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Transcranial Direct Current Stimulation-Based
Neuromodulation Improves the Performance of

Brain–Computer Interfaces Based on
Steady-State Visual Evoked Potential
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Abstract— The study of brain state estimation and
intervention methods is of great significance for the
utility of brain-computer interfaces (BCIs). In this paper,
a neuromodulation technology using transcranial direct
current stimulation (tDCS) is explored to improve the per-
formance of steady-state visual evoked potential (SSVEP)-
based BCIs. The effects of pre-stimulation, sham-tDCS and
anodal-tDCS are analyzed through a comparison of the
EEG oscillations and fractal component characteristics.
In addition, in this study, a novel brain state estimation
method is introduced to assess neuromodulation-induced
changes in brain arousal for SSVEP-BCIs. The results
suggest that tDCS, and anodal-tDCS in particular, can be
used to increase SSVEP amplitude and further improve
the performance of SSVEP-BCIs. Furthermore, evidence
from fractal features further validates that tDCS-based
neuromodulation induces an increased level of brain state
arousal. The findings of this study provide insights into
the improvement of BCI performance based on personal
state interventions and provide an objective method for
quantitative brain state monitoring that may be used for
EEG modeling of SSVEP-BCIs.

Index Terms— Steady-state visual evoked potential
(SSVEP), brain–computer interface (BCI), transcranial
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I. INTRODUCTION

S IGNIFICANT progresses have been made in steady-state
visual evoked potentials (SSVEP)-based brain-computer

interfaces (BCIs) with improvements in stimulus encoding
methods and neural decoding algorithms [1], [2], [3]. However,
high-intensity visual stimulation and high-load cognitive
activity may cause changes in human states and consequently
a decline in BCI system performance. Decreased levels of
brain arousal, such as when fatigue sets in, may lead not
only to slower responses and reduced attention, but also to
decreased signal quality and reduced system classification
performance [4], [5]. To address the challenges of reduced
system robustness and reduced effective work time due to
reduced levels of brain arousal, the study of brain state
estimation and intervention methods is of great significance
for the utility of BCI systems.

Transcranial direct current stimulation (tDCS)-based neuro-
modulation is an effective method of brain state intervention,
and has the potential to enhance the classification accuracy
of BCIs. tDCS is a non-invasive technique that uses a low-
intensity, constant, direct current (1-2 mA). tDCS modulates
cortical excitability through the mechanism of hyperpolariza-
tion or depolarization of the resting membrane potential, which
depends on the polarity of the stimulus [6], [7]. tDCS is
commonly used in the studies of rehabilitation and functional
brain disorders. However, research in the area of BCI remains
in its infancy.

Researchers have found that tDCS can modulate irritability
and sustain oscillatory activity in the cerebral cortex, which
allows the improvement of neural response during BCI
tasks. For example, tDCS has been used to increase P300
response, decrease P300 latency, and generally enhance the
accuracy of target detection in P300-BCI systems [8]. Anodal-
tDCS has led to improved P300-BCI spelling performance in
neurologically impaired subjects [9]. In sensorimotor rhythm-
based BCIs, the orientation interactivity was changed through
tDCS interaction during non-exogenous activities [10].
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However, the results seem to be unsatisfactory when it
comes to the enhancement of the target detection accuracy
of SSVEP-BCIs based on tDCS. For example, anodal-tDCS
significantly enhanced EEG features for electrodes with
low signal-to-noise ratio (SNR) values before tDCS, but
the enhancement was not obvious in locations with higher
SNRs [11]. Compared to the sham-tDCS mode, anodal-tDCS
increased the SSVEP energy at 10 Hz, while both anodal-tDCS
and cathode-tDCS significantly decreased the SSVEP energy
at 7 Hz [12]. In addition to this, while most studies reported
enhanced and reduced cortical excitability through anodal-
and cathodal-tDCS, respectively [13], [14], some studies
also reported opposite results [15], [16]. The shortcomings
of previous studies and the potential of neuromodulation
techniques have made the investigation of techniques to
enhance the target detection accuracy of SSVEP-BCI using
tDCS both urgent and relevant.

Considering the inadequacies of past studies, in this paper,
the authors attempt to explore tDCS-based neuromodulation
technology to improve the target detection accuracy of
SSVEP-BCIs efficiently. The EEG characteristics under pre-
stimulation, sham-tDCS and anodal-tDCS are compared to
verify the neuromodulation effect. The experiments are
divided into offline and online experiments, where the
former experiments investigate the effect of tDCS on SSVEP
characteristics and are used to determine the optimal tDCS
stimulation scheme, while the latter experiments introduce
real-time feedback to verify the impact of tDCS on BCI
performance. The EEG characteristics under different modes
are compared, including not only oscillatory features such as
envelopes, amplitude and classification accuracy of SSVEP,
but also fractal features reflecting the characteristics of brain
states, thus validating the effectiveness of the neuromodulation
methods more comprehensively.

