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Abstract— Non-invasive Visual Stimuli evoked-EEG-
based P300 BCIs have gained immense attention in recent
years due to their ability to help patients with disability
using BCI-controlled assistive devices and applications.
In addition to the medical field, P300 BCI has applications in
entertainment, robotics, and education. The current article
systematically reviews 147 articles that were published
between 2006-2021*. Articles that pass the pre-defined
criteria are included in the study. Further, classification
based on their primary focus, including article orientation,
participants’ age groups, tasks given, databases, the EEG
devices used in the studies, classification models, and
application domain, is performed. The application-based
classification considers a vast horizon, including medical
assessment, assistance, diagnosis, applications, robotics,
entertainment, etc. The analysis highlights an increasing
potential for P300 detection using visual stimuli as a promi-
nent and legitimate research area and demonstrates a sig-
nificant growth in the research interest in the field of BCI
spellers utilizing P300. This expansion was largely driven
by the spread of wireless EEG devices, advances in com-
putational intelligence methods, machine learning, neural
networks and deep learning.

Index Terms— Brain–computer interface, electroen-
cephalogram, P300, event related potential, machine
learning, deep learning.
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I. INTRODUCTION
A. Background

BRAIN-COMPUTER Interface (BCI) is an electrical brain
activity measuring and interpretation technology (or

mechanism) that generates control commands which fur-
ther replace(s), restore(s), and/ or enhance(s) user capability
bypassing the Human Central Nervous System. The BCI can
be used as an assistive, adaptive, and rehabilitative technology
to help monitor Electroencephalogram (EEG) activity and
translate its features into commands to control various assistive
applications.

To identify a person’s intent for BCI, event-related potentials
(ERPs), which correlate to stimulation in electroencephalog-
raphy, are employed. The ERPs measure the variations in
brain voltage that occur after the commencement of a distinct
visual, auditory, or other sensory stimuli, as well as signals
activating the motor preparation, motor execution, or covert
mental functions. Time-locked ERPs aid in recording brain
activity associated with both sensory and cognitive processes.
Figure 1(e) illustrates the trend observed in ERP usage in
BCI research over the last 20 years. The P300 [136] is a
highly studied and referred ERP in BCI research. A P300
wave is an ERP component evoked roughly 300ms after the
target stimulus is delivered, which is alternated with standard
stimuli to generate a “oddball” paradigm in which two stimuli
are presented randomly, one of which happens less frequently
than the other (i.e., the oddball). The chance of an infrequent or
task-related stimulus is inversely proportional to the magnitude
of the P300 evoked potential. The BCI Speller [136] is an
essential technology that may use P300 ERPs to work. A BCI
speller is an application used to stimulate source-induced
EEG signals to recognize the patients’ anticipated characters.
A P300 BCI may be described as a subject looking at a
display with flashing characters, images, arrows, pictograms,
etc and picking one character by paying attention to it.
Figure 1(f) illustrates the trends observed in the usage of P300
in publications over the past 15 years.

B. Motivation
Reviewing past 20 years of research in BCI, it is evident

that there has been a dramatic growth in the research field
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TABLE I
COMPARISON BETWEEN THE PROPOSED ARTICLE AND THE EXISTING REVIEW ARTICLES BASED ON KEY FOCUS AREAS

(see Figure 1(e)). The influx of researchers from several
areas such as clinical neurology, artificial intelligence, medical
physics, and biomedical engineering has significantly grown
BCI research. Many companies are now partnering with
researchers worldwide to develop and test BCI technologies.

Various stimuli- visual, auditory, etc.- can elicit the
P300 peak. Most studies have focused on BCIs designed for
visual stimuli. Visual stimulation creates a spatial value for
the target stimuli that projects onto the fovea in the retina.
In contrast, non-target stimuli appear on the periphery of
the visual field resulting in the differences in amplitudes of
the corresponding Visually-evoked potentials (VEPs), resulting
in high accuracy. However, during extended BCI operation,
by both healthy individuals and patients with post-stroke
and post-traumatic disorders (for whom the BCI technology
is primarily designed), it becomes difficult to achieve high
operating accuracy due to the requirement of continuously
drawing attention to one or another character of a matrix.

