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Exploring the Applicability of Transfer Learning
and Feature Engineering in Epilepsy Prediction

Using Hybrid Transformer Model
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Abstract— Objective: Epilepsy prediction algorithms
offer patients with drug-resistant epilepsy a way to reduce
unintended harm from sudden seizures. The purpose of
this study is to investigate the applicability of transfer
learning (TL) technique and model inputs for different deep
learning (DL) model structures, which may provide a ref-
erence for researchers to design algorithms. Moreover,
we also attempt to provide a novel and precise Transformer-
based algorithm. Methods: Two classical feature engineer-
ing methods and the proposed method which consists of
various EEG rhythms are explored, then a hybrid Trans-
former model is designed to evaluate the advantages over
pure convolutional neural networks (CNN)-based models.
Finally, the performances of two model structures are ana-
lyzed utilizing patient-independent approach and two TL
strategies. Results: We tested our method on the CHB-MIT
scalp EEG database, the results showed that our feature
engineering method gains a significant improvement in
model performance and is more suitable for Transformer-
based model. In addition, the performance improvement of
Transformer-based model utilizing fine-tuning strategies is
more robust than that of pure CNN-based model, and our
model achieved an optimal sensitivity of 91.7% with false
positive rate (FPR) of 0.00/h. Conclusion: Our epilepsy
prediction method achieves excellent performance and
demonstrates its advantage over pure CNN-based structure
in TL. Moreover, we find that the information contained in
the gamma (γ ) rhythm is helpful for epilepsy prediction.
Significance: We propose a precise hybrid Transformer
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model for epilepsy prediction. The applicability of TL and
model inputs is also explored for customizing personalized
models in clinical application scenarios.

Index Terms— Epilepsy prediction, feature engineering,
scalp electroencephalogram (sEEG), hybrid transformer,
transfer learning (TL).

I. INTRODUCTION

EPILEPSY is a chronic brain disease caused by the sudden
abnormal discharge of neurons in the brain resulting in

temporary impairment of brain function [1], [2]. The disease
affects the normal life of approximately 1% of the world’s
population, where about 20-30% of patients are drug-resistant,
known as intractable patients [3], [4]. For these people, it is a
feasible scheme to alert them before a coming seizure, which
will take care of the self-esteem of patients and avoid the
serious consequences caused by a sudden seizure when they
go out for activities [5], [6]. At present, Electroencephalog-
raphy (EEG)-based epilepsy-related tasks are mainly divided
into seizure detection and seizure prediction. For intractable
patients, the clinical significance of seizure prediction is more
significant than seizure detection, which can reduce the emo-
tional stress of patients caused by seizures and allow doctors
enough time to intervene clinically.

During the period preceding the onset of one seizure, the
EEG signals will undergo a phase transition [7], and the EEG
signals in this region will differ from the inter-ictal state.
Finally, the onset of one seizure is predicted by detecting
the corresponding features in pre-ictal state, which divides the
EEG signals into inter-ictal, pre-ictal and ictal states. Unlike
the large difference between ictal and non-ictal states, the
difference between the inter-ictal and pre-ictal states is not
significant and the differences are also different among various
patients. This poses serious challenges to manually distinguish
a large number of EEG signals.

In the early stages, Maiwald et al. clearly defined the
term of epilepsy prediction in 2003 [8], and many studies
have emerged since then. With the development of machine
learning technology, utilizing EEG signals to automatic
or semi-automatic predict epilepsy has become a research
hotspot. Traditional feature extraction techniques such as
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dynamical similarity index [8], mean phase coherence [9],
phase-locking value [10], [11], zero-crossings [12] are widely
used, and these features are continuously fed into classi-
fiers such as Gaussian mixture models, adaptive boosting
(AdaBoost), support vector machine (SVM) for epilepsy pre-
diction. However, these methods cannot achieve high sensitiv-
ity and low false prediction rate (FPR) simultaneously.

Recent studies have shown the implementation of deep
learning (DL) techniques [13] for EEG-based epilepsy predic-
tion outperforming traditional machine learning (ML) meth-
ods. Especially, convolutional neural networks (CNNs) have
gained maximum attention in epilepsy prediction [14], [15].
However, many DL models including CNNs ignore the key
factor of attention, which will result in each feature of the
input being an equal competitor, and the neural network
must additionally learn the weights corresponding to the
features to achieve the purpose of distinguishing the impor-
tance of features, which will result in a complex and heavy
model [16], [17].

In addition to the limitations of algorithms, the disorder of
EEG signals is another challenge in current research. Since
the high complexity of signals and the irregular changes over
time, it is very necessary to analyze the frequency domain of
EEGs, which can further mine the hidden patterns of different
frequency bands in EEGs. Many researchers have combined
the time domain and frequency domain for EEG analyzing
[14], [15], [18], [19], but the adaptability between model
inputs and model structures is lack of exploration.

