
1418 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

A Developed LSTM-Ladder-Network-Based
Model for Sleep Stage Classification
Ruichen Li , Bei Wang , Member, IEEE, Tao Zhang , Senior Member, IEEE,
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Abstract— Sleep staging is crucial for diagnosing sleep-
related disorders. The heavy and time-consuming task of
manual staging can be released by automatic techniques.
However, the automatic staging model would have a rel-
atively poor performance when working on unseen new
data due to individual differences. In this research, a devel-
oped LSTM-Ladder-Network (LLN) model is proposed for
automatic sleep stage classification. Several features are
extracted for each epoch and combined with the following
epochs to form a cross-epoch vector. The long short-term
memory (LSTM) network is added into the basic ladder
network (LN) to learn the sequential information of adjacent
epochs. The developed model is implemented based on a
transductive learning scheme to avoid the issue of accu-
racy loss caused by individual differences. In this process,
the labeled data pre-trains the encoder, and the unlabeled
data re-fine the model parameters by minimizing the recon-
struction loss. The proposed model is evaluated on the
data from public database and hospital. Comparison exper-
iments were conducted where the developed LLN model
achieved rather satisfied performance while dealing with
the unseen new data. The obtained results demonstrate
the effectiveness of the proposed approach in addressing
individual differences. This can improve the quality of auto-
matic sleep staging when assessed on different individuals
and has strong application potential as a computer aided
approach for sleep staging.

Index Terms— Sleep stage, EEG, long short-term mem-
ory network, ladder network, transductive learning.

I. INTRODUCTION

SLEEP is the most crucial part of humans’ daily phys-
iological activities. Good sleep with suitable circa-
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dian is beneficial to maintaining our physical and mental
health [1], [2]. However, sleep deprivation increases the risk
of potential diseases and the probability of accidents [3], [4].
According to research, around 47% of accidents are caused by
people falling asleep while driving. Those who slept for less
than 6 hours had about 25% more accidents than those who
got enough sleep [5], [6].

Generally, sleep is defined by several sleep stages that
are commonly used to interpret the overnight sleep process.
The golden standard for sleep staging is the Rechtschaffen
and Kales criteria (R&K) [7]. It is further developed by the
American Academy of Sleep Medicine (AASM) [8]. Both
standards suggest dividing sleep into three primary stages:
Wake, Non-Rapid Eye Movement (NREM), and Rapid Eye
Movement (REM). NREM is further divided into Stage I (S1),
Stage II (S2), Stage III (S3), and Stage IV (S4). S1 and S2
tend to show periods of light sleep, while S3 and S4 represent
periods of deep sleep. Additionally, S3 and S4 are considered
as one stage of slow wave sleep (SS). A person’s overnight
sleep process contains regular sleep cycles consisting of those
sleep stages, while the sleep structure of patients having dis-
eases may have abnormal characteristics. The sleep of patients
with depression often include changes of sleep continuity, and
impaired non-REM sleep [9]. The deprivation of REM sleep
is linked to behavioral deviation, insomnia, brain shrinkage,
and abnormally high rates of neural cell death [10].

Polysomnography (PSG) is primarily used to monitor sleep
stages and sleep cycles. The measurement of PSG includes
electroencephalograph (EEG), electrocardiograph (ECG), elec-
tromyograph (EMG), and electro-oculograph (EOG), etc. Gen-
erally, sleep stages are inspected by clinicians with clinical
experience and qualified skill. Each 30-second epoch of PSG is
demonstrated by a suitable sleep stage. Due to the complexity
of sleep signals, it takes several hours for a clinician to mark
the overnight PSG recording [11]. Thus, visual inspection is
a quite heavy and laborious task. Furthermore, it is rather
objective that may be varied among clinicians [12].

Automatic sleep staging has an advantage on processing
efficiency compared with visual inspection. The rule-based
approaches [13], [14] had been used to realize automatic
sleep stage identification, where the features were primarily
extracted from the time and frequency domains of neu-
rophysiological signals [15] [16], or by newly developed
time-frequency feature representations [17], [18]. Machine
learning approaches, such as HMM [19], SVM [20], [21],
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and Decision Tree [22], [23] were also used to realize the
sleep stage classification by combining the extracted features.
However, machine learning requires data to be highly sepa-
rable [24], making it more demanding on the effectiveness
of features. Recently, the deep learning model had been
widely used for sleep staging. Deep learning approaches
extract features automatically for classifiers. As the depth of
the layers increases, more detailed features can be learned
[25]. With the rapid development of different deep learning
models, the effectiveness has been validated compared with the
traditional classification approaches [26], [27], [28]. However,
the limitation is also obvious. The deep learning models
require many training samples and qualified labels, which
are almost impractical, especially in clinics. The reasons are
not only due to the complex and unknown characteristics
of brain waves of EEG, but also the hard work of visual
labeling by clinicians. The differences from individual data
or recordings may cause the model to perform poorly on the
unknown new data. Furthermore, the sleep recordings at the
hospital are primarily of patients with sleep disorders. There
are more complicated and varied cases compared with the
typical definition for normal sleep in the criteria, which would
affect the performance of a trained model.

