise sustained force control of the fingers
is important for achieving flexible hand movements. How-
ever, how neuromuscular compartments within a forearm
multi-tendon muscle cooperate to achieve constant finger
force remains unclear. This study aimed to investigate the
coordination strategies across multiple compartments of
the extensor digitorum communis (EDC) during index fin-
ger sustained constant extension. Nine subjects performed
index finger extensions of 15%, 30%, and 45% maximal
voluntary contractions, respectively. High-density surface
electromyography signals were recorded from the EDC and
then analyzed using non-negative matrix decomposition to
extract activation patterns and coefficient curves of EDC
compartments. The results showed two activation patterns
with stable structures during all tasks: one pattern cor-
responding to the index finger compartment was named
primary pattern; whereas the other corresponding to other
compartments was named auxiliary pattern. Further, the
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intensity and stability of their coefficient curves were
assessed using the root mean square value (RMS) and
coefficient of variation (CV). The RMS and CV values of
the primary pattern increased and decreased with time,
respectively, while the corresponding values of the auxil-
iary pattern were both negatively correlated with the form-
ers. These findings suggested a special coordination strat-
egy across EDC compartments during index finger con-
stant extension, manifesting as two compensations of the
auxiliary pattern for the intensity and stability of the primary
pattern. The proposed method provides new insight into
the synergy strategy across multiple compartments within
a forearm multi-tendon during sustained isometric contrac-
tion of a single finger and a new approach for constant force
control of prosthetic hands.

Index Terms— High-density surface electromyography,
neuromuscular compartments, multi-tendon muscle, syn-
ergy, extensor digitorum communis.

I. INTRODUCTION

THE human hand can manipulate objects flexibly, which
requires not only a high degree of single-finger dexterity

but also precise force control by the coordination of multiple
fingers [1], [2]. In fact, even the force of a single finger is not
completely independent of other fingers [3]. This is attributed
to the different compartments of forearm multi-tendon muscles
that control finger actions having anatomical and neural con-
nections, such as inter-tendinous connections [3], [4], common
synaptic input [5], [6], multidigit motor units [7], and the
overlap of activation regions in the motor cortex [8]. These
complex connections of the multi-tendon muscles provide the
physiological basis for finger coordination [2], [9]. Grow-
ing evidence showed that the central nervous system (CNS)
simplifies the control of the complex sensorimotor system
through organizing and regulating low-dimensional coordina-
tive structures (referred to as synergies, modes, or modules)
that work together to produce a desired effect [10], [11], [12].
Previous studies investigated finger force control commonly at
several levels of the motor hierarchy, such as joints, muscles,
and digital forces [13]. Recent studies extended the multiple
hierarchies of the sensorimotor system to more levels: up
to motor neuron synergies across multiple muscle compart-
ments [14], [15] and down to motor unit modes inside a single
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muscle with multiple compartments [16]. Noteworthy, as a
sub-muscular level, muscle compartments are not synonymous
with motor unit modes [17]. Therefore, it is deserved to further
investigate coordination strategies for finger force control at
the level of compartments.

As an extrinsic hand muscle, the main role of the forearm
multi-tendon muscle is to provide the output force for the
fingers [18]. Based on the complex connections mentioned
above, both the compartments of the instructed and non-
instructed fingers are involved in the digit force control.
Previous studies have applied kinetics to investigate the coor-
dination of instructed and non-instructed fingers and found
two patterns of finger interaction, enslaving [19] and error
compensation [20]. Enslaving occurs when the non-instructed
finger is involved in a pressing task with a low force level
(<10%MVC) [19]. The force generated by the non-instructed
fingers is a positive correlation with the primary force [21].
Error compensation is characterized by the negative correlation
between the instructed and non-instructed fingers [22], which
is considered to be an essential feature of motor synergies [23].
These results confirmed the existence of kinetic synergies
when generating finger forces, even the force output of a
finger should also be achieved by multi-finger kinetic syner-
gies [24], [25], [26]. However, kinetic synergies are obtained
from multi-finger forces and are considered as resulting from
muscle synergies [27]. The collaboration of multiple com-
partments for finger force control has not yet been studied
based on muscle synergy. Therefore, it is necessary to perform
essential research on finger force control from the perspective
of coordination across multiple compartments.