Moreover, in most of the existing epilepsy prediction
methods without introduction of transfer learning (TL), the
training strategies are primarily divided into subject-dependent
approach and subject-independent approach. Due to subject-
dependent approach requires a large portion of a subject’s
EEG recording to train the model before reaching its optimal
performance, many researchers utilize a general model trained
from multiple subjects through subject-independent approach,
then the model is utilized for an unseen subject. Although
these studies do not require individual training of the model
for each subject, this will pose a more intractable challenge
to the generalization of the model due to the high inter-
subject variability. To make the epilepsy prediction model
more reliable, training patient-specific models with a small
amount of labeled data has become a very valuable research
direction [20], [21]. Nevertheless, there is still a lack of
investigation into the applicability between TL and model
structures.

For this purpose, we employ TL technique to transfer the
knowledge of the general model to a patient-specific model by
fine-tune it with a small part of recording from an individual
subject. In this paper, we mainly focus on the relationship
between model inputs, model structures, and TL. The main
contributions of this work are as follows:

1) We propose a novel hybrid Transformer model that can
analyze EEG features from multiscale resolution and applies
channel attention. Experimental results show that the model
has a better ability to model feature sequence patterns than
pure CNN-based models.

2) A feature engineering method specially designed to the
hybrid Transformer model is proposed. Through the self-
attention mechanism, the model can learn the correlation
patterns between different rhythms by extracting different
EEG rhythm signals. The comparison of two classical feature
engineering methods shows that the proposed method is more
suitable for the Transformer-based model.

3) A TL approach is introduced to optimize the general
model based on subject-independent approach. We conduct
a comprehensive evaluation of fine-tuning with only negative
samples and fine-tuning with negative-positive mixed samples,
respectively. It helps to reveal the impact of the availability
of annotated data and fine-tuning strategies on model perfor-
mance in clinic.

The rest of the paper is organized as follows: Section II
describes the material and methodology. Section III describes
the experimental details. Section IV presents the experimen-
tal details and results. Section V presents the discussions.
Section VI concludes this work.

II. MATERIAL AND METHODOLOGY

A. Database
The CHB-MIT scalp EEG database collected by Children’s

Hospital Boston [22] is utilized for algorithm evaluation.
It includes 24 cases (Chb01-Chb24) from 23 pediatric patients
with intractable epilepsy, where case Chb01 and case Chb21
are from the same female patient with an interval of 18 months
and case Chb24 had no relevant patient information. The
subjects of these cases are 17 females and 5 males aged from
1.5 to 19, 3 to 22, respectively. The electrode position system
is under the international 10-20 system standard [23]. The
scalp EEG signals are sampled at 256 Hz with 16-bit reso-
lution. Each case contains 9-24 proprietary EDF format files
that store EEG signals. Every EDF file contains 1/2/4-hour
continuous EEG recordings, and the EDF files with seizures
have detailed annotations of the start and end time for each
seizure. Details are shown in Table I.

To eliminate the difficulty of data analysis caused by the
difference of acquisition electrodes, we select 18 channels
shared by most EDF files, including FP1-F7, F7-T7, T7-P7,
P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4,
P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ and CZ-PZ. FP,
F, T, P, C, and O denote frontopolar, frontal, temporal, parietal,
central, and occipital, respectively. Odd number, even number
and Z denote left side, right side and midline of the brain,
respectively.

B. EEG Preprocessing
The Raw EEG signal is standardized to alleviate the differ-

ences between subjects and help the deep learning model to
converge quickly. Due to the possible existence of false spikes
in the long-segment EEG signals, the maximum-minimum
standardization may be unpredictably affected. For a more
robust standardization method, this study adopts Z-score nor-
malization X ′ (t) = (X (t) − µ) /σ , where µ, σ are the
mean value and standard deviation of original signal X (t),
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Fig. 1. Schematic diagram of three types of feature engineering. (a) Multi-lead EEG signals. (b) Raw EEG signals (Filtered). (c) EEG spectrogram.
(d) Proposed mixed rhythm signals. An example of the selected 18-channel EEG recordings is visualized, and the 5 s sliding window is utilized to
intercept EEG segments. (b)-(d) present the input forms based on different feature engineering methods corresponding to inter-ictal EEG signals.

TABLE I
DETAIL OF THE CHB-MIT EEG DATASET

respectively. X ′ (t) is the normalized signal. For ease of
analysis, the long-term EEG signal is divided into 5 s seg-
ments. In this paper, we discuss three data input forms for
model training, which are filtered raw EEG signals, short-time
Fourier-transform (STFT) spectrograms, and proposed mixed
EEG rhythm signals. More details can be found in Fig. 1.