Due to the above limitations, several research focused on
the transfer learning techniques for sleep staging to enhance
the adaptability of the deep learning model to different data
sets. In [29], one database consisting of 200 subjects was
used as the source domain and three target domain databases
to reduce the data variability issue caused by equipment
differences. In [30], eight data sets were used for transfer
learning to enhance the model’s generalization ability on data
from individuals with different sleep disorders. The transfer
learning technique employs source domain data to pre-train the
model and obtains the prediction results on the unseen target
data set. Although the existing public data can better pre-train
the model and transfer it to the other data sets, the recent
studies still demonstrated the requirement for large-scale
training data sets. It is still necessary to develop the deep
learning models to meet the actual requirements for clinical
application.

In this research, a LSTM-Ladder-Network based on a
transductive learning scheme is developed for automatic sleep
stage classification dealing with fewer training samples and
unknown new data. The aim is to enhance the application
performance that is more convenient for clinicians to employ
and more adaptive to different individuals. The primary con-
tributions are: (1) Several features are extracted from sleep
EEG and EOG of subsequent epochs and combined to form
a cross-epoch vector as inputs. The structure of the ladder
network is developed, where the sequential information of the
changing regularity of sleep stages is learned using LSTM
with cross-epoch vectors. (2) A transductive learning scheme
is implemented, where the labeled data pre-trains the encoder
and the unlabeled new data re-fine the model parameters
by minimizing the reconstruction loss. By fully using the
distribution structure of the new data, the model parameters
are more consistent with the data distribution of the predicted
individuals. Finally, the developed model is validated on the

TABLE I
DESCRIPTION OF SLEEP RECORDINGS

sleep data of subjects with different ages from a public
database and of patients from the hospital. The classification
performance is assessed on the unknown new data that would
be flexible for real clinical application.

In section II, the description of two data sets to be analyzed
is introduced, the extraction of features and the composition of
cross-epoch vectors are described, and the basic classification
model and its improvements are explained. In section III, the
preparations of experiments are given, several comparisons
are conducted to examine the performance of the proposed
approach, and the obtained hyponograms of normal subjects
and patients are analyzed. The originality and effectiveness are
discussed in section IV, and the summary of our work is given
in section V.

II. MATERIAL AND METHOD

A. Data Sets
The sleep recordings from two data sets were employed for

analysis and evaluation. Table I summarizes the description
of sleep recording. (1) Dataset I is from the PhysioNets
Sleep-EDF Expanded (Sleep-EDFx) database [31]. The data
of each subject were recorded for two consecutive nights. The
PSG measurement included two channels of EEG, one channel
of EOG, and others. (2) Dataset II contains the overnight sleep
recordings from two man-machine versus sleep stage classi-
fication competitions that were held in 2021 in Beijing and
Shenzhen, China. Each subject had one night of recording. The
data are of standard PSG measurement, including 22 channels.
EEGs were recorded in the frontal, central, and occipital areas.
EOGs were of two channels corresponding to horizontal and
vertical eye movements. The other channels were chin-EMG,
ECG, Snore, Therm, etc.

Totally 20 subjects from Dataset I (10 males and 10 females,
with different ages from 25 to 97 years old, as shown in
Table II) are selected and three subjects from Dataset II are
used for testing and evaluation. For Dataset I, the two EEGs
and one EOG are examined for sleep staging. For Dataset II,
two channels are selected from the frontal and occipital EEGs
and one channel based on the substraction of two EOGs is
used. The sampling rate of EEG and EOG in the Dataset I
was 100 Hz, and 256 Hz in Dataset II. Furthermore, the
recording of Dataset I contained nearly 20 hours of PSG data.
To focus on the overnight sleep staging, the data corresponding
to the night sleep period were extracted (ranging from 8 to
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TABLE II
THE INFORMATION OF THE 20 SUBJECTS FROM DATASET I

11 hours among subjects). Both data sets had been inspected
by clinicians. The labels of sleep stage scoring include Wake,
REM, S1, S2 and SS, where S3 and S4 are treated as a single
stage of SS according to AASM standard.

B. Feature Extraction

EEG characteristics primarily describe the definition of
sleep stages in the staging criteria, while the other signals
are also supplementarily considered. Wake is characterized
by dominant α activity (8-13 Hz) and low voltage fast wave
of EEG. S1 and S2 are identified as light sleep with low
voltage θ activity (2-7 Hz), where the transient characteristic
waveforms of the sleep spindle and K-complex appeared in
EEG. Deep sleep SS is based on high amplitude slow wave
activity δ (0.5-2 Hz). The EEG in REM indicates relatively
low amplitude mixed frequency, primarily θ activity and
intermittent α activity. With the depth of sleep, the dominant
frequency component becomes slower whereas the amplitude
becomes higher. In REM, EEG becomes slightly active which
may be closer to S1. Furthermore, the eye movements are also
decreased from Wake to light sleep and deep sleep. Episodic
rapid eye movement in EOG is the primary characteristic for
distinguishing REM from the other sleep stages.