As an electrophysiology signal of muscle activation, surface
electromyography (sEMG) signals have been wildly used in
studying muscle coordination [28], [29]. In related studies,
a single muscle is considered to be uniformly activated and
its sEMG signal is usually recorded using a bipolar electrode
pair placed over the muscle belly [30]. However, a bipolar
electrode could not fully capture the global information of a
multi-tendon muscle [31]. Even if multiple bipolar electrodes
are placed over each compartment according to the anatomy,
only local information about the compartment is obtained.
Moreover, for the slender compartments of forearm multi-
tendon muscles, such as the extensor digitorum communis
(EDC), it is difficult to avoid sEMG signal crosstalk from
adjacent compartments [32]. High-density (HD) sEMG records
the bi-dimensional spatial activation information of target mus-
cles [33] using an array with dozens or hundreds of unipolar
electrodes [34], which allows insights into the activation of
different compartments of multi-tendon muscles [35], [36].
Based on HD sEMG, previous studies have investigated the
primary active regions or spatial activation patterns of multi-
tendon muscles during dynamic or static movements. Hu et al.
obtained the global spatial activation patterns of EDC by the
root mean squared (RMS) grid map, localized the centroid
marks of the maps during individual finger extensions, and
found the muscle active map was relatively consistent across
conditions(dynamic or static and high or low effort) [37].
Using the global RMS maps, Dai et al. also extracted the

unique spatial patterns of the forearm flexor during indi-
vidual finger flexions at 30% and 60%MVC, and obtained
high classified accuracy using pattern recognition based on
the features of these maps [34]. Indeed, RMS maps used
by these studies represent the global spatial activation of
different compartments during individual finger movements,
which ignored the different activation patterns across multiple
compartments. Beek et al. assessed the activation of the flexor
digitorum superficialis (FDS) and the EDC during single finger
flexion and found considerable active regions of the muscles
associated with the non-instructed fingers [3]. We previously
investigated the changes in the spatial activation distribution
of the EDC during continuous extension of the index finger
and found different regions of the maps, where the activation
intensity has a specific range of variation, were adjusted with
a specific regularity [38]. The results suggest that, during
sustained single-finger extension, the compartments may play
different roles to coordinate precise control tasks. Hence, it is
necessary to further investigate whether there are coordination
patterns of instructed and non-instructed fingers in the EDC
compartments and their corresponding motor control strategies
during sustained isometric contraction of the index finger.

In recent years, some studies utilized factorization algo-
rithms to extract the spatiotemporal activation patterns of a
single compartment. The non-negative matrix decomposition
(NMF) method was shown to be able to cluster the channels
with similar profiles of temporal activation from the HD
sEMG signals, which has been successfully applied to locate
the active region of the compartments within biceps brachii
and gastrocnemius [33]. The obtained invariant patterns of
muscle activity can exhibit the location of compartments,
and the corresponding time-varying coefficients can depict
the variation of compartment activation level during dynamic
motion tasks, which provide objective information on the
spatiotemporal characteristics of activation regions. Given that
the “muscle synergies” means that multiple muscles can be
activated as a small number of stable units by changing their
timing and/or neural drive [39]. Hence, we hypothesized that
to simplify the finger force control: (1) the stable coordination
patterns of instructed and non-instructed fingers exist in EDC
compartments; and (2) the patterns should be regulated by
different coordination control strategies during sustained iso-
metric contraction of a single finger. In this study, nine subjects
were instructed to perform sustained isometric extensions of
the index finger at three force levels. sEMG signals from
EDC were recorded by an HD electrode array during the
tasks and analyzed by the NMF method to extract activation
patterns and coefficient curves of EDC compartments. The
intensity and stability characteristics of coefficient curves
were proposed to explore the coordination process of EDC
compartments during sustained contraction.

II. METHODS

A. Subjects
Nine healthy subjects (mean age: 24±1.2 years) were

recruited for this study. Subjects had no history of exercise-
related neurological and skeletal muscle disease and no
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Fig. 1. (a) The scene of the task for sustained force-tracking during right index finger extension. (b) The sEMG signals of ED (red marker) were
recorded with a custom-made HD electrode array.

participation in high-intensity activity within two days before
the experiment. All of them were right-handed according to
their hand use during writing and eating in daily activities, and
had normal or corrected to normal vision. The experiment was
approved by the local ethical review committee. All subjects
gave written informed consent before the experiment.

B. Experimental Protocol
Subjects sat in a chair comfortably, with the right fore-

arm placed on a horizontal shelf. Their elbow joints were
maintained at 120◦. To minimize crosstalk from wrist muscle
activity, their wrists were in a neutral horizontal position,
which remained stable during the experiment. The proxi-
mal phalanx of the index finger was placed in the ring of
a customized force transducer (JLBS-5kg, Bengbu Sensor
Company, Bengbu, China) to measure finger force, and other
fingers were kept relaxed, as shown in Fig. 1a.

