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Enhancing Detection of Control State for
High-Speed Asynchronous SSVEP-BCIs Using

Frequency-Specific Framework
Yufeng Ke , Member, IEEE, Jiale Du, Shuang Liu , and Dong Ming , Member, IEEE

Abstract— This study proposed a novel frequency-
specific (FS) algorithm framework for enhancing control
state detection using short data length toward high-
performance asynchronous steady-state visual evoked
potential (SSVEP)-based brain-computer interfaces (BCI).
The FS framework sequentially incorporated task-related
component analysis (TRCA)-based SSVEP identification
and a classifier bank containing multiple FS control state
detection classifiers. For an input EEG epoch, the FS frame-
work first identified its potential SSVEP frequency using
the TRCA-based method and then recognized its control
state using one of the classifiers trained on the features
specifically related to the identified frequency. A frequency-
unified (FU) framework that conducted control state detec-
tion using a unified classifier trained on features related to
all candidate frequencies was proposed to compare with
the FS framework. Offline evaluation using data lengths
within 1 s found that the FS framework achieved excellent
performance and significantly outperformed the FU frame-
work. 14-target FS and FU asynchronous systems were
separately constructed by incorporating a simple dynamic
stopping strategy and validated using a cue-guided selec-
tion task in an online experiment. Using averaged data
length of 591.63±5.65 ms, the online FS system sig-
nificantly outperformed the FU system and achieved an
information transfer rate, true positive rate, false posi-
tive rate, and balanced accuracy of 124.95±12.35 bits/min,
93.16±4.4%, 5.21±5.85%, and 92.89±4.02%, respectively.
The FS system was also of higher reliability by accepting
more correctly identified SSVEP trials and rejecting more
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wrongly identified ones. These results suggest that the FS
framework has great potential to enhance the control state
detection for high-speed asynchronous SSVEP-BCIs.

Index Terms— Asynchronous brain-computer interface,
control state detection, steady-state visually evoked poten-
tials (SSVEP).

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) can establish direct
links between the human brain and external devices

like computers by decoding the user’s intention from neural
signals [1], [2], [3], [4]. BCIs have shown great potential
to provide muscle-independent communication channels and
to help disabled and abled people to restore or enhance
their abilities. According to users’ autonomy during using
BCI systems, a BCI can be classified as synchronous or
asynchronous. An asynchronous BCI allows users to com-
municate freely by using it whenever they want. In contrast,
a synchronous BCI only enables users to operate at a particular
predefined time and usually needs a synchronization cue
for the beginning of each trial. As one of the most popu-
lar noninvasive BCI paradigms, steady-state visually evoked
potential (SSVEP)-based BCIs have been heatedly researched
in the past decades and have demonstrated the advantages of
less training and higher information transfer rate (ITR) using
efficient feature extraction or machine learning methods like
the extended canonical correlation analysis (CCA) [5], task-
related component analysis (TRCA) [6], correlated component
analysis [7], task-discriminant component analysis [8], and
deep learning-based [9], [10], [11], [12] target identification
algorithms.

However, limitations on users’ autonomy during the inter-
action are still one of the challenges for user-friendly
and practical applications in the existing high-performance
SSVEP-BCI studies because of their synchronous manner.
In contrast to the high performance (high ITR, high accuracy,
and a large number of targets) and the large number of studies
on synchronous SSVEP-BCI, the asynchronous SSVEP-BCI
has been understudied and exhibited unsatisfactory perfor-
mance. The critical point of establishing an asynchronous
SSVEP-BCI is distinguishing users’ ‘control state.’ A user
may be in either the intentional control (IC) state or the non-
control (NC) (or idle) state, according to the user’s gazing state
(gazing at an SSVEP flicker or not). The key challenge of an
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asynchronous SSVEP-BCI is to distinguish between the IC and
NC states effectively. Based on the method used to detect the
change in the user’s control state, there have been two main
types of asynchronous SSVEP-BCI research: i) establishing a
hybrid BCI (hBCI) by combining an SSVEP-BCI and switches
based on other physiological signals and ii) directly classifying
between IC and NC states using SSVEP features.

Several hBCI studies that employed electrooculogram
(EOG) [13], [14], [15], [16], electromyogram (EMG) [16],
[17], P300 [18], [19], and respiration signals [20] to establish
switches for SSVEP-BCIs have shown their potential to con-
struct asynchronous SSVEP-BCIs for practical applications.
In these studies, the users are usually required to perform
intentional actions like eye blinks, occlusal movements, P300
tasks, and breath-holding to produce expected patterns to
trigger the switch. Although users can turn the SSVEP-BCI
on/off at any time in this kind of system, additional mental
resources or muscle abilities are required, thus limiting its
ease of use and application scenarios, especially for disabled
patients.

In addition to the hBCI solutions, researchers have
attempted to distinguish between the IC and NC states using
SSVEP features. Xia et al. designed a four-target asynchronous
SSVEP-BCI by combining the thresholding ratio of canonical
correlation analysis (CCA) coefficients with a sliding window
strategy [21]. Some other studies have also employed sim-
ilar methods to distinguish between the IC and NC states,
although there were some differences in the implementation
approach of the thresholding methods [22], [23], [24]. In a
recent study, Chen et al. combined a dynamic window method
and a thresholding strategy for asynchronously controlling a
robotic arm in an augmented reality (AR) environment [25].
In an online robot movement task, Chen et al. achieved
an average SSVEP recognition accuracy of 92.49% at the
average time cost of 2.04 s per command selection. Although
the thresholding method can provide a training-free approach
to recognizing the control state of users, the recognition
accuracy and the response speed of these methods need to be
improved, especially in a system of many candidate targets.
Another recent study proposed a training-free spatio-temporal
equalization multi-window algorithm based on the ‘statistical
inspection-rejection decision’ mode to improve performance
for a forty-target system [26]. In an online asynchronous
spelling task, the system achieved an average accuracy of
97.2% but costed a relatively long average input time (3.06 s)
for a single character, although a dynamic-window approach
was employed.