According to the above description, different sleep stages
are characterized by different dominant rhythms in brain waves
measured by EEG. Additionally, the eye movements recorded
by EOG are useful to identify REM from NREMs. Here,
the continuous recording of EEG and EOG is divided into
consecutive 30-second epochs. Features are calculated for
each epoch. There are two types of characteristic parameters
calculated from the time domain and frequency domain for
sleep staging.

1) Time Domain: Three Hjorth parameters of activity,
mobility and complexity are computed to obtain the statistical
characteristics of the data from EEG channels.

Activity(s) = var(s) (1)

Mobility(s) =

√
var(s′)

var(s)
(2)

Complexity(s) =
Mobility(s′)

Mobility(s)
(3)

where s represents the input time series, (•)′ denotes first order
derivative, and var(•) represents the variance calculation. The
time domain features are employed to distinguish the intensity
of human brain activity by the change in signal frequency,
which is gradually decreased from waking to light sleep and
deep sleep states.

2) Frequency Domain: The proportion of the energy of a
certain frequency activity is examined for EEG and EOG. FFT
(Fast Fourier transform) is applied on the time series to obtain
the periodogram. Based on the peridogram, the energy of EEG
characteristic waveforms are analyzed to extract features in the
frequency domain. There are six features of EEG including
the frequency activity of δ: 0.5-2 Hz, θ : 2-7 Hz, low ampli-
tude mixing frequency waves (LAMF): 4-7 Hz, α: 8-13 Hz,
σ : 12-14 Hz, β: 15-30 Hz. The proportion of the energy of
each frequency activity is obtained by comparing it with the
total frequency activity of 0.5-30 Hz. Furthermore, one feature
of EOG is the energy of frequency activity within 2-10 Hz
corresponding to the eye movements. The frequency domain
features are fitting to the description of sleep stages in the
sleep staging criteria.

C. Cross-Epoch Vector
One’s overnight sleep consists of several sleep cycles with

the changes of sleep stage from light to deep sleep and back
to light sleep. In the sleep staging criteria, for the recorded
epoch cannot be directly interpreted, the scoring results of the
neighboring epochs are necessary to be considered together.
For the same stage, it would have continuity before the
appearance of other stages. For the change from current stage
to other stages, it would be accord with reasonable transition
principles. It is obvious that the inspection of sleep stage
requires context information among the recorded epochs.

Generally, several deep learning approaches used the orig-
inal signal as input. Unlike the other studies, features are
used instead of the raw data for sleep stage classification.
Each recorded epoch is represented by several characteristic
features. In order to include the context information for sleep
staging, the features of several epochs are combined to form a
cross-epoch vector to integrate the sequential information into
the model training.

Fig. 1 illustrates the framework of the developed auto-
matic sleep stage classification approach. Fig. 1 (a) shows
the detailed procedures for obtaining the cross-epoch vector.
The synchronously and continuously recorded raw EEG and
EOG time series are segmented into 30-second epochs without
overlapping before feature extraction. Several characteristic
features are computed from the time and frequency domains
of EEG and EOG, as indicated by xn . The obtained features
of the current epoch combined with the subsequent epochs to
form a cross-epoch vector x̃n . x̃n is treated as the input for the
classification model.

D. Classification Process
The automatic sleep stage classification is implemented

using a transductive learning scheme. Unlike the other training
schemes, the unseen new data are added to the training process
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Fig. 1. The framework of the developed automatic sleep stage classification approach. (a) describes the composition of cross-epoch vectors.
The features are extracted from EEG and EOG time series for each 30-second epoch. The obtained features of the current epoch are combined
with the subsequent epochs to form a cross-epoch vector. (b) illustrates the main structure of the developed model where the inputs are in form
of cross-epoch vectors. The classification process is implemented on sleep stage classification based on a transductive semi-supervised learning
scheme.

as unlabeled data to reduce the distribution difference between
new data and labeled data. Fig. 1 (b) shows the structure
of the developed classification model. The ladder network is
the basis where the LSTM network is employed to enhance
the sleep staging performance by dealing with the sequential
characteristics.

1) Ladder Network: The ladder network consists of encoders
and decoders. During the training process, the cross-epoch
feature vectors of the labeled data x̃l(n) and the unlabeled
data x̃u(n) are input to the encoder after adding the Gaussian
noise. The corrupted latent variables z̃(l)

l of labeled data and
z̃(l)

u of unlabeled data are obtained from the corrupted encoder.
After the softmax activation layer, the noisy prediction result

ỹ is obtained based on the labeled latent variable z̃(l)
l . ỹ is

used to compute the loss between the real labels r (n) with
the labeled data. The supervised loss function is,

Costl = −
1
N

N∑
n=1

logP (ỹ = r (n)|̃x (n)) (4)

Additionally, the labeled latent variable z̃(l)
l is used to train the

decoder with the unlabeled latent variable z̃(l)
u .