The maximum voluntary contraction (MVC) of the subject’s
index finger was measured before performing tasks. 3-second
MVCs were performed three times and the largest one was
selected as the final MVC value. A 5-minute rest was taken to
avoid fatigue. The force-tracking tasks were conducted at 15%,
30%, and 45% MVC. Subjects extended the right index finger
to track the target force curve on a screen and held the force
for the 90s as smoothly as possible. Each task was repeated
3 times with a 10-minute interval. The practice allowed for the
subjects to be familiar with the tasks before the formal test.

C. Signal Acquisition
To avoid arrays covering adjacent muscles, the sEMG

signals from the EDC were acquired via a homemade
32-channel sEMG array with a 10 mm interval-electrode
distance (Fig. 1b). According to the EDC shape, wide in the
middle and narrow at both ends, the array was designed as a
matrix with 4 columns, containing 6, 10, 10, and 6 electrodes,
respectively. Moreover, we chose electrode probes with a cup-
shaped head to prevent the spill of conductive paste caused by
pressing when placing the array, which ensures a reliable range
of the recorded signals. To accurately place the electrode array,
the edge of the EDC muscle was identified by ultrasonography
(DC-8, Mindray, Shenzhen, China). The ultrasound probe was
moved over the skin above the EDC and its edges were marked

with a red marker when detected, outlining the muscle portion
of the EDC (excluding the anterior and posterior ends of the
tendon portion). Then, the vertical and horizontal midlines
of the array are aligned with the vertical and horizontal
midlines of the marked muscle portion, respectively [39].
Before placing the electrode array, the skin was shaved with
abrasive paste and cleaned with medical alcohol. The electrode
array was fixed to the forearm with medical tape. The sEMG
signals and force data were sampled by Cerebus (BlackRock
MicroSystem, Salt Lake City, Utah, USA) at 2000 Hz and a
gain of 300 times.

D. Data Analysis

As shown in Fig. 2, the data analysis was performed to
investigate the synergistic strategy of EDC compartments.
Firstly, the envelopes were extracted from the pre-processed
32-channel sEMG signal, and the NMF method was used
to extract the synergy patterns and corresponding coefficient
curves. The intensity and coefficient of variation of the coef-
ficient curves were used to analyze the synergistic strategy of
the activation patterns. Representative channels were selected
based on the activation patterns and the complexity of the
sEMG signals of these channels was obtained using non-linear
analysis.

1) Pre-Processing: Raw HD-sEMG signals were pre-
processed using a 4th order Butterworth band-pass filter
(20-500 Hz), an adaptive filter to remove the power-line inter-
ference and its harmonics, and a spatial filter based on prin-
cipal component analysis to discard the redundant common
information and measurement noise (contribution rate <0.01).
After full-wave rectification, the envelopes of the preprocessed
data were extracted using a zero-delay Butterworth low-pass
filter (6th order, 10 Hz), and downsampled to 5000 points ×

32 channels as the envelope matrix. The envelope matrix was
not normalized to obtain the modulation information of the
force level.

2) Synergy Extraction: The NMF algorithm has been suc-
cessfully used in extracting activation patterns from HD sEMG
signals [29], [40]. The NMF algorithm can be described by
the following equation (1):

V m×n
= W m×sCs×n (1)
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Fig. 2. Block diagram of the proposed method framework.

where, V m×n represents the envelope matrix with m channels
and n sample points of sEMG (m = 32, n = 5000).
Each column of W m×s represents an activation pattern with
m weighting factors, describing the spatial organization and
coordination of m channels. s is the number of activation
patterns (1≤ s ≤ m). Each row of Each row of Cs×n represents
the regulation coefficients corresponding to the activation
pattern, which can show the dynamically tuning process of
each activation pattern over time.

The number of activation patterns needs to be selected
from 1 to 32. The larger the value of s, the higher the recon-
struction accuracy of the reconstruction matrix V ′

= WC . The
reconstruction accuracy can be measured by the variability
accounted for (VAF), as shown in equation (2):

V m×n
=

(
1 −

(
V − V ′

)2
V 2

)
× 100% (2)

Recent studies found that for force-specific isometric tasks,
using VAF > 90% as a criterion for the number of syn-
ergies may not be enough, as the residual component of
the sEMG may contain crucial information about the move-
ments [41], [42]. Thus, the threshold is set as the average
VAF > 95% and the increase of VAF < 1% [43], [44].