1) Raw EEG signal: Referring to the previous study [24],
we utilize a fifth-order Butterworth bandpass filter with a
frequency range of 5-50 Hz to filter the raw EEG signals.
Using filtered raw signals as model input facilitates an end-
to-end automatic approach. However, accurate analysis of EEG
requires a joint analysis of both time and frequency domains.

Compared with the following two methods with frequency
domain information, the model input of filtered EEG sequence
is explored.

2) STFT Spectrogram: One of the most efficient techniques
to convert the EEG sequence into the frequency domain is
the Fourier Transform, particularly the fast Fourier transform
(FFT). In this paper, the short-time Fourier transform with
sliding window is utilized as a baseline feature engineering
method:

ST FT (s (t)) =

∫
+∞

−∞

s (t)ω (t − τ) e
−iωt

dt (1)

where s (t) is the signal to be transformed, and ω (τ) is
the Gaussian window function. To eliminate the influence
of puissance line noise and the DC element, the frequency
bands range of 57-63 Hz, 117-123 Hz, and 0 Hz are removed
[19]. Then we obtain a spectrogram matrix ∈ R18×114×9 for
each 5s EEG segment, where 18 denotes the number of EEG
channels, 114 denotes the frequency domain information, and
9 denotes the number of sliding windows. To convert the input
into a form that the Transformer model can train, we reshape
the spectrogram matrix to a new matrix ∈ R18×1026 and
utilize the SciPy signal processing module to resample the
matrix ∈ R18×1024.

3) Mixed EEG Rhythm Signal: The vitality of EEG signals
is evaluated by normalized EEG frequency bands or rhythms,
which are mainly divided into five rhythms: delta (δ) (⩽3 Hz),
theta (θ) (4–7 Hz), alpha (α) (8–13 Hz), beta (β) (14–30 Hz)
and gamma (γ ) (>30 Hz) [19]. In our work, the discrete
wavelet transform (DWT) is utilized to decompose the EEG
signals in the frequency domain, and the approximate rhythm-
related frequency bands are obtained to achieve the purpose
of frequency domain transition. EEG signals are discrete and
DWT is utilized:

D ( j, k) =
1

√
2 j

∫
+∞

−∞

s (t)9
(

t
√

2 j
− k

)
dt (2)

where j, k ∈ Z, the translation and scaling factors are
discretized into 2 j and k ·2 j . The EEG signal is defined ass (t).
Following the work of previous researchers [25], we utilize
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Fig. 2. The detail of the proposed hybrid Transformer model. (a) Rhythm embedding block. (b) Addition of positional encoding information.
(c) Self-attention block. (d) Classifier block.

a sym6 wavelet to decompose the raw ECG sequence by six
scales. Furthermore, the DWT may be interpreted in terms of a
multiresolution analysis, where a hierarchy of approximations
and details of the signal is constructed in nested subspaces
of L2 (R). The multiresolution decomposition at level L is
defined as [26]:

s (t) =

∑+∞

k=−∞
aL ,K 2−

L
2 8

(
2−L t − k

)
+

∑L

j=−∞

∑+∞

k=−∞
D ( j, k) 2−

j
2 9

(
2− j t − k

)
= AL (t) +

∑L

j=−∞
d j (t) (3)

where 8 (t) is a scaling function. The signal s (t) is decom-
posed into one approximation AL (t) at level L and a succes-
sion of details d j (t) from level L down to negative infinity.
Then we obtain six detailed components d1-d6 (64–128 Hz,
32–64 Hz, 16–32 Hz, 8–16 Hz, 4–8 Hz, 2–4 Hz) and one
approximate component a6 (0–2 Hz). We observe that an
EEG rhythm corresponds to one or two wavelet transform
components, and we concatenate the component signals of all
scales and obtain the new signal:

Mix_Rhythmsi = Concat (δ, θ, α, β, γ )

= Concat (d1, d2, d3, d4, d5, d6, a6) (4)

where Mix_Rhythmsi is the new signal mixed with five
rhythms of EEG segment sample i . In order to unify the
model input, we utilize the SciPy signal processing module to
resample the mixed rhythm signal to a length of 1024. Signals
containing different EEG rhythms help the Transformer model
to capture the correlation between different rhythms and the
self-correlation of the same rhythm.

C. The Structure of Proposed Hybrid Transformer Model
The Hybrid Transformer model primarily consists of four

parts: rhythm embedding block, addition of positional encod-
ing, self-attention block, and classifier block. Fig. 2 illustrates

TABLE II
DETAIL OF HYBRID TRANSFORMER MODEL

the structure of the model, and more details can be found in
Table II.