The decoder and the encoder correspond one-to-one from
high to low, and decode layer by layer to obtain the decoding
latent variable ẑ(l). The reconstruction loss is calculated by

Cost(l)u =
λl

N

N∑
n=1

||ẑ(l)(n) − z(l)(n)||2 (5)

where z(l)(n) represents the clean latent variable obtained
from the clean encoder, N represents the total number of
samples, and λl represents the weight of the l-th layer.

The total cost is,

Cost = Costl +

L∑
l=1

Cost(l)u (6)

The cross-epoch feature vectors of the new data to be
identified are input into the clean encoder during the testing
process. The prediction results are obtained using softmax.
According to the transductive learning scheme, the new data
are the unlabeled data to train the model. The model is
fine-tuned according to the reconstructing error.

2) LSTM-Ladder-Network: Based on the ladder network, the
LSTM network is employed to improve the learning ability
to extract sequential information from the input cross-epoch
vectors. The encoders and decoders are constructed using
the LSTM network to match the input cross-epoch vectors
containing inter-stage information.

Each encoder and decoder consists of a LSTM network
layer, a batch normalized layer, a parameter layer, and an
activation layer. As shown in Fig. 2, the structure of an
encoder is illustrated in (a) and a decoder is in (b). To ensure
that the input of each LSTM network layer can maintain the
same distribution, a batch normalized layer is added after
the LSTM network layer. In Fig. 2 (a), γ (l) and βl represent
the scale parameter and the bias parameter respectively, which
are selected depending on the activation function. The two
parameters are both used for tanh and softmax activation func-
tions. In Fig. 2 (b), g (•, •) represents the denoising function
under the condition of Gaussian distribution.

The output of the first two encoders is a three-dimensional
vector, including the number of samples, the duration of
cross-epoch, and the number of features. Tanh is used in
the activation layer to make the model converge faster. The
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Fig. 2. The structures of one encoder unit and one decoder unit.
The developed classification model consists of three encoders and
decoders. The first two encoders’ activation layers use tanh. The
last encoder extracts the coding features and takes the first duration
dimension which activation layer employs softmax for classification. The
encoded features obtained by the last encoder are input into the last
decoder, and decoded in reverse order.

last encoder further extracts the first epoch data from the
input three-dimensional vector, i.e. a two-dimensional vector
of current epoch for sleep staging. The final activation layer
employs the softmax layer to obtain the classification results
with the two-dimensional vector.

III. RESULTS

Experimental works are conducted by applying the proposed
approach to the two data sets. The obtained results are com-
pared with the visual inspection. First, the effectiveness of
extracted features for sleep staging is validated comparing with
the original raw time series. Second, the improvements of the
LSTM-Ladder-Network are assessed by comparing it with the
basic ladder network, and the effectiveness of the transductive
learning scheme is investigated by comparing the cases with
and without unlabeled data. Third, the classification perfor-
mance of proposed model is compared with several models
in recent literatures. Finally, the hyponogram is obtained to
interpret the overnight sleep process of normal subjects and
patients with sleep disorders.

A. Experimental Description
For Dataset I, there are 20 sleep recordings. The sleep

recordings are divided into consecutive 30-second epochs for
sleep staging. The number of epochs of one’s overnight sleep
recording ranges from 745 to 1,366. The total number of
epochs of 20 sleep recordings is 21,849. The computed fea-
tures for sleep staging include six frequency domain features
and three time domain features extracted from two EEG chan-
nels, respectively, and one frequency domain feature from one
EOG channel, with a total of 19 features. The leave-one-out
cross-validation is conducted to evaluate the classification per-
formance on individual data. Each time, the sleep recordings of
19 subjects are employed as labeled data while the remaining
one is used as unlabeled data for the test. It is repeated
20 times. For Dataset II, similar processing is conducted. The
models in the following comparison experiments are build
using Tensorflow 2.2 and trained on a AMD Ryzen 7 5800H
16 cores CPU (with no GPU).

B. Performance Indicator
The classification performance on the sleep staging task is

evaluated based on several indicators, including overall accu-
racy (ACC), precision (PR), recall (RE), and F1-score (F1).

TABLE III
COMPARISON BETWEEN RAW DATA AND EXTRACTED FEATURES

FOR SLEEP STAGE CLASSIFICATION

The confusion matrix is employed to show the comparison
between the automatic sleep staging and the visual inspection.
The indicators are computed based on the confusion matrix,

ACC =
1
N

M∑
m=1

TPm (7)

PRm =
TPm

TPm + FPm
(8)

REm =
TPm

Nm
(9)

F1m =
2 × PRm × REm

PRm + REm
(10)

where TPm and FPm are the true positive and false positive
of one sleep stage, M is the total number of sleep stages for
classification, Nm is the number of epochs of each sleep stage,
and N is the total amount of epochs for sleep staging.