3) Similarity of Activation Patterns: According to the synergy
theory proposed by Bernstein, synergies as neural organiza-
tions with two functions: grouping elements to reduce motor
redundancy and ensuring dynamic stability of action. Based
on the first function, muscle synergies can be expressed as
a few stable activation patterns (W) and are recruited with
specific time-varying coefficients(C) [45], [46]. If muscle
synergy exists in the EDC compartments, the corresponding
spatial activation synergy patterns should be similar at the
same force level, and also between different force levels. The
similarity of the activation patterns of EDC obtained from
the HD sEMG signals was assessed using a two-dimensional
correlation coefficient (r2), as expressed in equation (3).

r2 =

∑
m
∑

n (Amn − Ā)(Bmn − B̄)√(∑
m
∑

n (Amn − Ā)2
) (∑

m
∑

n (Bmn − B̄)2
) (3)

where both Amn and Bmn are m by n-dimensional matrices.
Ā (B̄) is the mean of all elements in matrix A (B).

4) Regulation of Activation Patterns: To investigate the reg-
ulation progress of spatial activation patterns during sustained
contraction, the obtained 5000 points × 32 channels of time-
varying coefficients were evenly divided into 5 periods. The
RMS was used to characterize the activation intensity of spatial
activation patterns:

RM S =

(
1
N

i=1∑
N

x2
i

)1/2

(4)

N is the window length (N=1000), and xi is the i th sample
point in the window.

The volatility of the time-varying coefficients was assessed
using the coefficient of variation (CV), which is calculated as:

CV =

√
N∑

i=1
(xi − x̄)2

x̄
(5)

5) Nonlinear Analysis: According to previous studies [40],
8 of all channels with high weight factors (the top 25%)
of activation patterns were taken as the major contributors,
which can characterize the activation patterns better. There-
fore, to evaluate the nonlinearity of the activation pattern, the
complexity of the representative channels of the activation
patterns was assessed using fuzzy entropy (FuzzyEn). The
preprocessed sEMG data of these 8 channels were divided into
5 epochs (i.e. 36000 points per segment), and the FuzzyEn of
each epoch was calculated as shown in the following.

FuzzyEn(N , m, n, r) = ln 8m(n, r) − ln 8m+1(n, r) (6)

where, the embedding dimension m is 2, the step length n is 2,
and the similarity tolerance r is set to 0.25 × SD (standard
deviation of the sEMG signal within a single time window).
These values were suitable for obtaining the complexity of
sEMG signals, based on the suggestion of Chen et al. [47].
8m(n, r) is the likelihood of reconstructing the vector for a
single time window sEMG signals within the tolerance r of
the pattern vector. In this study, FuzzyEn was obtained by
calculating 82(n, r) and 83(n, r) for each time window of
the sEMG signals. For each pattern, 8 FuzzyEn values of
8 channels were obtained for each same epoch, and their
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Fig. 3. Mean VAF values corresponding to the different number of
activation patterns.

averaged values were calculated as the complexity for each
epoch. Then, the 5 averaged FuzzyEn values were normalized
to the first epoch for each trail. The mean values of normalized
FuzzyEn values of three repeated trials were used to represent
the final complexity of each force level.

E. Statistical Comparisons
To quantify the difference in regulation strategies across

different activation patterns, forces, and epochs, a mixed line
model was performed on the RMS, CV, and FuzzyEn values,
with the epoch (5 levels: 1∼5) and the force (3 levels:
15%, 30%, and 45% MVC) considered as the within-subject
factors and the patterns (2 levels: W1 vs. W2) considered as
the between-subject factors. Repeated measures analysis of
variance (ANOVA) was used to test differences in RMS, CV,
and FuzzyEn analysis. In the case of significant interaction,
a series of post hoc pairwise comparisons with LSD correction
were conducted to compare pattern differences separately for
each epoch. The significant differences were set at p < 0.05.