1) Rhythm Embedding Block: To obtain the multi-
perspective features of inputs, we design four convolutional
branches, which will facilitate multi-scale analysis of EEG
spatial-temporal features. The feature vectors extracted by
three convolutional branches are fused and connected to a
channel attention block to evaluate the importance of channels.
To avoid feature weakening, a shortcut convolutional branch is
utilized to strengthen the original features. Rhythm embedding
block is uniquely designed for the EEG rhythms, which can
focus on the importance of the channel automatically and
extract multi-view spatial-temporal features.

In this block, the input data are shaped as (S,C,T), where
S, C and T denote the number of samples, channels, and data
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length, respectively. C, T are set to 18 and 1024, respectively.
Each convolutional branch contains two convolutional layers
with different kernel size and two max-pooling layers with
kernel size 2. With the padding parameters of ‘same’, the data
length from the n th convolutional layer becomes half of the
(n−1) th layer. After stacking the feature vectors obtained
by the first three convolutional branches along the channel
dimension, we obtain feature vectors of shape (S,192,T/4).
Then a Squeeze-and-excitation network (SENet) is connected
to pay attention to the channel importance, and a convolutional
1D layer with a kernel size of 1 is followed to compress
the channels to 64 and get the shape of (S,64,T/4). Finally,
the feature vectors are summed with the feature vectors
from the fourth convolutional branch to preserve the original
shallow features and make preparation for subsequent input of
the self-attention block.

2) Positional Encoding: The output features of rhythm
embedding block are added with the positional encoding [25]:

P E(pos,2i) = sin
(

pos/100002i/drhythm
)

(5)

P E(pos,2i+1) = cos
(

pos/100002i/drhythm
)

(6)

where drhythm ∈ R64 is the embedded dimension of feature
sequence. The introduction of positional encoding enables the
relative position information of the features to be represented,
which helps the model learn the dependencies between the
features. Considering the irregular variability of EEG signals,
two other cases are also explored, which are ‘no positional
encoding’ and ‘trainable positional encoding’, respectively.

3) Self-Attention Block: Then, the extracted features with
positional information is connected to three Transformer
encoder layers for further feature calculation with self-
attention mechanism. The Transformer encoder block consists
of a multi-head attention layer, a point-wise feed-forward net-
work (FFN) layer and short connections. The multi-head atten-
tion layer contains scaled dot-product attention implemented
by matrices queries Q ∈ Rdrhythm×dk , keys K ∈ Rdrhythm×dk ,
and values V ∈ Rdrhythm×dv . Q and K have the same pre-
dimension for the dot product operation. The attention matrix
is assigned through V and activated by the Softmax function.
The resulting score matrix represents the contribution value of
the feature in the entire classification. To prevent the gradient
of Softmax from being too small to update the parameters,
the dot product of Q and K is scaled with the scaling factor
1/

√
dk . The scaled dot-product attention could be calculated

as follows [27]:

Attention (Q, K , V ) = Sof t max
(

QK T /
√

dk

)
V (7)

Instead of single attention function, multi-head attention
allows the model pay attention to information of different
representation subspaces at different position in parallel:

Multi Head (Q, K , V ) = Concat (head1, . . . , headh) W O

(8)

headi = Attention
(

QW Q
i , K W K

i , V W V
i

)
(9)

whereW Q
i ∈ Rdrhythm×dk , W K

i ∈ Rdrhythm×dk , W V
i ∈

Rdrhythm×dv , and W O
∈ Rhdv×drhythm . h denotes the number

of heads.
In addition to attention sub-layers, each encoder contains

a fully connected FFN, which is applied to each position
separately and identically. This consists of two linear trans-
formations with a ReLU activation in between:

F F N (x) = max (0, xW1 + b1) W2 + b2 (10)

While the linear transformations are the same across dif-
ferent positions, they use different parameters from layer to
layer. Another way of describing this is as two convolutions
with kernel size 1. The dimensionality of input and output
is drhythm = 64, and the inner-layer has dimensionality
d f f = 2048.

4) Classifier Block: With the implementation of the self-
attention mechanism, we get the feature vectors of shape
(S,64,T/4). Through the reshape layer, we get feature vectors
of shape (S,T/4,64), then a convolutional 1D layer with kernel
size 1 compresses the channel dimension to 1, and finally a
fully connected layer with an input dimension of 64 and output
dimension of 2 is utilized to output the predicted probability
value of the binary classification.

D. Training Settings of General Model
In Transformer encoder block, dq , dk, dv , and drhythm are

both equal to 64, and the hidden layer dimension d f f is 512.
The number of encoder layers is set to 3, and the number
of attention heads in each layer is 4. Finally, a FFN layer is
connected to compress 256 channels. The model is trained for
50 epochs with a batch size of 64. More details are as follows:

1) Adam Optimizer: The Adam optimizer [28] is used to
obtain the adaptive learning rate of different parameters and
updates weights and biases of the model. The recommend
parameter β1 = 0.9, β2 = 0.999, ε = 10−8 are utilized.
And we varied the learning rate over the course of training,
according to the formula [27]:

lrate = d−0.5
rhythm × min

(
step−0.5

num , stepnum
×warmup_steps−1.5

)
(11)

This corresponds to increasing the learning rate linearly
for the first warmup_steps training steps, and decreasing it
thereafter proportionally to the inverse square root of the step
number. We used warmup_steps = 4000.