C. Features for Sleep Staging
A comparison experiment between the features and raw

data is conducted in order to evaluate the feature extraction
for sleep staging. The original sleep EEG and EOG time
series are processed by a 4-layers CNN (Convolutional Neural
Network) [32], and input into a LSTM network for sleep
staging. The number of units of LSTM is 128. On the other
hand, the extracted features by section II-B are directly input
into the representation layer of the same LSTM network.

The RMSProp optimization algorithm is used to adjust the
network weight. The learning rate is 0.0001, and the decay
rate is 0.9. The model training batch is 128. The number of
training rounds is 300. The training is stopped early when
the accuracy rate does not increase within recent 5 rounds.
The leave-one-out cross-validation is utilized. Each time, the
19 individuals is used for training and 1 individual for testing.
The comparison results are given in Table III. By using the
original data with CNN units, it tended to be stable after
about 120 rounds of training, the total time was 2 hours, and
the averaged classification accuracy was 80%. By using the
extracted features, it tended to be stable after about 50 rounds
of training, the total time was 1.6 minutes, and the averaged
classification accuracy was 81%.

The utilized 4-layer CNN unit can extract the features
from the original time series automatically. The raw data with
CNN obtained rather good classification accuracy. However,
the whole sleep staging model is more complex where large
amounts of parameters need to be trained, and more data is
required to have a better training. It increased the cost for
model training. By using our method, the extracted feature
from time domain and frequency domain achieved better
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classification accuracy and the training cost can be reduced
significantly. The comparison experiment demonstrated the
effectiveness of extracted features for sleep staging.

D. Sleep Stage Classification
The main developments of proposed model are evaluated

based on the following conditions. The input data of the
LSTM-Ladder-Network is composed of labeled data and unla-
beled data. The data size is (sample size, 6, 19), where the first
dimension is the sample number, the second is of cross-epoch
size and the third is of feature number. The model is trained
in the batch training approach with a batch size of 32. The
Gaussian noise variance is 0.01, and the learning rate is fixed
at 0.05. The unit sizes of the three-layer LSTM are 100, 50,
and 10 respectively. 300 training times are conducted, and the
total loss is employed to evaluate the training model. An early
stop is used to terminate the training process when the loss is
not further decreased within recent 20 rounds.

1) Improvements of Model Structure: To validate the
improvements of the LSTM-Ladder-Network (LLN), the clas-
sification performance is compared with the basic ladder
network (LN). Here, LN is the traditional ladder network
where the inputs are single-epoch feature vectors while LLN
corresponds to the developed network where the inputs are
cross-epoch feature vectors. Both approaches are applied on
the sleep recordings of Dataset I.

The confusion matrix is obtained by comparing the auto-
matic classification result with the visual inspection. The
performance indicators are computed based on the obtained
confusion matrices by using two models, as shown in
Table IV and V respectively. The numbers on the diagonal
of the confusion matrix represent the number of epochs
where the predicted results are consistent with the visual
inspection. Among the performance indicators, the F1-score
is a comprehensive indicator based on precision and recall.

By employing the basic LN with a single-epoch feature
vector, the F1-score of S2 and Wake were better than the
other sleep stages, REM was about 70% while SS was lower,
and S1 was only 23.4%. The evaluation results in Table V
showed that the classification performance of each sleep stage
was enhanced significantly compared with Table IV. The
F1-score of almost all of the stages were near and higher
than 80%. Although S1 was still lower than the other sleep
stages, it increased by about 16%. The total classification
accuracy using the proposed LLN reached 81.5% while the
basic LN was 74.5%. The comparison results showed that the
improvements in the model structure obtained more reasonable
classification results for sleep staging.

2) Improvements of Model Training: The developed LLN is
implemented on Dataset I with and without unlabeled data,
respectively, to demonstrate the effect of unlabeled data on
the model training. Table V corresponds to the training by
only using the labeled data, while Table VI is by using the
labeled and unlabeled data.

Comparing the confusion matrices in Table V and VI,
the classification performance of every sleep stage has been
further improved. The indicators in Table VI revealed that the

TABLE IV
CONFUSION MATRIX FOR RESULTS OF LN SLEEP STAGING MODEL

TABLE V
CONFUSION MATRIX FOR RESULTS OF LLN SLEEP STAGING MODEL

WITHOUT UNLABELED DATA

TABLE VI
CONFUSION MATRIX FOR RESULTS OF LLN SLEEP STAGING MODEL

WITH UNLABELED DATA

classification performance of sleep stages was better than that
in Table V. The F1-score of Wake and S2 were around 90%,
SS and REM were over 80%, and S1 was further improved
by 1.6%. The total classification accuracy was achieved at
84.3%. The improvements of using the unlabeled data on
model training is effective to implement the proposed model
for the unseen new data.