III. RESULTS

A. The Number of Activation Patterns
The mean VAF values obtained in the NMF method of the

sEMG signals from EDC are shown in Fig. 3. When the
number of activation patterns s (NoS) is 1, the average value
of VAF reaches 93.82%. Assuming that the NoS is 1, the
spatial activation of the EDC does not change with time
during isometric sustained contraction. However, this result
contradicts the results of previous studies. In fact, the spatial
activation of multi-tendon muscles exhibits spatial reorgani-
zation and gravity shift during sustained contraction [48].
In particular, our previous studies demonstrated that different
spatial regions of the EDC exhibit differential trends with
time [38]. Therefore, selecting NoS as 1 may lose certain
important information in the HD sEMG signals related to
finger force control, which is not appropriate. When s is 2,
VAF is more than 95% and the increase is less than 1%,
which meets the setting requirement. At this point, the time-
varying coefficient curves of the two spatial activation patterns
show different trends. If the two patterns were separated from
the same one, then both should have similar time-varying

Fig. 4. (a) The two activation patterns and (b) corresponding time-
varying coefficient curves of ED for sub1 at 15%, 30% and 45% MVC.

activation profiles. Therefore, it is more reasonable to extract
two spatial activation patterns. Here, NoS was selected as 2.

B. The Spatial Distribution of Activation Patterns and the
Trends of Time-Varying Coefficients

Fig. 4 shows HD-sEMG signal decomposition results for
EDC during sustained contractions from one subject, including
two spatial activation patterns and corresponding coefficient
curves. The weighting factors of two activation patterns are
displayed in the grayscale maps, with higher weights reflect-
ing bigger grayscale values. The spatial distribution of the
weighting factors is heterogeneous for two activation patterns.
The darker colored areas in the grayscale map constitute the
main activation areas. The main activation areas of W1 are
concentrated on the distal radial side, while those areas of W2
are located on the proximal ulnar side.

As shown in Fig. 4, C1 and C2 correspond to the time-
varying coefficient curves of W1 and W2, respectively.
The C1 curves (red) exhibit a downward trend, while the C2
curves (blue) exhibit a gradual upward trend.

To test the hypothesis that the composition of synergies was
consistent across force levels, we performed the calculation of
the correlation coefficients for the spatial activation patterns of
W1 and W2, shown in Table I. According to the rule-of-thumb
scale for evaluating the correlation coefficient, correlations of
0.7 to 0.89 are high correlation [49]. Therefore, the activation
patterns showed high correlation coefficients between different
trials at the same force level and between different force levels,
indicating that the spatial structures of the synergy patterns of
EDC compartments are stable, and independent of trial and
force level.

C. Comparison With Respect to Activation Intensity
and Variability

To explore the time dependence of the intensity and vari-
ability of the synergy signal, we calculated the RMS and CV
values of coefficient curves for the five epochs.
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TABLE I
CORRELATION (MEAN±SD) BETWEEN SYNERGY PATTERNS AT SAME FORCE LEVELS AND DIFFERENT FORCE LEVELS

Fig. 5. RMS values of two activation patterns for five epochs at three force levels. (a) 15% MVC, (b) 30% MVC, (c) 45% MVC. Asterisks indicate
significant difference between activation patterns ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.005. Lowercase letters indicate significant differences ap < 0.05;
bp < 0.01; c p < 0.005 among epochs.

TABLE II
RESULTS OF THE POST HOT T-TEST ON RMS OF W2 BETWEEN THE

5TH EPOCH AND THE OTHER EPOCHS (1ST TO 4TH )

The RMS results of the coefficient curves were shown in
Fig.5. The RMS values of C1 decreased with time, while that
of C2 increased. The three-way repeated measured ANOVA
analysis reported no significant interaction among all three
factors, while a significant interaction between pattern and
epoch (F(1.7171,9.366) = 12.758, p = 0.005). During 1st
and 2nd epochs, the RMS values of C2 were significant lower
than that of C1 at each force level (15%MVC: 1st, p = 0.010,
2nd, p = 0.034; 30%MVC: 1st, p = 0.002, 2nd, p = 0.007;
45%MVC: 1st, p = 0.011, 2nd, p = 0.004).

The post hoc t-test revealed a significant RMS increase with
epochs for W2. The 5th epoch yielded higher RMS than other
periods, p values were shown in Table II. Moreover, force had
a significant effect on RMS values for both W1 (F(2,16) =

48.210, p <0.001) and W2 (F(1.111,8.884) = 25.356, p =

0.001). The RMS values increased with force (W1: 15%
vs. 30%MVC, p = 0.001; 30% vs. 45%MVC, p = 0.004;
W2: 15% vs. 30%MVC, p < 0.001; 30% vs. 45%MVC,
p = 0.006).