2) Focal Loss Function: Since positive pre-ictal samples
are much less than inter-ictal samples, the class-imbalance
problem will cause the model fail to learn the relevant infor-
mation from fewer samples, resulting in model performance
degradation. Focal loss aims to reduce the weight of classes
with a large number of samples [29]. The formula is:

Focal_loss (pt ) = −αt (1 − pt )
γ log (pt ) (12)

where pt denotes the predicted probability of belonging to
the true class. γ represents the focusing parameter, which
smoothly adjusts the weight ratio of easy-to-classify samples.
In this paper, we set γ to 2.
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Fig. 3. Definition of inter-ictal and pre-ictal state. The corresponding relationship between SOP, SPH and labels of EEG signals is also given.

3) Early Stopping: The number of training iterations relies
on the early stopping strategy so that the training process is
stopped in case there is no reduction of the validation loss for
five consecutive epochs. The weights from the epoch with the
minimal validation loss are chosen for evaluation [30].

E. Details of Fine-Tuning Strategy
In order to further improve the performance of the general

model based on patient-independent approach, the fine-tuning
strategy of TL is introduced. We continue to train for
15 epochs utilizing the optimal weight parameters of the gen-
eral model with a batch size of 64. The optimal weights after
fine-tuning are saved by monitoring the highest accuracy on
the validation set. Considering practical factors, we select the
patient’s first 60-min inter-ictal and 25-min pre-ictal recordings
corresponding to the first seizure, which will help predict
subsequent unknown data. In our work, two TL strategies are
evaluated: fine-tuning based on inter-ictal samples only (three
cases: 15min, 30min, 60min) and fine-tuning based on both
inter-ictal and pre-ictal samples (three cases: 15min-25min,
30min-25min, 60min-25min).

III. EXPERIMENTAL DETAILS

A. Definition of Inter-Ictal and Pre-Ictal State
The epilepsy prediction can be transformed into a binary

classification problem (i.e., pre-ictal state and inter-ictal state).
The definition of pre-ictal and inter-ictal state is crucial due
to wrong labels will mislead the supervised learning algo-
rithm and confuse the features between these two categories,
which make the deep learning model unable to learn useful
knowledge.

Before defining the scope of inter-ictal and pre-ictal state,
we also need to consider a reality factor that patients and
physicians should be given a reaction time before an epileptic
seizure, known as seizure prediction horizon (SPH). The
seizure occurrence period (SOP) is also defined, as shown in
Fig. 3. Seizures can occur at any time in SOP. The setting
of SPH should provide enough time for doctors to conduct
clinical intervention, the optimal time is 3-5 min [18], and the
time of SOP should not be too long, otherwise it will bring
greater psychological pressure to patients. Referring to other
literatures [14], [15], we set the SPH to 5 min and the SOP to

25 min in this paper. Since the location of the phase transition
from the inter-ictal to pre-ictal state cannot be determined.
To avoid interference, we defined the period of 2h before the
pre-ictal period and 2h after the end of the seizure as the inter-
ictal period. Fig. 4 illustrates the division method in detail.

B. Experimental Grouping and Data Construction
The CHB-MIT scalp EEG database contains data on

24 cases. Since case Chb24 has no information about the sub-
ject, this case will not be studied. And the EDF files of cases
Chb12 and Chb13 have frequent EEG channel changes. During
the electrode changes, the EEG data may be contaminated,
so we also do not study these two cases. Finally, the remaining
21 cases are obtained. To basically meet the 8:2 ratio of
training set and test set, we decide to select 17 cases as
training data and 4 cases as test data. To further investigate the
generalization performance of epilepsy prediction algorithms
across different subjects, we increase the variability between
subjects of the test set as much as possible. Finally, we select
4 cases, including a pair of male subjects (Chb04 and Chb10)
and a pair of female subjects (Chb06 and Chb19) with the
largest difference of age, respectively.

According to the pre-ictal range defined in this paper, pre-
ictal EEG data can only be obtained from the range of 5 to 30
min before an epileptic seizure, which is much less than data of
the inter-ictal state. At the same time, due to the discontinuity
of EDF files, pre-ictal samples are often missing. We find that
there are many cases where this situation occurs, which will
further increase the rarity of pre-ictal samples.

In some literatures [18], [30], a sliding window is utilized
for generating pre-ictal samples and alleviate class imbalance.
In our work, we utilize a sliding window of 5s and a step size
of 2.5s to generate pre-ictal trials. For cases in the training
set, we produce 4h inter-ictal data that meet the definition of
inter-ictal state for each subject without taking overlapping
sliding windows to extract EEG trials.