The detail classification result of individual data is inves-
tigated in Fig. 3. The accuracies of using the developed
approach by the two cases of with and without unlabeled data
are compared for each subject. It can be observed that the
classification accuracy was remarkably improved using the
transductive learning scheme in most of the subjects, while
slightly lower in the five subjects. The overall classification
performance of the developed LLN under a transduction
learning scheme was rather satisfied on sleep staging.
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Fig. 3. Accuracy of sleep stage classification for each object when the
model is trained with or without the unlabeled data.

3) Comparison With Other Methods: Several models devel-
oped in recent literatures are compared with our proposed
model. Table VII summarizes the comparison results, where
the other approaches are categorized into types of Supervised
Learning (SL), Transfer Learning (TL) and Semi-supervised
Learning (SSL). The data set is the same as the public sleep-
EDF database. The classification performance of three indexes
of ACC, Macro-F1-score (MF1) and Kappa coefficient are
compared, and the cross-validation way is also described
(k-fold or leave-one-out).

The SL models were commonly employed for sleep staging.
The obtained sleep staging results in references [26], [27],
[28], and [33], were over an accuracy of 82%, MF1 of
74% and kappa coefficient of 0.7. In [28], the presented
model achieved rather high classification performance using
k-fold cross-validation. However, the performance is decreased
obviously when facing the new data using the leave-one-
out cross-validation. The individual differences affected the
classification performance under SL.

The application of the TL scheme can be found in the
recent literature of references [29] and [30]. The classification
performance is better than the SL scheme under leave-one-
out cross-validation. However, the model still needs to be
pre-trained by many labeled training data. The SSL scheme
is another way to deal with such problem. It seems that the
classification performance of references [34] and [35] were
lower than SL and TL even though the k-fold cross-validation
was employed.

Our proposed model is developed and implemented based
on a transductive learning scheme to avoid the problem of
accuracy loss caused by individual differences. The classifi-
cation performance is examined on the new data by leave-
one-out cross-validation. Furthermore, the subjects were of
different ages from 25 to 97 years old both males and females.
According to the comparison results in Table VII, the overall
classification accuracy and MF1 were satisfied and the kappa
coefficient was maintained at a good level. The developed
model was more effective in meeting the requirements for
clinical application.

Additionally, for the issue of computational complexity,
the parameters of proposed model to be trained are mainly

TABLE VII
PERFORMANCE COMPARISON WITH OTHER SLEEP

STAGING METHODS

in the LSTM layer in the encoder and decoder and the
fully connected layer of the final output. Here, a 3-layer
encoder and decoder structure is adopted for sleep staging.
The total number of parameters for training is 167,090, which
is extremely fewer than the several million parameters of the
models in literatures with multi-layer CNN. When conduct-
ing the comparison experiments, each time 19 individuals
(about 20,000 epochs) were trained, and 1 individual (about
1,000 epochs) was used for testing. Under the hardware
configuration given in section III-A, the time for training
and prediction process was of an average 12 minutes. The
computational complexity of proposed model is reasonable,
and the training and prediction process are efficient.

E. Hypnograms
1) Normal Subject From Dataset I: According to the sleep

staging results, the overnight sleep process can be interpreted
by using the hyponogram. Fig. 4 shows the hyponograms of
one subject from Dataset I. Fig. 4 (a) is by using the basic LN
while Fig. 4 (b) is by the developed LLN. In these figures,
the black solid line is the visual inspection (VI) and the red
dotted line is the automatic sleep staging results. The sleep
staging results by using the proposed method are closer to the
visual inspection comparing the obtained two hyponograms.
The overall accuracy was 83.2% by using the basic LN
while improved to 90.7% by using the developed LLN. The
enhancements in model structure and training scheme are
effective.

2) Patient From Dataset II: Furthermore, the sleep record-
ings of patients from Dataset II are examined. Fig. 5 shows
the obtained hyponograms of one patient. The identification
of sleep stages is analyzed into three types of categories.
Fig. 5 (a) shows the interpretation of wake from the other
sleep stages. The classification accuracy of the two states
reached 98.2%. Fig. 5 (b) illustrates the identification result
of Wake, REM, and NREM states, where the classification
accuracy achieved 90.3%. As shown in Fig. 5 (c), the changes
in sleep states, including Wake, REM, S1, S2 and SS are
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Fig. 4. Hyponograms of one normal subject from Dataset I. (a) the comparison result of sleep staging between the basic LN model with single-epoch
feature vector and the visual inspection, (b) the comparison result of sleep staging between the developed LLN model with cross-epoch feature
vector and the visual inspection.