Other researchers have attempted to classify IC and NC
states using machine learning methods. Poryzala et al. imple-
mented an IC detection method by clustering analysis of CCA
coefficients after CCA-based spatial filtering of multichan-
nel SSVEP responses, resulting in improved detection speed
and accuracy [27]. In a three-target SSVEP-BCI study by
Zhang et al., FFT features of SSVEP responses at the fre-
quencies of both the attended and the unattended stimuli were
employed to construct three binary classifiers based on support
vector machine (SVM) for recognition of the three frequencies

and the idle state [28]. Subsequently, they identified the three
targets and the idle state by comparing the maximum output
of the three classifiers to a predefined threshold and achieved
an average control state detection accuracy of 88.0% and
average idle state false positive rates (FPRs) ranging from
7.4% to 14.2% using 3s EEG data. Using a method similar
to [28] in identifying the control state, Han et al. implemented
a ten-target asynchronous system and achieved an averaged
frequency recognition accuracy of 90% and an average FPR
of 15% using 2 s EEG data by improving the feature extrac-
tion method [29]. Different from the previous two studies,
which constructed binary classifiers to distinguish between
each frequency and the idle state, Suefusa et al. trained a
multi-class SVM classifier with correlation coefficient features
extracted by the multiset-CCA algorithm to classify between
all the targets and the idle state in a 28-target mixed frequency
and phase-coded SSVEP system [30]. As the criterion of the
performance regarding discriminability of the IC/NC states in
this study, the area under the receiver operating characteristic
curve (AUC-ROC) reached 0.919 using the data length of
3 s. With the rapid development of deep learning technol-
ogy, typical deep learning methods like convolutional neural
networks (CNN) have also been introduced into asynchronous
SSVEP-BCI research. An FFT-CNN-CCA pipeline that firstly
distinguished between IC and NC by a CNN using FFT
features and subsequently recognized the target for the IC
states using the CCA-based method achieved an average ACC
of 90.09% in IC/NC classification using a data length of
2 s in a four-target system [31]. Ravi et al. classified NC and
four IC states directly using a CNN architecture with complex
FFT features and achieved an average accuracy of 82% using
1s-long EEG segments [32].

The studies mentioned above in the last decade have
achieved impressive IC/NC classification performance in accu-
racy. However, whether training-free or machine learning-
based, these studies occasionally required data lengths of
almost 2 s or longer to achieve a high accuracy rate above 90%.
It has already been a consensus in the SSVEP-BCI community
that the overall performance of a system involves a trade-off
between accuracy and speed. Generally, the longer the length
of SSVEP data, the higher the recognition accuracy and the
slower the response speed. Thus, it is still a challenge for the
methods in the existing studies to simultaneously provide suffi-
cient recognition accuracy and a fast response speed for time-
critical application scenarios. There is still a requisite for a
faster and more accurate algorithm framework for control state
detection toward high-performance asynchronous SSVEP-BCI
systems.

This study is dedicated to proposing an efficient frequency-
specific (FS) algorithm framework to classify control states
(IC/NC) for asynchronous SSVEP-BCI using FS features and
classifiers. The FS algorithm framework first identified the
potential target frequency using the TRCA-based template
matching method and subsequently distinguished between
IC (the identified frequency) and NC states using classi-
fiers trained on the features specifically related to the iden-
tified target frequency. A frequency-unified (FU) algorithm
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Fig. 1. Diagram of the proposed FS framework. XIC and XNC denote the training data from the IC and NC states, respectively. XIC,fk denotes the

SSVEP data of the kth stimulus frequency fk (k=1,. . . , 14). Xtest denotes the test data. W(m) (m = 1, . . . , 5) denotes the spatial filters, and X̄(m)
IC

denotes the corresponding SSVEP templates, of mth sub-band obtained through eTRCA from XIC after FB analysis. X(m)
IC, fk

, X(m)
NC and X(m)

test denote

the mth sub-band obtained from XIC,fk , XNC and Xtest, through FB analysis, respectively.

framework that distinguished between IC and NC states using
a classifier trained on SSVEP features related to all candidate
frequencies was proposed to compare with the FS algorithm
framework. Different feature extraction methods were exam-
ined within the two algorithm frameworks in pseudo-online
analyses using short data lengths. Several performance metrics
were compared between the two algorithm frameworks and
among three feature extraction approaches. Finally, online
FS and FU-based asynchronous systems were implemented
separately by incorporating the FS and FU frameworks with
a simple dynamic stopping strategy. The performance of the
online systems was validated using a cue-guided selection task
in an online experiment.

II. METHODS

For asynchronous SSVEP-BCIs, the system’s overall per-
formance depends on both SSVEP identification and control
state classification. In this study, both the FS and FU algorithm
frameworks used the same SSVEP identification method but
differed in their approach to classifying control states. This
section presents details of the frequency identification algo-
rithm and the two algorithm frameworks.

A. SSVEP Identification
The ensemble TRCA (eTRCA)-based method [6], [33] was

employed for SSVEP identification in both the FS and FU
frameworks. The filter bank (FB) analysis [34] was also
applied to EEG epochs by using zero-phase Chebyshev Type I
infinite impulse response (IIR) filters. EEG epochs were
decomposed into 5 sub-bands by filters with pass-bands of

[(m∗8-2) Hz, 80 Hz], where m = 1, 2, . . . , 5. The template
matching-based method was employed to calculate the corre-
lation coefficient (CC) features between SSVEP templates and
test epochs for each sub-band. The potential target frequency
for a test epoch was determined by the weighted sum of
squares of the CC features of the 5 sub-bands, just as has
been done in [6].

B. Control State Detection Algorithm Frameworks
Fig. 1 shows the proposed FS control state detection algo-

rithm framework. As for comparison, an FU algorithm frame-
work, as shown in Fig. 2, has also been implemented. It is
definite that both algorithm frameworks identified SSVEP and
used the eTRCA in the same way, but they were different
in calculating features, training classifier(s), and applying the
classifier(s) for control state detection.

In the SSVEP identification procedure, the SSVEP data,
X I C , recorded in IC state were used to obtain the TRCA
spatial filters and the SSVEP templates. In the control state
detection procedure, features extracted from the data of IC
state, X I C , and NC state, X NC , were adopted to train the
IC/NC classifier(s). Performance of SSVEP identification and
IC/NC classification were evaluated on the test data, X test .
More detailed procedures for the two frameworks, feature
extraction methods, and classifiers are as follows.