The CV values of time-varying coefficient curves of two
activation patterns are shown in Fig. 6. Results of ANOVA

analysis for CV values revealed no significant interaction
among all three factors. However, a significant interaction
between pattern and epoch (F(1.302,10.414) = 22.426, p <

0.001). Individual effects analysis showed significant effects
of patterns on CV at each force level. For 15% MVC, the CV
of C1 was significantly lower than that of C2 (p < 0.001)
at the beginning (1st epoch), as the CV of C1 increased and
that of C2 decreased simultaneously, while the CV of C2 was
significantly lower than C1 in the 5th epoch (p < 0.001). For
30% and 45% MVC, the CV value of C2 was close to that
of C1 in the initial stage(1st to 2nd epochs) and significantly
lower in the latter stage (3rd to 5th epochs).

Individual effects analysis also showed epoch has significant
effects on CV at each force level. For W1, CV values of
C1 were increased with epoch (15%MVC, F(1.441,11.531) =

10.283, p = 0.005; 30%MVC, F(1.348,10.783) = 9.148, p =

0.008; 45%MVC, F(1.600,12.797) = 11.887, p = 0.002).
Further post hoc comparisons showed the CV values of the
5th epoch were significantly higher than the 1stto 3rd epochs
(Table III). For C2, CV values exhibited inclined trend with
epochs(15%MVC, F(1.301,10.411) = 14.458, p = 0.002;
30%MVC, F(1.253,10.027) = 10.751, p = 0.006; 45%MVC,
F(1.297,10.373) = 5.806, p = 0.030). For different force
levels, the CV values of the 5th epoch were found significantly
lower than other epochs, with 1st to 4th, 1st to 2nd, and 1st

epochs at 15%, 30%, and 45% MVC, respectively, which
indicated the declining trend slowed down.

D. Relationship of Intensity and Stability
To further explore the synergy of the two activation pat-

terns, the correlation coefficients of the two synergies were
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TABLE III
RESULTS OF THE POST HOC T-TEST FOR CV BETWEEN THE 5TH EPOCH AND THE OTHER EPOCHS (1ST TO 4TH )

Fig. 6. CV values analysis in each of two activation patterns for five epochs and three force levels. (a) 15% MVC, (b) 30% MVC, (c) 45% MVC.
Asterisks indicate significant difference between activation patterns ∗p < 0.05; ∗∗p <0.01; ∗∗∗p < 0.005. Lowercase letters indicate significant
differences ap < 0.05; bp < 0.01; cp < 0.005 among epochs.

Fig. 7. Fitting results of RMS (a) and CV (b) between C1 and C2 at three force levels.

calculated for the RMS and CV of the activation coefficients
at each force level. As Table IV shown, both RMS and CV
values showed a negative and high correlation between C1 and
C2 at all three force levels.

To investigate the relationship between the two activation
patterns, RMS and CV were fitted using linear and quadratic
functions, respectively. Fig. 7a shows a linear relationship
between the RMS of C1 and C2. The absolute value of
the slopes of the fitted straight line decreases as the force
increases (15%MVC, 2.345; 30%MVC, 1.366; 45%MVC,
0.696). However, Fig. 7b shows the CVs of C1 and C2 having
a quadratic relationship. Combined with Fig. 6, it can be seen

that there is an overall decreasing trend in the CV of C2 as
the CV of C1 increases, and this decreasing trend is slowing
down. Even at 45% MVC, the CV of C2 at the maximum CV
of C1 shows a slight increase compared to the adjacent points.

E. Comparison With Respect to Complexity
The normalized FuzzyEn results for the representative

channels corresponding to the main contribution zones are
shown in Fig. 8. The three-way repeated-measures ANOVA
for the normalized FuzzyEn showed no significant interactions
among the three factors as well. Two-way repeated-measures
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Fig. 8. Normalized FuzzyEn of epochs at three force levels (15%, 30%, and 45% MVC) for W1 (a) and W2 (b). Lowercase letters indicate significant
differences a p < 0.05; b p < 0.01; c p < 0.005 among epochs.

TABLE IV
CORRELATION OF RMS AND CV VALUES BETWEEN TWO

COEFFICIENT CURVES AT THREE FORCE LEVELS

ANOVA revealed significant interactions between force and
epoch (F(2.086,16.663) = 4.789, p = 0.022). However,
no significant interactions between pattern and epoch or force
were reported, which indicated pattern had no significant effect
on FuzzyEn.

Significant effects of epochs on FuzzyEn values were
found for both patterns at higher force levels (Table V). The
FuzzyEn significantly decreased with epoch for W1 at 30%
(F(1.283,10.261) = 11.747, p = 0.004) and 45% MVC
(F(1.196,9.571) = 12.984, p = 0.004), but for W2 at 45%
MVC (F(4,32) = 3.070, p = 0.030).