C. Evaluation Approach
The algorithm is evaluated using six metrics: accuracy

(Acc, the ratio of the number of correctly classified samples
among the total number of samples), sensitivity (Sen, the ratio
of correctly classified events to all true events), specificity
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Fig. 4. ROC curves of four subjects utilizing proposed hybrid Transformer model. (a) Raw EEG signal. (b) EEG spectrogram. (c) Mixed EEG rhythm
signal. Case 1 represents patient-independent approach. Case 2, Case 3, and Case 4 represent fine-tuning with 15-min, 30-min, and 60-min inter-
ictal data, respectively. Case 5, Case 6, and Case 7 represent fine-tuning with both 15-min inter-ictal mixed 25-min pre-ictal, 30-min inter-ictal mixed
25-min pre-ictal, and 60-min inter-ictal mixed 25-min pre-ictal data, respectively. The first to fourth columns are case Chb04, Chb06, Chb10, and
Chb19, respectively.

(Spe, the ratio between correctly classified non-events and all
non-events), positive predictive rate (Ppr, the ratio of correctly
classified events in all recognized events), F1 value (F1Binary ,
the harmonic mean of Sen and Ppr), and weighted F1 value
(F1W eighted , denote the F1 value that takes into account the
sample imbalance problem) [31]. The calculation formulas are
as follows:

Accuracy (%) =
T P + T N

T P + T N + F P + F N
× 100 (13)

Sensi tivi t y (%) =
T P

T P + F N
× 100 (14)

Ppr (%) =
T P

T P + F P
× 100 (15)

F1Binary (%) =
2 × Sen × Ppr

Sen + Ppr
× 100 (16)

F1W eighted (%) =

∑
category jcategory F1Binary

Sen + Ppr
× 100 (17)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

IV. EXPERIMENTAL RESULTS

A. Performance of Hybrid Transformer Model
We conduct a comprehensive evaluation of our proposed

hybrid Transformer, including the applicability of three differ-
ent model inputs and two TL conditions. Different model input
types help to reveal the data form suitable for self-attention
mechanism while two TL conditions correspond to two clinic
situations. The first situation represents no pre-ictal data are
available for the subjects, so we fine-tune the model only

using inter-ictal data, which is divided into three cases, which
are 15-min, 30-min, and 60-min of inter-ictal data. This
situation will help to reveal whether the utilization of easy-
to-obtain inter-ictal data is beneficial for a patient-specific
model. The second TL situation is based on at least one seizure
of subject, and the performance improvement to the general
model is evaluated. After one seizure, we will obtain a pre-ictal
recording with a length of 25 min based on the definition of
SOP. By combining the 25-min pre-ictal data with the 15-min,
30-min, and 60-min inter-ictal data respectively, we get three
combinations. Finally, six fine-tuning strategies are evaluated
for each subject.

The experimental results are present in Table II and Fig. 4.
In Table II, the optimal performance is achieved based on
the feature engineering method proposed in this paper, which
proves that the signal containing different rhythm information
is more suitable for the Transformer-based model. For the
six fine-tuning strategies, we can conclude that fine-tuning
based only on the inter-ictal data is beneficial to the model
performance. By comparing Case 3 and Case 4, the accuracy
decreases as the amount of inter-ictal data increases, proving
that fine-tuning with too much inter-ictal data may lead to
overfitting and degradation of model performance. We also
find that Case 7 achieve the best performance, which will
guide the fine-tuning of the patient-specific classifier when the
clinically labeled data meets the condition with at least one
seizure.

From Fig. 4 we can see that the proposed model input is
more robust to different subjects compared with two classical
methods. We also observe that the performance of Chb19
subjects is not satisfactory under three model inputs, probably
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Fig. 5. ROC curves of four subjects utilizing pure CNN-based model. (a) Raw EEG signal. (b) EEG spectrogram. (c) Mixed EEG rhythm signal.
Case 1 represents patient-independent approach. Case 2 represents fine-tuning with 30-min inter-ictal data. Case 3 represents fine-tuning with
both 60-min inter-ictal data and 25-min pre-ictal data. The first to fourth columns are case Chb04, Chb06, Chb10, and Chb19, respectively. The
pure CNN-based model shows weaker overall performances than the proposed hybrid Transformer model under three feature engineering methods,
and reflects poor robustness to TL.

because its distribution is far from the distribution of the
training set, which makes the model unable to generalize
well.

B. Impact on Performance With Different Model
Structures

To explore the effect of different model inputs on
pure CNN-based networks and Transformer-based structures,
we reproduce a recent state-of-the-art multi-scale network
based on pure CNNs [31], it has the same sample inputs size
of 1024, then we compare the model performance utilizing
three model inputs, which will help reveal the ability of pure
CNN-based models to learn different inter-rhythmic patterns.