1) FS Framework: The FS framework sequentially incor-
porated the TRCA-based SSVEP identification and a classi-
fier bank for control state detection. At the training stage,
TRCA spatial filters, [W (1), . . . , W (5)

], and the SSVEP tem-
plates, [X̄ (1)T

I C W (1), . . . , X̄ (5)T

I C W (5)
], of all sub-bands were

firstly obtained from the IC data, X I C , through FB-eTRCA.
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Fig. 2. Diagram of the FU framework.

Afterwards, the classifier bank containing fourteen (the total
number of SSVEP targets) binary classifiers was constructed,
each of the classifiers was trained on features only related
to a specific candidate frequency calculated from spatially
filtered data of the NC and IC states and thus could distinguish
between the NC state and one of the fourteen SSVEPs. That
is to say, the kth(k = 1, . . . , K , where K =14 is the number
of targets) classifier was trained on kth frequency ( fk)-related
features calculated from X NC and X I C, fk , the SSVEP data of
fk from IC state.

At the testing stage, the potential SSVEP frequency fk of
an EEG epoch, X test , was firstly identified by applying the
FB-eTRCA-based template matching approach, just as has
been done by Nakanishi et al. [6]. Afterward, the fk-related
features were calculated from the spatially filtered data of
each sub-band of X test and then fed into the k-th classifier to
determine whether the SSVEP frequency identified above was
genuinely derived from SSVEP or not. Namely, the SSVEP
identification result determined how the features would be
calculated and which classifier would be applied to distinguish
between IC and NC states.

2) FU Framework: The TRCA-based analysis and the
SSVEP identification procedures of the FU framework were
identical to those of the FS framework. The main difference
was that only one unified binary classifier was constructed
by training on features related to all of the candidate SSVEP
frequencies calculated from data of X NC and X I C in the
FU framework. At the testing stage, the IC or NC state of
the testing data was determined by the only unified classifier
independently of the SSVEP identification results. That is to
say, SSVEP identification and control state detection were
sequentially conducted in the FS framework, but they could
be done simultaneously in the FU framework.

3) Feature Extraction Methods for Control State Detection:
Three kinds of feature extraction methods, Pearson’s corre-
lation coefficient (CC), Fast Fourier Transform (FFT)-based

Power Spectral Density (PSD), and Phase Locking Value
(PLV), were adopted and compared between each other in
this study. The CC features were extracted by calculating CCs
between the spatially filtered SSVEP templates and the data
for feature extraction for each sub-band after FB analysis.
PSD features were extracted for the spatially filtered training
and testing data at fundamental and harmonic (h = 2 ∼

5) frequencies by calculating the ratios between PSDs of
these frequencies and the total power using the first sub-band.
PLV features were extracted for training and testing data at
fundamental and harmonic (h = 2 ∼ 5) frequencies after
spatial filtering by calculating PLVs between them and the
SSVEP templates and also the corresponding cosine templates
using the Hilbert transform-based phase extraction method
[35]. As has been mentioned above, the difference between
the feature calculation methods of the two frameworks was
that the FS framework only extracted the features related
to a specific SSVEP frequency for training one of the FS
classifiers, while the FU framework extracted features of all
the candidate SSVEP frequencies for training only one FU
classifier. The detailed feature extraction process can be found
in the supplementary materials.

4) Classifiers: In both frameworks, binary classifiers were
adopted to discriminate between IC and NC states based
on a classical low-cost machine learning method, the linear
discriminant analysis (LDA) [36], since it is less demanding
on sample size [37].

III. EXPERIMENTS

In this study, offline and online experiments were conducted
separately. The purpose of the offline experiment was to collect
data for validating the performance of the control state detec-
tion algorithm frameworks and feature extraction methods
using different data lengths. The online experiment validated
the feasibility of a high-speed asynchronous SSVEP-BCI
system using the proposed FS framework and compared the
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Fig. 3. Layout of the SSVEP stimuli.

performance between FS and FU frameworks under a cue-
guided selection task. This section introduces the experimental
environment, the detailed procedure of the two experiments,
and the performance evaluation methods.

A. Experimental Environment
1) Subjects: Fifteen subjects (22-26 years old, incl. 7 males)

and fourteen subjects (23-27 years old, incl. 5 males) par-
ticipated in the offline and online experiments, respectively,
with informed consent and payments. They all had a normal
or corrected-to-normal vision and had no history of mental
diseases or neurological disorders. The experimental proce-
dures have been approved by the ethics committee of Tianjin
University.

2) Stimulus Design: Fig. 3 illustrates the layout of the
SSVEP stimuli displayed on a 27-inch Liquid Crystal Display
(LCD) monitor with a refresh rate of 120 Hz. There were
14 flickering squares (170 × 170 pixels) coded using a joint
frequency and phase modulation (JFPM) method [38] and a
non-flickering cross in the center of the monitor. The flicker
frequencies were set to 8 Hz ∼ 14.5 Hz with an interval of
0.5 Hz, and the initial phase interval was 0.35 π between
adjacent frequencies. The stimulus programs of offline and
online experiments were implemented using the Psychophysics
Toolbox Version 3 [39].

3) EEG Recording Preprocessing: EEG data were recorded
using the Compumedics Neuroscan Synamps2 hardware and
Scan 4.5 software (Neuroscan, Inc.) with a sampling rate of
1000 Hz. Data from nine posterior channels (Pz, PO5, PO3,
POz, PO4, PO6, O1, Oz, and O2, according to the extended
10-20 system) referenced to the vertex and grounded in the
prefrontal region were used in the following analyses. Event
triggers generated by the stimulus program at the onset of
flickering were synchronized to the EEG data. Data epochs
of IC and NC states were extracted according to the event
triggers. All data epochs were band-pass filtered from 7 Hz
to 90 Hz to preserve the first five harmonic components for all
stimulation frequencies and notch filtered at 50 Hz to remove
powerline noise by zero-phase forward and reverse filtering
with Butterworth filters.