Fig. 5. Hyponograms of one patient from Dataset II. The automatic sleep stage prediction results are compared with the visual inspection by three
types of categories: (a) the interpretation results of wake and sleep, (b) the identification results of Wake, REM and NREM, and (c) the classification
results of Wake, REM, S1, S2 and SS.

illustrated in the hyponogram. The automatic sleep staging
result was quite consistent with the visual inspection, where
the accuracy was 81.1%. The experiments revealed that the
developed LLN under a transduction learning scheme pre-
sented a feasible assistant tool for clinical application.

IV. DISCUSSION

A. Individual Differences
Sleep stage scoring is useful and crucial for describing the

change in sleep states during one’s overnight sleep. In clinical
practice, the data to be interpreted often come from new sub-
jects. We investigated on the sleep data of different individuals.
Fig. 6 shows the distributions of the density of four main
EEG components including δ, θ , LAMF and α. Fig. 6 (a)
illustrates the distribution of each parameter computed from
the two sleep recordings of the same subject. The consistency
of feature distributions from the same individual was relatively
high. However, Fig. 6 (b) shows the feature distributions of the
two different subjects. There were quite obvious differences
between the two individuals compared with Fig. 6 (a). The
influence of individual factors such as age, gender, and physi-
cal fitness of different subjects will result in differences in the
feature distribution.

There is primary two kinds of method commonly utilized
for neurophysiological signal processing. One is subject-
dependent method, i.e. to establish a model for each subject to

avoid the individual difference effect. The typical application
fields include brain computer interface and emotion recogni-
tion [36], [37]. In those applications, the EEG signals were
examined under the designed experimental environment. It is
possible to obtain more recordings from the same subject to
train the classification model for individuals by repeating the
experiment. Different from those applications, it would be dif-
ficult to obtain enough sleep recording for individual training.
The subject-dependent method may not be applicable to deal
with the sleep staging task. Another is subject-independent
method focusing on training a classification model to address
the variations in EEG signals among different subjects. It is
commonly utilized for sleep stage classification. Recently,
studies using transfer learning scheme and un/semi-supervised
learning schemes were applied for sleep staging trying to avoid
the individual difference effect on automatic sleep staging
models. However, large number of training samples with
manual labeling is required and classification performances
on the new data still need to be developed.

By considering the effect of individual difference, the aim
of our research is to develop the automatic sleep staging
model dealing with fewer training samples and unknown new
data for clinical application. During the training process, the
labeled training sample and the unlabeled test samples are
used to overcome the individual difference effect. Although
the proposed approach is subject-independent, it needs not
large number of labeled training samples. Furthermore, the
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Fig. 6. The distributions of features. (a) is from the two sleep recordings of the same subject, and (b) is from the sleep recordings of two different
subjects.

training process has the similar role as the subject-dependent
method even there is few individual data for each subject.
These demonstrate that our method would be more feasible to
deal with the issue of individual differences for sleep staging.

B. Developed LSTM-Ladder-Network
Automatic sleep stage classification had been investigated

by various models. In most of the studies, the supervised
model is adopted and validated by k-fold cross-validation.
Generally, the k-fold cross-validation is performed under the
assumption of consistent data distribution. During the valida-
tion, part of the sleep data from all individuals is employed
to train the models. No matter which individual’s data are
predicted, some of his/her data have been trained to meet
the requirement of distribution consistency. Although better
results can be obtained, the trained models may have poor
performance when applied to the unseen new data. In real
applications, consistent data distribution is almost impossible.
Poor data consistency would be difficult to train a model
and achieve good results when there are fewer labeled data
related to various actual cases. Recently, studies using TL
scheme were applied for sleep staging which achieved better
classification performance than SL and SSL. The TL models
employs source domain data to pre-train the model and obtains
the prediction results on the unseen target data set. However,
the cost for the acquisition of the data with expert labeling is
rather high and sometimes difficult to solve.

Due to the above limitations, we investigated a classification
model under a transductive learning scheme. The transductive
learning is a kind of SSL scheme. In our experimental works,
one individual sleep recording is treated as unlabeled data
while the others are labeled data. Features are extracted from
the EEG and EOG. The developed model is realized by
a transductive learning scheme through the encoder-decoder
structure, where LSTM is employed to build the encoder and
decoder dealing with the input cross-epoch feature vectors.

By training the encoder with labeled and unlabeled data, the
reconstruction error is minimized after decoding to avoid large
distribution differences between the unlabeled new data and
labeled data.

The classification performance is examined on the new
data by using leave-one-out cross-validation. Furthermore, the
subjects are of different ages from 25 to 97 years old both
males and females (as shown in Table II). The results shown in
Table VI and Fig. 3 proved the effectiveness of our approach
for sleep stage classification based on fewer training samples
for unseen new data. The comparison with other models is also
given in Table VII. Comparing with SL and TL, our model
achieved a good classification level which needs not require
large number of training data with expert labeling. Comparing
with the other SSL models, the classification performance is
significantly improved. The developed model is more effective
in meeting the requirements for clinical application.