The experimental results are shown in Fig. 5. We compare
patient-independent approach with two fine-tuning strategies
(Case 3 and Case 7) in Table II. By comparison with Fig. 4,
it can be seen that the pure CNN-based model is less effective
for three model inputs, and the results after fine-tuning are also
unsatisfactory. For the model input of mixed rhythm signal,
the CNN-based model does not seem to have learned relevant
knowledge due to its locality [32]. With the limited receptive
field of the convolution kernel, the signals consist of multiple
rhythms seem to be irregular. However, the Transformer-based
model can learn the pattern between rhythms through global
modeling, which confirms that the mixed rhythms signal
proposed in this paper is effective for the hybrid Transformer
model.

C. Effectiveness of Three Transformer Variants
Since the input length of EEG is 1024, utilizing the

self-attention mechanism to model the feature sequence will

lead to a huge consumption of computing power, so the
dimension reduction operation is necessary. In this paper,
a rhythm embedding block based on multi-scale CNN net-
works and SENet is utilized to reduce the dimension of the
feature sequence. This block converts the original feature
sequence into an embedded representation and has the ability
of capturing multi-scale information and channel importance.
To demonstrate the effectiveness of this block, we compare
a simple embedding block based on two CNN layers and
two max-pooling layers. Then we compare other two forms
of positional encoding (‘without positional encoding’ and
‘trainable positional encoding’). Finally, three variant Trans-
former models are formed and compared with the proposed
model.

The results in Table IV show that the hybrid Transformer
model achieves the best average performance for three cases
under the proposed rhythm embedding block with untrainable
positional encoding. We also find that Case 7 achieves the
highest accuracy when utilizing trainable positional encoding,
which may indicate that it may be more appropriate to
utilize trainable positional encoding with sufficient fine-tuned
data.

D. Comparison With Other State-of-the-Art Works
We compared the model performance with the state-of-the-

art works in recent years (Table V). Traditional feature engi-
neering methods such as phase/amplitude locking value, zero
crossing, and similarity/dissimilarity index were considered.
We can see that satisfactory sensitivity and FPR cannot be
achieved simultaneously with these traditional feature meth-
ods. Machine learning-based methods such as SVM and CNN
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TABLE III
COMPARISON OF THREE MODEL INPUTS AND SEVEN FINE-TUNE STATEGIES

TABLE IV
COMPARISON OF FOUR TRANSFORMER-BASED VARIANTS

have become a trend, which can obtain better comprehensive
indicators. In our proposed method, the FPR is 0.00% in
all three cases, which significantly reduces the occurrence of
false alarms. In the complete patient-independence paradigm,
the average sensitivity is 77.0% (Note that the sensitivity is
evaluated by seizures, which is different from the sensitivity
in Table III). When the model is fine-tuned with 30-min inter-
ictal data, the sensitivity reaches 82.0%. When fine-tuned
with both the 25-min pre-ictal and 60-min inter-ictal data
based on one seizure, the model achieves the best sensitivity
of 91.7%.

V. DISCUSSION

As shown in Table V, compared with sEEG, iEEG has
a higher signal-to-noise ratio and is less affected by power
frequency interference, baseline drift and other noises, which
will help the seizure prediction algorithm to achieve bet-
ter performance. However, to collect iEEG data, craniotomy
would cause unnecessary complications, sEEG is more suit-
able for non-invasive real-world scenarios. Now, more and
more researchers are evaluating algorithms based on the CHB-
MIT database [10], [11], [12], [14], [24], [33].
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TABLE V
COMPARISON TO PRIOR WORKS

It can be seen in Fig. 4 that the model performance for
Chb10 based on filtered raw EEG signals is not well, but the
model input based on spectrogram and rhythm can be well
recognized. When processing the raw EEG signal, we utilize a
band-pass filter to limit the frequency of the signal to 5-50 Hz.
Due to the absence of high frequency signal, the information
that would enable the model to distinguish between inter-ictal
and pre-ictal periods may be lost, which proves the gamma
frequency band is useful for discriminating between inter-ictal
and pre-ictal stages [11].

In the evaluation of TL based on pure CNNs and Trans-
former structures, we find that the network based purely on
CNN cannot transfer the existing knowledge well, because the
innate inductive bias of the CNN structure is easy to overfit-
ting the data. As can be seen from Fig. 5, the performance
improvement of pure CNN-based networks is not robust after
the introduction of TL, and sometimes it will produce harmful
effects to the model. By comparing the structure of different
deep learning models, it is revealed that the model based on

the Transformer structure is more suitable for the introduction
of TL.