B. Offline Experiment
The offline experiment contained three sessions (as shown

in Fig. 4a), an IC training session for SSVEP data collection,

Fig. 4. Timeline schematic diagrams for the offline and online
experiments.

an NC training session for NC data collection, and a pseudo-
online testing session including SSVEP and NC trials for
testing data collection. To relieve subjects’ visual fatigue,
they were asked to have breaks for several minutes between
consecutive experimental blocks. The detailed experimental
process is described as follows:

1) The IC Training Session: This session contained five
blocks, and each block included 140 trials. In each block, each
of the squares was visually and randomly cued ten times in a
trial-by-trial manner. At the beginning of each trial, subjects
were instructed to turn their gaze to the cued square during the
0.5 s cue presentation interval. Then, the cued square started to
flicker for 1 s, and subjects were instructed to gaze at it till the
appearance of the next cue. After the flicker ended, there was a
1 s break before the cue of the subsequent trial. Therefore, this
session lasted about 30 minutes, and each subject completed
700 trials with 50 trials for each frequency.

2) The NC Training Session: This session contained six
2-minute NC blocks and was conducted to simulate the NC
state. In each block, subjects were randomly instructed to
either gaze at the non-flickering white cross in the center of the
monitor (on-screen NC), to look outside of the monitor and
play with their cellphone (off-screen NC), or to close their
eyes (eye-closed NC). Two blocks were conducted for each of
the NC states.

3) The Pseudo-Online Testing Session: Subjects completed
two blocks in the pseudo-online testing session. In each
block, subjects completed a 56-trial IC sub-block followed
by three 19-trial NC sub-blocks. The NC sub-blocks were
randomly assigned as one of the three NC states. Auditory cues
were employed at the beginning of each trial in this session,
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considering the off-screen and eye-closed NC conditions. The
timing of each trial was identical to that of the IC session.

For the offline experiment, EEG epochs in [0.14 s to
0.14+ l s] were extracted from the IC session and the pseudo-
online session according to the event triggers at the onset of
flickering, where the time 0 s indicated stimulus onset and
l was the data length and ranged in [0.5 1] with an interval
of 0.1. The EEG data from the NC session were split into
l s epochs without overlap. Subsequently, performance was
validated on data lengths from 0.5 s to 1 s by training the
algorithms on data from IC and NC training sessions and
testing on data from the pseudo-online session. The number
of samples for classifier training was balanced between IC
and NC classes. Each of the fourteen classifiers in the FS
framework was trained on fifty IC samples. As for the FU
framework, the classifier was trained on 700 IC samples (14
frequencies × 50 samples/frequency).

C. Online Experiment
To validate the online performance of the two frameworks,

asynchronous BCI systems based on the FS and FU frame-
works were separately constructed. The dynamic stopping
strategy was employed here for high-speed asynchronous BCI
systems because previous studies have shown its potential
to improve the reliability of SSVEP-BCI with short data
lengths [33], [40]. The online experiment was divided into
a training stage and a testing stage. EEG data were collected
to train the TRCA-based and LDA-based algorithms for FS
and FU systems in the training stage. The online performance
of the two systems was validated separately via a cue-guided
selection task in the testing stage.

1) Training Stage: The training stage consisted of 5 blocks,
each including 3 IC sub-blocks and 3 NC sub-blocks (as
shown in Fig. 4b). The sub-blocks were presented in the order
of IC-NC-IC-NC-IC-NC. There were 4-s intervals between
consecutive sub-blocks to allow subjects to switch between
different states. In each block, the number of trials for the
three IC sub-blocks were 56, 42, and 42, resulting in 140 IC
trials and 10 trials for each target frequency. Thus, 50 trials for
each target frequency were generated from the training stage.
Each IC trial lasted 2 s, including 1 s for visual stimulation and
1 s for gaze shifting. As mentioned in the offline experiment,
there were three different NC states: on-screen, off-screen, and
eye-closed. Each of the 3 NC sub-blocks lasted 48 s and was
randomly assigned as one of the three NC states. All of the NC
sub-blocks were segmented into 1 s non-overlapping epochs.
To avoid visual fatigue, subjects were asked to have breaks
for several minutes between consecutive blocks.

The data acquired in the training stage were used as individ-
ual training data in the testing stage. To implement dynamic
stopping asynchronous BCI systems, models of different data
lengths of both the FS and the FU frameworks were trained
for data lengths from 0.46 s to 0.98 s with an interval of 0.04 s
because the shortest data length could be accessed online from
the hardware was 0.04 s. This allowed the online systems
to select a model trained on EEG epochs of [0.46+n×0.04]
s (n = 0, 1, . . . , 13; n representing the number of 0.04-s
epochs received from the hardware) according to the length

of the data obtained in real-time. Considering a latency delay
in the visual pathway, the IC data epochs were extracted in
[0.14 s (0.6+n×0.04) s] according to the onset of visual
flickering. The NC epochs corresponding to the length of the
IC epochs were directly extracted from the aforementioned 1-s
epochs from the NC sub-blocks without considering the visual
latency. The two frameworks’ TRCA-based spatial filters and
the SSVEP templates were constructed using all IC trials
recorded in the training stage. The LDA-based FS classifiers
and FU classifiers were trained on a balanced number of IC
and NC samples and also a balanced number of the three NC
samples.

2) Testing Stage: The testing stage of the cue-guided selec-
tion task included 4 blocks, 2 blocks were conducted to
validate the FS framework, and the other 2 blocks were
performed to validate the FU framework. The two conditions
were randomly conducted, and subjects were not informed
which algorithm frameworks were used in all 4 blocks. Each
block consisted of 3 IC sub-blocks and 3 NC sub-blocks in the
order of IC-NC-IC-NC-IC-NC (as shown in Fig. 4b). In each
block, the number of trials for the three IC sub-blocks was 28,
28, and 14 in order, resulting in 70 IC trials in total and 5 trials
for each target. Each target stimulus was randomly cued with
a red cross presenting in the center of the stimulus for 0.8 s.
The 3 NC sub-blocks were also randomly assigned as one of
the three NC states, and each was divided into 13 NC trials.
Thus, there were 140 IC and 78 NC trials for the FS and FU
systems in the testing stage. When switching between different
sub-blocks, voice prompts indicated whether the next sub-
block would be an IC task (cue-guided selection) or one of the
three NC states. There were 4-s intervals between consecutive
sub-blocks to allow subjects to switch between different states.