C. Contributions
The current article is focused explicitly on BCIs using visual

stimuli to elicit the P300 wave. We categorize the publications
based on their: primary focus, orientation, participant age
groups, assigned tasks, databases, the EEG devices used,
classification models, and application domain (see Section III).
We systematically include relevant publications that meet the
defined criteria in the review. The application-based clas-
sification comprises of a vast horizon, including medical
assessment, assistance, diagnosis, applications, robotics, enter-
tainment, etc. Further, based on the classification, challenges in
P300 BCI are discussed. While many of these challenges have
previously been identified in different studies, these studies

do not systematically put forth a comprehensive viewpoint.
Given these complex issues of P300-based BCI design, current
trends and future scope are discussed. Table I presents the
systematic comparison of the present review with existing
reviews, highlighting the need for the proposed review article.

The remaining article is organized as follows. Section II
discusses the proposed article selection criteria followed in
this study. Section III presents an in-depth discussion of the
selected articles and their findings. The challenges and the
current trends and future scope of the study are elaborated in
Section IV and Section V respectively. Finally, the conclusions
are presented in Section VI.

II. PRISMA-COMPLIANT RESEARCH METHODOLOGY

Articles on “ERP” are distributed across journals of var-
ious disciplines including social sciences, medical and non-
medical. The current review uses a PRISMA-based systematic
article selection approach (refer to Figure 1(a)). A literature
classification scheme is developed to reveal how selected
articles are classified. This system is based on classifying
articles of various types depending on the research focus of the
147 articles that remained after filtering. A pictorial depiction
of these categories, sub-categories and their relationships is
shown in Figure 1(g). The research methodology is discussed
in detail in the supplementary material.

III. RESULTS AND DISCUSSION

An exhaustive and comprehensive insight into EEG-based
BCI systems is generated using 147 articles based on P300
ERP from 15 online databases and 53 different high quality
journals. Figures 1(b) to (d) present an illustrative overview of
publications, including temporal trends and information about
the research domain, online databases, and the journal.
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Fig. 1. (a) Procedure followed in selecting articles used in the study. (b) Bar graph between the number of publications over the years. Article
classification based on (c) Database (d) Journal. (e) Trend of ERP used in BCI innovations over the last 20 years. (f) Trend of P300 publications
over the last 15 years. (g) Classification of selected articles used in the study.

A. Classification by Article Orientation
1) Research Articles: There are 133 research articles pub-

lished from 2006 to 2021*. Technical aspects of designing
and implementing various P300 spellers are vital, and several
techniques and design challenges are encountered during the
selection process. Therefore, relevant information is extracted
from the detailed study including participants and their age
groups, EEG devices, datasets, and classification models.

2) Review Articles: 14 review articles are divided into 4 cat-
egories: general, classification, application, and others. These
review articles are divided into categories such as general
reviews (4), classification and pre-processing methods (2),
application reviews (7), and one other review article based on
sensor selection. Articles in the general category focus on past
trends, current trends, current limitations, and the future scope
of the design application of BCI using P300. Classification
and pre-processing category manuscripts provided a compre-
hensive comparison between the techniques. Articles included
in the application category are further divided into the medical
and non-medical domains, which discuss different applications
of P300; the article in the other category discussed approaches
for sensor selection for recording EEG data.

B. Classification by Participant’s Age and Tasks Given
Many articles deduce their results based on P300 detection

experiments conducted on various participant age groups.
We found most frequently appearing subjects were between
20-30 years old in 50.51% of articles. Most studies have
preferred this age group since they are more active, respond
better to a stimulus required for P300 detection, and achieve

Fig. 2. (a) Count of participant age groups selected for EEG signal
recording (b) Count of classification models used in selected articles
(c) Count of EEG Devices used in signal recording (d) Count of medical
applications classification (e) Count of non-medical applications classi-
fication.

better efficiency. Few studies (26.77%) have preferred an even
higher age group of 31 − 40 years old. The plot for the
different age groups of the participants selected for EEG signal
recording in the articles is shown in Figure 2(a).