IV. DISCUSSION

To investigate coordination strategies of EDC compart-
ments, this study utilized the NMF method to characterize
the spatial distribution of the activation regions and coordina-
tion process for instructed and non-instructed fingers during
index finger sustained contraction. The results showed that
two activation patterns and coefficient curves were extracted
from HD sEMG signals in EDC muscle during the tasks.
The two activation patterns exhibited specific lateralized spa-
tial distribution, and the time-varying adjustment process of
corresponding coefficient curves could efficiently depict the
coordination strategy of EDC compartments during the index
finger with a sustained constant isometric extension.

A. Stable Spatial Activation Patterns
As the results of the NMF analysis in Fig. 3 shown, the

VAF has reached 95.12% when the number of S is 2, and

the increase satisfies <1%. This implies that two activation
patterns are obtained from the EDC compartments during
sustained constant force extension of the index finger. Fig. 4a
shows that the spatial distribution of both activation patterns
is heterogeneous. The primary activation area of the instructed
finger activation pattern (W1, named primary pattern) was
located on the distal radial side, and the primary activation area
of the non-task finger activation pattern (W2, named auxiliary
pattern) was demonstrated that the weighting factors for each
activation pattern are highly correlated and are independent of
force and trial. This implies that similar to muscle synergy, the
spatial distribution of the obtained activation patterns is stable,
verifying the existence of compartment coordination in multi-
tendon muscles. For the coefficient curves corresponding to
the activation patterns in Fig. 4b and Fig. 5, at the initial
stage, the activation intensity of the primary pattern was
higher and that of the auxiliary pattern was lower. This is
consistent with the results of previous studies that, for multi-
tendon muscles, the intended compartments are predominantly
activated and the spatial regionalization of muscle activity is
more evident [37].

These results demonstrate our first hypothesis that there
are synergy patterns among EDC compartments corresponding
to instructed and non-instructed fingers during single-finger
extension, reflecting coordinated strategies in non-independent
EDC compartments to simplify the CNS control variables.

B. The Intensity and Stability Compensations of the
Auxiliary Pattern

Previous studies have confirmed that the synergy coefficient
curves of activation patterns extracted from sEMG signals are
reflections of central driving, which implies the tuning strategy
for synergy patterns [46]. Therefore, in this study, the RMS
and CV of the coefficient curve were used to quantitatively
evaluate the activation intensity and volatility of the activation
patterns, and found significantly different regulatory processes
and a close cooperative relationship between them.

The RMS results (Fig. 5) showed that the two activation
patterns were activated simultaneously, even during the initial
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TABLE V
RESULTS OF THE POST HOC T-TEST FOR FUZZYEN BETWEEN THE 5TH EPOCH AND THE OTHER EPOCHS(1ST -4TH )

epochs of low force levels the auxiliary pattern had been
already activated. It demonstrated that the compartments of a
multi-tendon muscle have non-independent activation proper-
ties during sustained force output, which is due to complex
physiological connections and neural co-inputs among the
compartments [37]. However, the activation intensity of the
two patterns showed different change processes over time:
the activation intensity of the primary pattern with higher
activation at the beginning showed a decreasing trend; while
the auxiliary pattern with lower activation intensity at the
beginning showed a significant increase in activation intensity,
and even approached the activation intensity of the primary
pattern at the later stages. It suggested that the auxiliary pattern
played an increasingly important compensation role during
sustained contraction, rather than being enslaved [50]. Fur-
ther correlation analysis showed a strong negative correlation
between the activation intensity of the two patterns at all three
force levels. This negative covariance might be similar to the
error compensation observed in multi-finger force synergies,
which was considered to be an essential feature of the motion
synergy effect. It is known that the intensity of sEMG activity
is generally proportional to muscle force output in a non-
fatigued state [51], [52]. Therefore, on the one hand, the
slight reduction in the activation intensity of the primary
pattern caused a decrease in the force output of this pattern.
On the other hand, the activation intensity of the auxiliary
pattern increased significantly can lead to an increase in non-
instructed finger force output, which was consistent with the
results of previous mechanistic studies [53], [54], [55]. These
studies have documented, during continuous force production,
a consistent increase in the force output of non-instructed
fingers with time under feedback on the primary finger force.
So the increased force output of the auxiliary pattern com-
pensates for the loss of force in the primary pattern [50] and
then maintains the whole output force at the required level.
These results demonstrate our second hypothesis that the two
stable patterns were recruited by different coordination control
strategies during the index finger sustained contraction.