To obtain more reliable output using short data lengths,
this study implemented the dynamic stopping BCI systems
by determining whether the identification results of two
consecutive overlapping EEG epochs were the same. If the
results of epochs [0.14 s to 0.46+n×0.04 s] and [0.14 s to
(0.46+(n+1)×0.04) s] were identical, the systems would out-
put the result and send a stopping signal to the visual stimulus
program. If not, the systems would receive more data from
the hardware and determine if the results of epochs [0.14 s
to (0.46+(n+1)×0.04) s] and [0.14 s to (0.46+(n+2)×0.04)
s] were identical, and so on. When the visual flickering of
a trial reached 0.98 s and ended, if there were still not
two consecutive overlapping epochs of identical identification
result, the result of epoch [0.14 s to 0.98 s] would be the
output of the trial.

Because the online experiment used a dynamic stopping
strategy, the duration of each trial consisted of a fixed gaze
shifting time of 0.8 s, a dynamic visual stimulation time of
up to 0.98 s, and a fixed feedback presentation time of 1 s.
Visual and auditory feedback was provided to the subjects in
real-time. Once a target was selected and the stimulus program
received feedback from the online processing program, the
SSVEP stimulation stopped flickering. At the same time,
a voice was prompted for the selected target and a hollow box
was displayed around the selected stimulus. The cue for the
next target appeared after the 1-s feedback duration. Subjects
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TABLE I
A CONFUSION MATRIX OF EXPLANATION ABOUT THE FOUR DIFFERENT DECISIONS OF THE IC TRIALS

were asked to rest for several minutes between consecutive
blocks to avoid visual fatigue.

D. Performance Evaluation
1) Performance Evaluation for Offline Experiment: The area

under the receiver operating characteristic curve (AUC-ROC),
true positive rate (TPR), false positive rate (FPR), 15-class
(fourteen SSVEP frequencies and the NC state) balanced
accuracy, and confusion matrix were employed to quantify the
performance of both frameworks. The present study regarded
the IC states as positive and the NC as negative.

We further analyzed the final recognition results of the IC
states in detail by considering both frequency identification
and control state detection. As shown in Table I, there were
four different possible outcomes for the IC trials, according
to the frequency identification and control state detection
decisions. If an SSVEP trial was classified as IC, the system
would accept the output whether it was correctly identified
or not. Otherwise, the result would be rejected. The accepted
correctly identified trials were defined as the correct accep-
tances (CA), and the accepted wrongly identified trials were
the wrong acceptances (WA). The rejected correctly identified
trials were defined as the wrong rejections (WR), and the
rejected wrongly identified trials were the correct rejections
(CR). Then, the CA rate (CAR) and CR rate (CRR) were
calculated as CA/(CA+WA) and CR/(WR+CR), respectively.
For practical applications, classifying a misidentified SSVEP
epoch into IC usually has more negative effects than classify-
ing it as an NC class. So, we expected the FS framework to
achieve a higher CAR and CRR than the FU framework.

The offline performance metrics were compared between
the two frameworks and among three features at different
data lengths from 0.5 s to 1 s with an interval of 0.1 s.
Because the training and testing data were independent in this
study, repeated-measure analysis of variance (rm-ANOVA) and
paired t-test were employed at the group level to examine the
effects of algorithm framework and feature under the premise
of satisfying normality and variance homogeneity. When
the premise was unsatisfied, the non-parametric bootstrap
approach was employed with 1,000 repeated times of random
resampling. The p-values corrected using the Bonferroni-
Holm-based method [41] (pB H ) were reported for multiple
comparisons.

2) Performance Evaluation for Online Experiment: SSVEP
recognition accuracies, ITRs, TPRs, FPRs, average data
lengths, CARs, CRRs, confusion matrixes, and balanced accu-
racies were reported and compared between the online FS and
FU systems. The ITR [42] is calculated as:

ITR =

[
log2 K + P log2 P + log2

(
1 − P
K − 1

)]
×

60
T

(1)

where K = 14 is the total number of targets, P is the
SSVEP recognition accuracy, and T is the averaged time
per selection consisting of the gaze shifting time, the visual
latency, and the averaged data length used online. Paired t-tests
were performed to compare these metrics between the two
algorithm frameworks.

IV. RESULTS OF OFFLINE EXPERIMENT

A. Control State Detection Performance
Fig. 5 shows the averaged performance of the control

state detection results across all subjects with different data
lengths (l). The comparisons across algorithm frameworks
and features indicate that the proposed FS framework out-
performed the FU framework. The FS framework achieved
the highest performance regardless of feature and data length.
Two-way rm-ANOVAs were performed to analyse the effects
of algorithm framework and feature on AUC-ROC, TPR, and
FPR, separately for all data lengths.

1) AUC-ROC: There were significant interactions between
the effects of the algrithm framework and feature at data
lengths of 0.5 - 1 s (Fs(2, 28) > 11.98, ps B H < 0.001).
Simple main effects analyses showed that both algorithm
framework (Fs(1, 14) > 89.37, ps B H < 10e-6) and feature
(Fs(2, 28) > 9.33, ps B H < 0.001) did have statistically
significant effects on AUC-ROC at all data lengths. One-
way rm-ANOVAs revealed significant effects of feature for
AUC-ROC of FS at short data lengths (l = 0.5 s - 0.6 s:
Fs(2, 28) > 5.61, ps B H < 0.05) and of FU at data lengths of
0.5 - 1 s (Fs(2, 28) > 11.00, ps B H < 0.001).

Furthermore, post hoc analyses using paired t-tests showed a
statistical difference between the FS and FU frameworks for all
features at all data lengths (ts(14) > 4.53, ps B H < 0.001). The
highest AUC-ROCs were achieved with CC features for the
FS framework but with PSD features for the FU framework.
At data lengths of 0.5 s and 1 s, the highest AUC-ROCs
were 0.964±0.025 and 0.980±0.017 for the FS framework
and 0.877±0.042 and 0.911±0.048 for the FU framework,
respectively.