For the collection of EEG data, most studies make partici-
pants perform several individual tasks. A popular experiment is
using an 8 × 9 matrix of letters, numbers, and other keyboard
commands. In a study, 29 participants completed the same
58 character sentence (i.e., correcting for errors) using the
predictive speller (PS) and the non-predictive speller (NS),
counterbalanced. The PS produced significantly higher output
characters per minute (OCMs) than the NS. The time to
complete the task in the PS condition was 12 min 43 secs
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TABLE II
ELECTROENCEPHALOGRAPHY (EEG) DEVICES

TABLE III
CLASSIFICATION MODELS USED IN DIFFERENT ARTICLES

TABLE IV
DATASETS USED IN THE ARTICLES

compared to 20 min 20 secs in the NS condition [13]. Another
study proposed a novel 2 × 3 matrix consisting of home
appliances visuals as a P300 paradigm task. Once the matrix
visualization was completed, auditory feedback was provided,
and the chosen command was executed. It enabled six menus
to be navigated for handling six electronic systems with up to
30 control commands [115].

C. Classification by Datasets
Though BCI has gained immense attention in recent years,

only limited BCI datasets are available. These are open-source
and used by most researchers to test proposed spellers.
Table IV lists some important datasets and corresponding
references to the articles where these were used. However,
most of the finalized articles discussed in the present review
recorded and used the EEG signals during the experiments.
These are described in Supplementary Material.

D. Classification by EEG Devices
A total of 36 different EEG devices have been utilized

across research articles for collecting training and testing data.
Out of the EEG devices used for data collection, BCI2000
was the most commonly used (41 articles). Other prominent
devices include G-Tec, Electro-Cap International, BioSemi
Active Two, and SynAmps 2. Table III provides the count
of all EEG devices used in the selected articles. These EEG
devices are described in detail in Supplementary Material.

E. Classification by Classification Models
The classification algorithm used in designing a BCI is

primarily determined by the type of brain signals recorded and
application controlled. Various ML (including SVM, SWLDA,
FLDA, LDA) and deep learning approaches have been sug-
gested in the literature. The count of all classification models
employed in the selected studies is provided in Table III and
Figure 2(b). These classification models are described in detail
in the Supplementary Material.

F. Classification of Articles by Application Domain/ Field
The finalized 147 articles are further classified into

real-world application domains, i.e., medical and non-medical
applications. 32 of 147 articles are classified as medical
applications, while the remaining 115 are classified as non-
medical. The sub-classification of medical and non-medical
articles are shown in Figure 2 (d-e) and Table V-VI.

1) Medical Applications: P300 BCI systems are useful for
medical purposes and widely used to analyze neurological
disorders, such as ADHD, Schizophrenia, etc.

a) Assessment: Typically, neurological studies strive to
understand how defects in brain functioning can result in
a variety of neuro-biological disorders that impact countless
individuals worldwide. These studies are conducted to discover
the changes other patients perceive when stimuli are generated.

b) Assistance: It discusses various test spellers that use
visual stimuli. The experiments are carried out on healthy
patients and people with specific neurological disabilities.
These experiments focused on discovering how people with
these disabilities could be helped and what new findings can
ease their daily lives. The spellers used for collecting data
provided helpful insights with respect to participants with
specific disabilities. Example, using see-through head-mount
display (HMD) to create control panels with flicker visual
stimuli for motor disabled patients [7].

c) Diagnosis: It presents articles that discuss novel algo-
rithms that could be used for helping patients with disabilities.
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TABLE V
MEDICAL APPLICATIONS CLASSIFICATION

TABLE VI
NON-MEDICAL APPLICATIONS CLASSIFICATION

They also compared how the proposed model was better than
the present and how the P300 signal can help people interact
with their surroundings more easily. These included helping
them assess lights, doors, TV, etc. The results benefit people
with diseases like spinal cord injury, spastic cerebral palsy,
and locomotive disease. These articles provided much less
talk about the application of EEG in diagnosing certain neu-
rological disorders. The studies discussed how present results
extended previous findings and provided even more convincing
evidence of Heart Rate Variability’s (HRV) capacity to index
prefrontal inhibition in tasks requiring executive control.

d) Other: It discusses the subject’s specific disease and
provides a detailed study on the classification processes and
spellers that will produce the best results. These articles also
included detailed studies on previous research on various
subjects as well as the future scope of research.