The attention mechanism helps to reveal regions that con-
tribute more to the label, which is more in line with the
recognition process of human experts [35]. To show how
the multi-head attention mechanism works more intuitively,
we show the attention maps from four attention heads and
the corresponding rhythm signal in Fig. 6. The results show
that different attention heads learned in parallel will pay
attention to patterns between different rhythms, increasing
interpretability of the detection process.

In addition, it is worth noting that in Table V, many works
[14], [24], [33] have utilized the leave-one-out (LOO) method
to validate algorithms, where the arithmetic mean of the
model for each subject yields a more robustness evaluation
of the proposed model. However, because the weights of each
model are inconsistent, we cannot evaluate the performance
by fine-tuning one general model for multiple subjects. This
paper changes the grouping idea, we utilize 17 subjects to
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Fig. 6. Visualization of self-attention mechanism. (1a)-(4a) show the attention maps of four attention heads and (b) is the corresponding mixed
rhythm signal. The abscissa of the attention map is stretched to make it the same length as the 5 s EEG segments. It can be observed that not all
attention heads pay attention to the pre-ictal signals because different attention heads focus on different patterns. The redundant attention heads
together are able to help recognize complicated patterns and then yield better feature representations of inter-ictal and pre-ictal segments.

train the general model and evaluate the 4 subjects with
the largest physiological differences, which is more in line
with the application scenario in clinic. Moreover, the good
robustness of Transformer-based model is demonstrated during
the process of TL optimization in the case that the difference of
test set is large. Meanwhile, the self-attention mechanism and
multi-rhythms analysis are beneficial to capture the correlation
patterns among different rhythms.

However, this paper still has some limitations. Since many
EEG epilepsy databases are not freely available, they come
from different intracranial EEG data and scalp EEG data, and
the electrode standards are not consistent, so the cross-database
validation of fine-tuning strategies is limited. Moreover, the
frequency band of wavelet transform decomposition has a
characteristic of two-fold reduction, which will result in some
minor errors at the boundary of different rhythm frequency
band, and often losing a small portion of useful rhythm
information.

Through our investigation, there are some interesting feature
engineering methods to distinguish ictal and non-ictal EEGs
in epilepsy detection tasks, which are of significantly mor-
phological difference [36], [37], [38], [39]. For example, the
work of [36] utilized rhythms obtained with Fourier–Bessel
series expansion (FBSE) of EEG signals to further classify.
The work of [37] explored the ability of the second-order
difference plot (SODP) of intrinsic mode functions (IMFs) for
classification of ictal and non-ictal EEG signals. The empirical
mode decomposition (EMD) is a promising method which
helps to develop feature space using ellipse area parame-
ters of two IMFs. The work of [38] presented a fractional-
order calculus-based method to model ictal and non-ictal
EEG signals. It is found that the modeling error energy
for ictal EEG signals is substantially higher than that for
inter-ictal EEG signals. Moreover, the work of [39] proposed
a novel time–frequency representation (TFR) which is termed
as improved eigenvalue decomposition of Hankel matrix and
Hilbert transform (IEVDHM–HT). The IEVDHM–HT method
has provided better TF resolution compared with the existing
methods in terms of Rényi entropy measure (REM) values.
The above methods have the advantages of high computational

efficiency than DL algorithms due to low dimensions of
features, and show good performance in distinguishing dif-
ferent classes with large morphological differences. More-
over, signal frequency band decomposition based on FBSE
may help more accurate rhythm band estimation and gain
better performance compared with DWT utilizing in this
paper.

Future research can focus on the investigation of these meth-
ods’ improved versions and apply to inter-ictal and pre-ictal
states, which have less significant differences in waveform
morphology. The applicability of these feature engineering
methods and traditional classifiers, e.g., SVM, random forest
(RF), and k nearest neighbors (KNN) for epilepsy prediction
task and their advantages for DL models in the condition of
low data availability is also a direction worth exploring for
further research.

VI. CONCLUSION

In this paper, we propose a novel hybrid Transformer net-
work with a specially designed feature engineering method, the
effectiveness of TL and different model input for pure CNN-
based and Transformer-based models is also discussed. The
experimental results show that the proposed model and feature
engineering method have good adaptability. In this work, four
patients with the largest difference in physiological parameters
are selected from the CHB-MIT database for experiments and
to provide three model paradigms. The experimental results
show that the model achieves significant performance under
the patient-independent paradigm, and the performance can be
further improved by the introduction of TL, especially when
fine-tuning the model utilizing the data after one seizure of
the patient can achieve the state-of-the-art performance.

Compared with the purely CNN-based model structure,
we find that the Transformer-based model structure has bet-
ter robustness to TL, which will provide ideas for future
researchers to customize personalized models for patients.
Moreover, in the discussion of different model inputs, we find
that gamma rhythm band corresponding to high frequency
information is helpful to distinguish between pre-ictal and
inter-ictal state.
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