2) TPR and FPR: Two-way rm-ANOVAs revealed that there
were statistically significant interactions between the effects
of algorithm framework and feature for all data lengths (TPR:
Fs(2, 28) > 9.60, ps B H < 0.001; FPR: Fs(2, 28) > 5.19,
ps B H < 0.05). Main effects across algorithm frameworks on
both TPR and FPR were revealed at all of the data lengths
(TPR: Fs(1, 14) > 32.74, ps B H < 10e-5; FPR: Fs(1, 14) >

127.71, ps B H = 0.000). Main effects across features were
found for TPR at short data lengths (l = 0.5 - 0.8 s: Fs(2,
28) > 5.28, ps B H ≤0.033; l = 0.9 - 1 s: Fs(2, 28) <

4.17, ps B H > 0.052 ) and for FPR at all data lengths (Fs(2,
28) > 5.00, ps B H < 0.05). One-way rm-ANOVAs revealed
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Fig. 5. Control state detection performance comparison of different algorithm frameworks (top panel: the FS framework; bottom panel: the FU
framework) and different features at data length of 0.5 − 1s. The error bars indicate standard deviations. The asterisks in the subfigures indicate a
significant difference between the three features obtained by one-way repeated-measure ANOVAs after Bonferroni-Holm correction (∗: pBH < 0.05;
∗∗: pBH < 0.01; ∗∗∗: pBH < 0.001; ∗∗∗∗: pBH < 0.0001).

significant effects of feature for TPR of FS at short data
lengths (l = 0.5s - 0.6s: Fs(2, 28) > 8.29, ps B H < 0.01;
l = 0.7s - 1s: Fs(2, 28)<5.10, ps B H > 0.051) and TPR of
FU at all data lengths (Fs(2, 28) > 5.68, ps B H < 0.01).
As for FPR, the effects of feature were insignificant for FS
(Fs(2, 28) < 2.41, ps B H > 0.65) but significant for FU (Fs(2,
28) > 7.11, ps B H < 0.01).

Post hoc analyses using paired t-tests revealed that the
FS framework achieved significantly higher TPR (ts(14) >

2.28, ps B H < 0.05) and lower FPR (ts(14) < −5.27,
ps B H < 0.001) regardless of feature and data length. Using
CC features, the FS framework achieved the highest TPRs
regardless of data length (l = 0.5 s: 91.8±5.2%; l = 1 s:
93.7±4.5%). The FS framework achieved the lowest FPRs
with PSD features for short data lengths (l = 0.5 s: 7.7±4.5%;
l = 0.6 s: 6.6±4.9%) and with CC features for long data
lengths (l = 0.7 s: 4.5±4.7%; l = 0.8 s: 3.5±4.5%; l = 0.9 s:
3.2±3.7%; l = 1 s: 2.9±3.3%). The corresponding confusion
matrixes of binary classification results can be found in Fig. S7
in the supplementary materials.

B. 15-Class Balanced Accuracy
Fig. 6 shows the 15-class balanced accuracies using differ-

ent algorithm frameworks and features in control state detec-
tion. Two-way rm-ANOVAs revealed main effects of algrithm
framework (Fs(1, 14) > 69.71, ps B H <10e-5) and feature
(Fs(2, 28) > 5.10, ps B H <0.05), and significant interaction of
these two factors (Fs(2, 28) > 11.07, ps B H <0.001) regard-
less of data length. One-way rm-ANOVA showed significant
effects of feature for the FU framework (Fs(2, 28) > 6.46,
ps B H < 0.005) at all data lengths but significant effects of
feature for the FS framework were only found at short data

Fig. 6. Comparison of averaged 15-class balanced accuracy between
different frameworks (the left panel: the FS framework; the right panel:
the FU framework) and different features. The error bars indicate stan-
dard deviations. The asterisk in the subfigures indicates a significant
difference between the three features obtained by one-way repeated-
measure ANOVAs after Bonferroni-Holm correction (∗: pBH < 0.05; ∗∗:
pBH < 0.01; ∗∗∗: pBH < 0.001; ∗∗∗∗: pBH < 0.0001).

lengths (l = 0.5 s - 0.7 s: Fs(2, 28) > 5.15, ps B H < 0.05;
l = 0.8 s - 1 s: Fs(2, 28) < 2.84, ps B H > 0.16).

Post hoc analyses using paired t-tests revealed that the
FS framework achieved significantly higher balanced accu-
racies regardless of feature and data length (ts(14) > 2.15,
ps B H < 0.05). The FS framework achieved the highest
balanced accuracies using CC features regardless of data
length (l = 0.5s: 89.7±6.2%; l = 1 s: 93.8±4.1%). When
using the PSD and PLV features, the FS frameworks also
achieved excellent averaged balanced accuracies of close to or
over 90% with data lengths above 0.7 s. The FU framework
achieved the highest balanced accuracies using PSD features
(l = 0.5 s, 78.5±4.9%; l = 1 s, 83.4±6.1%). Consistent with
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Fig. 7. Comparison of CAR and CRR for the IC data between algorithm
frameworks and features. The error bars indicate standard deviations.

the balanced accuracies, the confusion matrixes (as shown in
Fig. S5 and S6 in the supplementary materials) show excellent
accuracies of close to or over 90% across all classes for the
FS framework with CC features, even using a data length of
0.5 s.

C. Reliability of the IC Outputs
As noted in Section III-D, we defined the CAR and CRR

for the IC data by simultaneously considering the results of
frequency identification and control state detection. A system
of high reliability should have a high CAR and a high CRR
simultaneously. Fig. 7 compares these metrics for the IC
data across algorithm frameworks and features. Two-way rm-
ANOVAs revealed insignificant interaction between the effects
of algorithm framework and feature for the two metrics at
all data lengths (CAR: Fs(2, 28) < 4.32, ps B H > 0.13;
CRR: Fs(2, 28) < 3.82, ps B H > .17) except for the CRR at
data length of 0.6 (Fs(2, 28) = 6.19, pB H = 0.036). Simple
main effects analyses showed that the two metrics were not
significantly impacted by feature (CAR: Fs(2, 28) < 4.81,
ps B H > 0.09; CRR: Fs(2, 28) < 5.35, ps B H > 0.06) but they
were significantly impacted by algorithm framework (CAR:
Fs(1, 14) > 13.63, ps B H < 0.01; CRR: Fs(1, 14) > 45.12,
ps B H < 0.0001).