2) Non-Medical Applications: BCI has been used in various
non-medical applications being employed for both healthy and
disabled subjects, as discussed here.

a) New application: This category discusses various new
spellers that provide better accuracy for specific classification
algorithms, sensors, etc., by using visual stimuli like arrows of
different colors or using faces as stimuli for greater attention,
3d speller, etc. These also discussed about different spellers
that have not been used, such as using Devanagari characters
instead of the usual English alphabets. The articles used
various new pre-processing techniques and new approaches
helping to reduce complexity and increase user interaction.

b) Comparison: These articles focus on building a compar-
ison based upon paradigms, spellers, visual stimulus, analysis
of best sensors, etc. A thorough comparison of classification
techniques showed that SWLDA has potential advantages
over other classification techniques because of its capability
to eliminate insignificant features for large, unknown feature
spaces. One of the articles proposed a novel approach of using
dummy faces that are easy to edit for optimizing BCI stimuli.

c) Assistance: These articles provide valuable insights on
making the current model optimal for better results and effi-
ciency, giving spellers ease of gaze, in turn reducing fatigue.
It also helps to understand how different hardware devices or
locomotives like wheelchairs can be integrated with the speller
systems. These research proposals are vital due to the expected
progress of BCI-based technologies for controlling prosthetic
devices, manipulators, and mobile robots.

d) Robotics: These articles provide a new direction to
research for robotics and entertainment, which can be acces-
sible to disabled people. One of the articles explores the
concreteness of robot motion images on ERPs, which resulted
in larger N200 and P300 potentials. It shows that brain signals
can be used to command a humanoid robot for various tasks.

e) Entertainment: Various articles explored entertainment
as a field to be made accessible for these people by providing
them dynamic motion stimuli in addition to audio-visual ones
and helping them to interact directly with virtual objects. One
of the articles presents the possibility of composing complex
music pieces encouraging self-expression for severely disabled
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people. Another article proposed a BCI game where P300
ERPs are translated into movements of a character on a 3D
game board to provide richer interaction.

f) Others: The collection of these articles discuss BCI
developments and their limitations. The articles include
research outcomes based on reduced wheelchair drive-related
risk factors and develop better control of wheelchair mobility
and applications in various other fields like gaming, painting,
etc.

IV. CHALLENGES

There are many challenges in P300 BCI. First, a significant
challenge in P300 BCI is that of “replication”. There exists
extreme variability in elicitation of P300 signals across differ-
ent sessions as they provide varying results. This variability
is true even for healthy patients. This necessitates additional
training sessions [12], [15], [27], [84].

Second, the classification processes or the computation of
results which takes more than 1 or 2 sessions of data recording,
making it a time-consuming procedure that exploits several
computational resources and results in higher costs in terms
of system integration and human capitalization [12].

Third, the results obtained from P300 detection-based
devices often tend to be inaccurate because P300 detection
is a “gaze-dependent process”, which makes it challenging
especially for people with disabilities to concentrate for an
extended period [5], [79], [88], [97], [101], [107], [108], [120],
[127]. Moreover, the conducted experiments are relatively
unfamiliar for all subjects and have real-time constraints,
so much so that once results are obtained, they cannot be
changed after the recording is completed.

Fourth, the sophisticated and delicate nature of P300 con-
trolled devices make them challenging to handle and prone
to many safety issues [137], [145]. Even a small paradox
can result in high variance from the actual recordings. Non-
invasive BCI devices, which allow for sending messages or
commands to devices or people to direct non-invasive mea-
sures of brain activity, unfortunately, detect only a few brain
signals making it difficult to get accurate results.

Many end-users want a device to accomplish a goal, such as
moving a wheelchair to a particular room or directing a mobile
robot to retrieve an item [80]. Therefore, BCI systems must
manage tasks such as finding a path to the target location and
avoiding obstacles or directing the movements of a robotic
arm [80]. BCIs for spelling and other goals do not require
this intermediate computation layer. This “shared control” can
require extensive additional programming and testing.

V. CURRENT TRENDS AND FUTURE SCOPE

Recently, a P300-based system has been developed to select
different actions [97], including switching on TV to control an
innovative home environment. The BCI system was combined
with a P300 system to switch on/off the flashing matrix. The
speller consists of images of devices like TV, Refrigerator,
AC, etc. This helps people with disabilities to control their
environment with the help of BCI system [97]. Using var-
ious algorithms like ANN, CNN, and other deep learning

algorithms for classification has increased the accuracy of
generated results [6], [8], [12], [16], [35], [37], [72], [76],
[81], [101].