C. Cross-Epoch Vector
Sleep recording has sequential characteristics where the

sleep states are changed based on certain regularities. Most of
the studies used LSTM trying to improve the learning ability
of sequential information within one epoch [26], [38]. Some
studies used several epochs to enlarge the duration of time
series for learning [27]. However, the recognition of sleep
stages is for epochs. To some extent, the change in features is
more understandable than the original time series for learning
the sequential information.

We considered the sequential information of the continuity
and transfer of sleep stage among the epochs rather than the
time series within the epochs. Firstly, several typical features
are computed instead of the common convolutional neural
network. According to the comparison results in Table III,
the model’s structure can be simplified and the computational
costs can be reduced by using the defined features rather than
the raw data. Moreover, the extracted features also achieved
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Fig. 7. The sleep staging accuracy using the developed model under a
different duration of the cross-epoch feature vector.

fairly well classification accuracy. Secondly, the features of
the current epoch are combined with subsequent epochs to
form a cross-epoch vector as the input. The representation of
cross-epoch makes better use of LSTM to learn the sequential
information throughout the recorded epochs as described in the
sleep staging criteria. Accordingly, the learning of the transfer
rule in consecutive epochs can further improve the classi-
fication performance for automatic sleep staging as shown
in Table VI. Even without using unlabeled data to fine-tune
the model, the LSTM encoding and decoding structure with
cross-epoch vectors still achieved better classification per-
formance comparing the evaluation results in Table V with
Table IV.

The number of epochs used to form the cross-epoch vector
is also investigated. The same experimental test is repeated
where the duration of the cross-epoch is increased by 1, 2, 4, 6,
and 8. Fig. 7 shows the obtained results. The duration equals 1
implies that the model does not use the subsequent epochs.
As shown in Fig. 7, the proposed model achieved the best
classification accuracy when the duration of the cross-epoch
was 6. Moreover, the identification of light sleep S1 is also
analyzed. S1 is a transient state from wake to sleep. The
characteristics of S1 are quite similar to the adjacent states of
Wake and S2. It is rather difficult to achieve high accuracy on
S1. The discrimination of S1 must refer to the characteristics
of the consecutive epochs. The accuracy of S1 was increased
when considering more context, as illustrated in Fig. 7. The
cross-epoch is beneficial for enhancing the recognition of the
transient state as S1. According to our research, the number
of epochs to form the cross-epoch vectors can be adjusted
within a certain range. We used the six consecutive epochs.
The constructed model was well-behaved on the unseen new
individual data as evaluated on the normal subjects and
patients of the two data sets.

D. Clinical Data Applications
Besides evaluating the sleep recordings of normal sub-

jects from Dataset I, the patients with sleep disorders from
Dataset II are tested and examined, as shown in Fig. 5.
We separated the predicted results by the proposed approach
into three situations. First, the identification of wake from
sleep was shown to recognize the wake stage during the

sleep process. Second, the results of Wake, REM and NREM
were given to illustrate the rough information related to sleep
cycles. Third, the detailed classification of five sleep stages
was all given for the interpretation of one’s overnight sleep
process. According to Fig. 5, the identification results by our
proposed approach were rather satisfied closer to the visual
inspection. The descriptions of “Wake and Sleep”, “Wake,
REM and NREM”, and “all sleep stages” may offer useful
identification information for the diagnosis and treatment of
sleep-related disorders such as apnea syndrome, and insomnia.
Additionally, the TL approach has a similar consideration
of unseen new data that is concentrated on the differences
between the source domain and target domain such as different
hospitals or institutions. In the case of the application in the
hospital, the individual differences would be more crucial to
be considered when developing the automatic classification
approach. Unlike the TL technique, our proposed approach
needs not rely on large-scale training data. The transductive
learning scheme revealed effectiveness to make sleep stage
classification on the unseen new data. Furthermore, the clas-
sification effectiveness was validated on the sleep recordings
of subjects whose age was distributed with large differences.
This would be more feasible and practical to be implemented
for clinical application.

V. CONCLUSION

An automatic sleep stage classification approach was devel-
oped. The influence of individual differences is considered and
investigated. Several characteristic features are extracted from
the time and frequency domains of sleep EEG and EOG for
each 30-second epoch. The current epoch and several subse-
quent epochs are connected to form a cross-epoch vector as
input. The potential features of new data are learned by encod-
ing and decoding the structure of ladder network. The LSTM
network is employed to learn the time sequence relationship
of sleep features between epochs. The classification model is
rematched to the new data by minimizing the reconstruction
loss. The proposed approach’s effectiveness is assessed by
comparison experiments and applied to the sleep recordings
of normal subjects and patients with sleep disorders from two
data sets. The obtained results revealed that the developed LLN
based on fewer training samples under a transductive learning
scheme had a rather satisfactory classification performance on
the unseen new data. Moreover, it is also possible to adopt
more advanced time-frequency feature extraction techniques
for feature representation in current model as future works.
This can be a feasible assistant tool for clinical application.
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