Post hoc analyses showed that the FS framework had
significantly higher CAR (ts(14) > 2.58, ps B H < 0.05) and
CRR (ts(14) > 4.45, ps B H < 0.001) than the FU framework
regardless of feature and data length. The FS framework
achieved a higher average CAR with PLV features at short data
length (l = 0.5 s) but with CC features at longer data length
(l > 0.6 s). The FS framework achieved an excellent average
CAR of above 97% regardless of feature and reached an
average CAR of 99.8% with CC features using 1-s long data.
The CRRs of the FS framework with CC features were higher
at short data lengths, reaching 47.1±6.6% and 32.9±5.3% at

data lengths of 0.6 s and 1 s, respectively, while the averaged
CRRs of the FU framework were lower than 15% regardless
of feature and data length.

V. RESULTS OF ONLINE EXPERIMENT

Because the CC features are of lower computational cost
and outperformed other features in the FS framework in
the offline experiment, CC features were used for control
state classification in both online systems. Table II lists
the results of the main performance metrics of the online
cue-guided task for FS and FU systems. Using averaged data
length of 591.63±5.65 ms, the averaged SSVEP recognition
accuracy, ITR, TPR, and FPR achieved by the FS system
were 92.75±4.29%, 124.95±12.35 bits/min, 93.16±4.4%, and
5.21±5.85%, respectively. Using significantly longer data of
606.33±7.77 ms, these metrics achieved by the FU system
significantly underperformed the FS system according to the
results of paired t-tests shown in Table II. The distributions
of data lengths for each subject (as shown in Fig. S8 in the
supplementary materials) indicate that both the FS and FU
systems could make decisions using data shorter than 700 ms,
but there were more trials using data longer than 700 ms in
the FU system.

The averaged 15-class confusion matrixes in Fig. 8 show
higher accuracies across all classes for the FS system. For
most SSVEP frequencies, the percentages of misclassified as
NC state were less than 10% in the FS system but greater
than 10% in the FU system. The percentage of misidentifying
NC as any of the SSVEP frequencies was less than or equal
to 1% in the FS system, while that ranged from 1.3% to 2.8%
in the FU system. Consistent with the results of the confusion
matrixes, the balanced accuracies of the FS system were
significantly higher than the FU system (FS: 92.89±4.02%;
FU: 79.56±6.09%; t(13)=10.35, p <10e-5). The FS system
also achieved significantly higher CAR (FS: 99.57±0.57%;
FU: 98.33±1.38%; t(13)=3.54, p = 0.0036) and CRR (FS:
29.42±27.10%; FU: 6.06±5.53%; t(13)=3.03, p = 0.0097)
than the FU system, as shown in the left panels of Fig. 8.
Demonstration videos showing the experimental procedures
and results for two typical subjects are available online
(https://www.youtube.com/watch?v=zjv4r45otNg&list=
PL1uuhAxV-nu1GuLvPgbGWAjfGru81GYct).

VI. DISCUSSIONS

Improving the performance of control state detection for
asynchronous SSVEP-BCI is a critical issue for free com-
munication in various practical applications. In most existing
studies, it is still a challenge to accurately and quickly clas-
sify a user’s control state. By employing common machine
learning methods and feature extraction methods in an FS
manner, this study provides a novel approach towards an
efficient algorithm framework of higher accuracy with short
data length in control state detection for SSVEP-BCI. The
highest AUC-ROCs of 0.964±0.025 and 0.980±0.017 were
obtained in offline IC/NC classification with data lengths of
0.5 s and 1 s, respectively. The FS system also achieved
excellent online performance with SSVEP accuracy, ITR,
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TABLE II
THE MAIN RESULTS OF THE ONLINE EXPERIMENT FOR THE FS AND FU SYSTEMS

Fig. 8. Averaged 15-class confusion matrixes, averaged CARs, and CRRs of the online experiment. IC1, IC2, . . . , and IC14 correspond to SSVEPs
of 8 Hz, 8.5 Hz, . . . , and 14.5 Hz, respectively.

TPR, and FPR of 92.75±4.29%, 124.95±12.35 bits/min,
93.16±4.4%, and 5.21±5.85%, respectively, using data length
of 591.63±5.65 ms. It should be noted that there were three
different NC states in the offline and online experiments and
the FS framework still achieved low FPRs. These results
suggest that high-speed and high-performance asynchronous
SSVEP-BCI systems can be built using the FS framework
to adapt to different working contexts. In contrast to studies
using physiological signals to implement switches [13], [14],
[15], [16], [17], [18], [19], [20], the method in this study
requires no additional action to transfer between IC and NC
states. It is a more convenient and friendly way to implement
asynchronous SSVEP-BCIs. Compared with similar studies,
this study substantially improves the speed of asynchronous
SSVEP-BCIs by improving the recognition performance at
short data lengths.

The advantage in offline and online CARs further indicates
that the IC outputs of the FS framework were more reliable
than those of the FU framework. Although the CRRs of the
FS framework were not so high as the CARs, the results
have shown an advantage of the FS framework: it can keep
almost all of the correctly identified SSVEP trials and reject
nearly one-third of the wrongly identified ones at the same
time. For practical applications, the FS framework could
reduce the negative effect of misidentified SSVEP epochs by
classifying more misidentified SSVEP epochs into NC state,
thus improving the reliability of an asynchronous SSVEP-BCI
system.