The CV results (Fig. 6) suggest that the trend of stability
change in both patterns is a specific process: the volatil-
ity of the primary pattern and the auxiliary pattern signif-
icantly increased and decreased, respectively, and those are
not affected by force level. In the early stages, the primary
pattern volatility was lower, but the volatility of the auxiliary
pattern is significantly lower than that of the primary pattern.

The reduced volatility of the auxiliary pattern assists the
primary pattern in achieving overall stability, which is a
manifestation of synergy [56], allowing for stability of index
finger posture and force. The high negative correlations of the
CVs (Table III) further confirm the existence of the stability
compensation effect of the auxiliary pattern, and also further
demonstrates our second hypothesis. This is consistent with
previous research finding that a typical strategy for achieving
force stability is a result of negative co-variation between
patterns [57]. This compensation is presumed to be an addi-
tional important manifestation of compartment coordination.
Furthermore, the fit results for RMS and CV between C1 and
C2 are linear and quadratic, respectively, indicating that these
two compensations are different (Fig. 7). This is consistent
with previous findings using a mechanical model, where the
CNS achieves control of force strength and stability through
two neural variables [21].

Therefore, during sustained constant extension of the index
finger, there is a close synergistic relationship between the
primary pattern and the auxiliary pattern, which is manifested
as the intensity and stability compensation of the auxiliary
pattern for the primary pattern. These two compensations
could be seen as coarse and fine tuning processes to secure
constant finger force, and are the manifestation of multi-
compartment synergy at different control levels.

It is worth noting that both compensations are limited.
On the one hand, intensity compensation capacity decreases
when the force increases from 15% to 45% MVC (Fig. 5),
which could be further verified by the slight downward trend
in the slope of the fitted line between the RMS of C1 and
C2 (Fig. 7a). On the other hand, a significant reduction in the
stability compensation of the auxiliary pattern at later stages of
high force level (45% MVC), that is, the CV of C2 decreases
slowly in the later periods (Fig. 6). This conclusion is also
verified by the quadratic relationship between C1 and C2
(Fig. 7b). Therefore, the intensity and stability compensations
of the auxiliary pattern are limited, and these compensations
become weaker at high force levels. For the neuromuscular
physiological system, the ability to achieve compensation
for maintaining a constant force as an adaptive response is
limited. Based on previous research, complexity is related to
the ability of this adaptive response. FuzzyEn characterizing
the complexity has been successfully used as a measure
of the adaptive capacity of a neuromuscular physiological
system [58]. In this study, the FuzzyEn of the auxiliary pattern
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showed a decreasing trend (Fig. 8). Therefore, this loss of
complexity is thought to be associated with a reduced adaptive
capacity [59].

In addition, this intensity compensation of the activation
patterns can be applied to explain the gravity shift and spatial
reorganization phenomenon in multi-tendons during sustained
contraction, which has been reported in previous studies [48].
During sustained contraction, although the structure of the
two patterns is stable, the intensity of their time-varying
coefficients is negatively correlated. The cooperation of the
two activation patterns causes changes in overall spatial dis-
tribution, showing spatial reorganization and a shift in the
gravity center of topographic maps. Therefore, the results of
this study indicate that these phenomena (gravity shift and
spatial reorganization) can be considered as performances of
the compartment synergy in multi-tendons.

C. Limitations and Future Work
Our experiments currently involved only a single-finger

extension task for the index finger. Independent extension tasks
for the other three fingers (middle, ring, and little fingers)
should be included in future studies to verify whether this
synergy strategy exists in these cases. Our findings showed
that both compensations of the auxiliary pattern slow down at
high force levels, which implied the support of the auxiliary
pattern for the task pattern maybe not be infinite during
sustained contraction. Therefore, future experiments should
also be extended to induce fatigue, to explore the effect of
fatigue on the control strategy of CNS.

V. CONCLUSION

The present study investigated the control strategies of
CNS on multi-tendon muscles during sustained contraction,
and found during sustained extension of the index finger, the
primary pattern and the auxiliary pattern of the EDC were
lateralized and corresponded to the index finger part and other
parts of the EDC, respectively. Both RMS and CV values
of the coefficient curves between the two activation patterns
showed negative correlations, indicating that to maintain a
stable force output, two compensations of the auxiliary pattern
were employed to assist the primary pattern in term of intensity
and stability. These results provide a new perspective to reveal
the synergy strategies of EDC compartments during index
finger sustained contraction and a new approach for constant
force control of prosthetic hands.
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