The CNN’s can directly take multi-dimensional data as
input, avoiding the complicated artificial feature extraction
processes, which can extract specific feature information.
Novel GUIs that use familiar faces as the target instead of
letters or characters are widely used [19], [42], [50], [53],
[85], [88]. It produces better results than a simple charac-
ter or letter-based speller and is currently being researched
extensively. Moreover, articles are coming up with processes
and techniques to improve the process’s speed and reduce
the latency of the procedure so that the results are more
accurate [12], [78], [81], [130]. Nowadays, P300 is being used
increasingly in communication in the fields of entertainment
as well [139], [140]. It has made many advancements in
household appliances, virtual reality, etc [6], [103], [125],
[140]. P300 BCIs are also used to control wheelchairs which
can help people control them without anyone else’s assis-
tance [49], [97], [105], [110], [146]. Its increasing use in
robotics has given an edge to the research being carried out
for the same [80], [105], [143].

The crucial problem to be addressed when designing a
practical BCI is to reduce the considerable space of features
extracted from raw EEG signals. One of the strategies used
for feature selection is based on genetic algorithms [99].
The BCIs that facilitate the completion of more natural or
intuitive tasks seem to have been shown to yield numerous
benefits. The development of the P300 BCI application known
as “Brain Painting (BP)” was created with a “user-centered
design” in mind. By analyzing the wishes of end-users, e.g.,
patients diagnosed with Amyotrophic Lateral Sclerosis, the
BP application fulfills basic human requirements of assist-
ing expression, albeit through an “alternative communication
channel” [68]. In this case, the alternative channel as a creative
means of picture drawing has resulted in a novel BCI design.
It improves mood, motivation, and quality of life in patient
users [123]. The positive emotions exhibited during creative
and playful expression have been well documented ins helping
with patient rehabilitation [123]. One of the areas where there
is much scope for research is using ECoG for recording the
P300 signals. Present models use scalp-based EEG recordings,
which are limited to the communication performance of a few
speller characters per minute. ECoG improves the performance
by 3 to 4 times and has higher temporal and spatial resolution
than scalp EEG. It also does not suffer from the attenuation
of signals by the skull and scalp. Therefore, ECoG has a
significantly better SNR than scalp EEG. Many researchers
are working on creating BCI robots and wheelchairs [49],
[80], [97], [105], [110], [143], [146]. Different optimizations,
spellers, and classification techniques have been introduced to
improve how these robots can be controlled better. It will be
beneficial for patients with disabilities, who can handle things
with the help of BCI and require minimum human assistance.

VI. CONCLUSION AND FUTURE WORK

Recent developments in BCI technologies have facilitated
the detection of P300 signals. They have helped to elicit valu-
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able insights on brain activity and leveraging to ease the lives
of specially-abled people. In addition, many research articles
suggest novel ideas in terms of classification, feature extraction
technique, use of some particular sensor, or use of other
language or shapes for the spellers. The proposed methods
improved accuracy and decreased latency and proved to be the
stepping stones for research in these fields. The study aimed
to review published articles on BCI, P300, visual stimuli, and
current and future trends in these fields. We mined 15 online
databases, selected 50 journals, and extracted 147 articles on
P300 detection systems. Each article is differentiated, sorted,
and analyzed according to the publication year, classification
process, EEG device used, the dataset used, and domain.

There are few systematic reviews on P300 detection using
visual stimuli; even if present, they have used auditory stimuli
or a hybrid of auditory and visual stimuli. P300 has not been
used as the principal ERP for collecting EEG data in many
research articles, so reviewing articles that have used P300
potential has also opened up new avenues for research in
the same. This review also details various advancements that
have taken place in the field over the past 15 years and will
help pave the way for future research in this field. There has
been an increase in the number of published articles over the
years. Scientists are using this technology for medical diag-
nosis, assistance, telecommunication, entertainment, robotics,
etc. As anticipated by any new research field, EEG-based
P300 detection and recognition is fraught with challenges.
Nevertheless, the challenges provide zeal for researchers to
work through them and give new innovative and life-changing
breakthroughs to the field. It is highly recommended to con-
sider various algorithms for validating proposed processes,
including pre-processing and classification techniques. It is
advised to compare the accuracy achieved by deploying
various classification techniques before selecting the most
appropriate technique per various parameters considered.

The present study was confined to “Visual Stimuli evoked
P300-based BCI”. Future work can focus on reviewing other
categories of the EEG Signals like SSVEP(s) [148], EEG-
EOG [149], miniature-event-related potentials [151], and stim-
uli like tactical stimuli [150], very small lateral stimuli [151],
decoding N2pc components [152], tensor based frequency
features combinations [153], etc.
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