Compared with the FU framework, the performance
improvement of the FS framework can be attributed to the
frequency-specific manner in feature extraction and classifier
training and application since the other elements in this
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Fig. 9. Comparison of averaged Log-transformed Fisher score.
The asterisks indicate significant differences obtained by paired t-tests
after Bonferroni-Holm correction (∗∗∗∗: pBH < 0.0001).

study were identical. To interpret the results, we analyzed
the training data and quantified the degree of separability
of the CC, PSD, and PLV features for the FS and FU
frameworks separately, using the Fisher score [43]. The
Fisher score can measure the class separability of a feature
between IC and NC states by calculating the ratio of the
between-class variance to the within-class variance, namely
F − score = (mIC − mNC)2 /(δ2

IC + δ2
NC), where m and δ2

correspond to the mean value and the variance of IC or
NC features, respectively. The overall separability indexes
of the three kinds of features were calculated by averaging
across features within each kind of features. Fig. 9 shows the
comparison of the Log-transformed Fisher score. Two-way rm-
ANOVA showed significant effects of algorithm framework
(F(1, 14) = 11.81, p < 0.0001) and feature (F(2, 28) =

40.05, p < 0.0001) and their interaction (F(2, 28) = 127.9,
p = 0.0001). Paired t-tests revealed that all three kinds of
features extracted in the FS manner had significantly higher
overall separability than the FU manner (CC: t(14) = 31.36,
ps B H < 0.0001; PSD: t(14) = 24.23, ps B H < 0.0001; PLV:
t(14) = 11.36, ps B H < 0.0001). Considering the differences
between the two frameworks in terms of feature extraction,
these results indicate that the FS manner could increase
the overall distance between IC and NC feature values by
extracting features only related to a specific stimulus frequency
and preventing contamination of feature separability from
other frequencies when classifying between NC and a specific
frequency. Comparisons between features found that the CC
features had the highest separability for the FS framework
(ts(14) > 11.26, ps B H < 0.0001) while the PSD features were
the best for the FU framework (ts(14) > 2.31, ps B H < 0.05).
These results are consistent with the control state classification
performance of the offline experiment and suggest that the
CC features using the FS feature extraction framework can
better characterize the differences between IC and NC states
in SSVEP-BCIs. A possible reason for these results is that the
PSD and PLV features of single-trial EEG are more likely to
be affected by noise due to the short data length. In contrast,
the CC feature, a statistical feature of the relationship between
the SSVEP template and the single-trial EEG epoch, is likely
less affected by random noise.

Another question worth discussing is whether EEG epochs
from all three NC states were effectively recognized as NC
state, although the number of samples used to train the
classifiers in both frameworks were balanced among different

Fig. 10. Recognition accuracies of different NC states. ∗∗∗pBH <
0.0001.

Fig. 11. Correlation between the accuracies of SSVEP identification
and the AUC-ROCs of control state detection (top panel: FS framework;
bottom panel: FU framework). The crosses and asterisks indicate the
significance levels of the correlation coefficients (+: p < 0.1; ∗: p <
0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001; ∗∗∗∗: p < 0.0001).

NC states. For the offline experiment results, comparisons of
recognition accuracies (as shown in Fig. S9 in the supplemen-
tary materials) between different NC states found an insignifi-
cant effect for both frameworks regardless of feature and data
length (ps B H >0.05). The online recognition accuracies of
the three different NC states are shown in Fig. 10. One-way
rm-ANOVAs performed to examine the effect of the type of
NC state also found no significance for both online systems
(FS: F(2, 26)=2.01, p = 0.15; FU: F(2, 26)=1.91, p = 0.16).
These results indicate that the methods used in this study can
cope with different NC states.

Although the FS framework has the advantage of obtaining
high performance with short data lengths, there are also some
disadvantages. The SSVEP identification result would impact
the control state detection procedure in the FS framework
since the SSVEP identification result determined the classifier
used to recognize the control state. Therefore, we analyzed
the Pearson’s correlation coefficient between the AUC-ROCs
of control state detection and the accuracies of SSVEP identi-
fication. As shown in Fig. 11, the results revealed positive cor-
relations between the SSVEP accuracies and the AUC-ROCs
of the FS framework, regardless of feature and data length. The
correlation coefficients showed strong associations between
the SSVEP accuracies and the AUC-ROCs when using CC
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features (Pearson’s rs > 0.69, ps<0.01). For PSD and PLV
features, the correlation coefficients indicated medium asso-
ciations with significance approaching marginal or greater.
In contrast, the FU framework exhibited a small and insignif-
icant association between the SSVEP accuracies and the
AUC-ROCs regardless of feature and data length. The positive
association between SSVEP identification performance and
the control state detection performance of the FS framework
may prove a double-edged sword, enhancing control state
detection performance for high-performance SSVEP systems
but worsening it for poor-performance ones.

Although the FS framework achieved impressive perfor-
mance using common machine learning and feature extraction
methods, the supervised machine learning that depends on
individual training data may result in high costs in practical
applications. Future research is needed to combine the FS
framework with subject or stimulus transfer methods [44],
[45], [46], a more efficient frequency feature extraction method
[47], or the training-free method [48] to reduce the training
cost. Towards high-speed and high-accuracy asynchronous
SSVEP-BCIs, the performance and data length could be
further optimized by incorporating more efficient dynamic
stopping strategies [33], [40] into the FS framework by
determining the data length adaptively for each trial. Last and
most important, work is needed to validate the performance
of the FS framework in more complex tasks like robot control
for practical applications, as has been done in the previous
studies [25], [49].

VII. CONCLUSION

Towards fast and accurate asynchronous SSVEP-BCI,
a novel FS algorithm framework using common features
and a common machine learning method was proposed and
evaluated for control state detection in offline and online
experiments. The offline performance using short data lengths
showed that the proposed FS framework achieved excellent
performance and significantly outperformed the FU frame-
work regarding control state detection performance, balanced
accuracy, and the reliability of IC outputs. In an online
cue-guided selection task, the FS framework incorporat-
ing a simple dynamic stopping strategy achieved excellent
performance with SSVEP accuracy, ITR, TPR, and FPR
of 92.75±4.29%, 124.95±12.35 bits/min, 93.16±4.4%, and
5.21±5.85%, respectively, using an averaged data length
of 591.63±5.65 ms. The reliability analysis results for the
online IC outputs showed that the FS system was of high
reliability with high averaged CARs of 99.57±0.57%, and
almost one-third of the wrongly identified IC trials were
rejected. Since the proposed FS framework can achieve high
performance in control state detection with short data length,
it may have great potential to be applied to improve the
speed and accuracy of asynchronous SSVEP-BCIs for real-
life applications.
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