To address the shortcomings of traditional brain state
assessment methods, a new brain state assessment method
not yet used in SSVEP-BCI is introduced to verify
the neuromodulation’s efficacy on brain state intervention.
Narrow-band energy spectrum distribution is the most widely
used method for brain state assessment. It has been shown that
EEG energy from 0.5 Hz to 8 Hz is enhanced as human enters
a fatigue state [17], [18]. The levels of brain arousal were
assessed through the energy integration indicators of alpha,
beta, theta and their entropies [19]. Other researchers assessed
brain states through the integration of multiple entropies of the
raw electroencephalogram [20]. However, in the application
scenario of SSVEP-BCIs, the energy of the oscillatory
component changed drastically and the conclusions of the
narrow-band energy spectrum distribution were distorted and
not robust. In the case of SSVEP-BCIs, the frequency energy
associated with target flicker was obviously disturbed when
subjects received visual stimuli, which led to biased brain
state estimates when raw EEG data were used. In addition,
another drawback of narrow-band spectral energy is its non-
intuitive and unreliable nature, which is due to the difficulty of
describing the variation of energy with frequency in a holistic
manner and providing quantitative and robust measurements of
brain states. To address these shortcomings of traditional brain

Fig. 1. Parameter settings of SSVEP stimulation.

state assessment methods, in this study the Irregular Sampling
Automatic Spectral Analysis (IRASA) method is introduced
to divide oscillations and fractionations from original EEG
data, and parametric methods for the quantitative assessment
of brain arousal are further explored [21]. Furthermore,
the neuromodulation’s effect on arousal levels is revealed
through a comparison of the fractal characteristics under
pre-stimulation, sham-tDCS and anodal-tDCS.

This study’s contributions are summarized below. First,
a tDCS-based neuromodulation technique is investigated
to modulate brain states and influence EEG properties,
contributing to the improvement of SSVEP-BCI performance
and the overall utility of BCIs. Second, a brain state estimation
method that has never been used in SSVEP-BCI is introduced
to assess neuromodulation-induced changes in brain arousal,
reducing the drawback of poor robustness of traditional
narrow-band energy methods. Third, the use of a parameter-
based quantitative representation of brain state is explored,
which is an approach that may be used for brain arousal
assessment and the modeling of EEGs in SSVEP-BCI.

II. METHODS

A. Subjects
Eleven (four of the whole group with ages ranging

from 18 to 25 years old, with an average age of 22) and thirteen
(4 of the whole group with ages ranging from 20 to 26 years
old, with an average age of 23) healthy subjects with corrected-
to-normal or normal vision attended the offline and online
experiments, respectively. All participants were right-handed.
All participants provided informed consent forms before the
experiments and were compensated monetarily. The study
was approved by the Institutional Review Board of Tsinghua
University (application number: 20180041, Jan. 3, 2019).

B. SSVEP Stimulation Settings
A 23.6-inch liquid-crystal display screen (resolution:

1920 × 1080 pixels, refresh rate: 60 Hz) was employed to
display SSVEP stimuli (see Fig. 1). Nine 180 × 180-pixel
blocks within a black background (RGB: (0, 0, 0)) were used
to render the stimuli, with a distance of 250 pixels between
adjacent blocks. A black cross in the middle of each stimulus
was used to cue the gaze focus position. Subjects had a gaze
distance of approximately 80 cm to the screen.
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SSVEP stimulations were encoded using the sampled
sinusoidal stimulation method [22], [23]. The nine targets were
encoded with an initial phase of 0 and frequencies of 9 Hz,
9.75 Hz, 10.5 Hz, 9.25 Hz, 10 Hz, 10.75 Hz, 9.5 Hz, 10.25 Hz
and 11 Hz, respectively.

C. tDCS Stimulation
A commercial tDCS stimulator (neuroConn DC Stimulator

Plus, Germany) was adopted in this study. The cathodal and
anodal tDCS electrodes were respectively placed at the Cz
and Oz positions, in accordance with the international 10-20
EEG system) (see Fig. 2) [24], [25]. The dimensions of the
tDCS electrodes were 7 × 5 cm2. The participants did not
need to perform any specific tasks during tDCS stimulation;
they were only asked to remain relaxed. The tDCS procedure
was tolerated well by all participants, with no adverse effects
during or after the experiments.

D. EEG Acquisition
A synamps2 system (Neuroscan, Inc.) was used for the

acquisition of EEG data at a sampling rate of 1000 Hz.
EEG data were first pre-processed using a band-pass filter
from 1 to 100 Hz and then filtered using a notch filter
(50 Hz) to eliminate interference at industrial frequencies. The
international 10-20 system was employed for the placement
of all nine electrodes (O2, Pz, PO5, PO4, Oz, PO3, O1, POz,
PO6). The EEG data on the nine electrodes were recoded with
impedances lower than 10 k�. The reference electrode was
placed at the vertex.

E. EEG Analysis
The influence of tDCS-based neuromodulations on EEG

characteristics was analyzed. The offline experiment was
conducted to compare responses to anodal-tDCS, sham-tDCS
and pre-stimulation under different parameters such as SSVEP
amplitude, classification accuracy and energy distribution of
spontaneous EEG. The online experiment further validated
the effect of the optimal tDCS parameters on classification
accuracy.

The envelopes of different neuromodulation modes were
also compared. Event triggers were used to mark the start time
of each trial during the stimulation process and to intercept
EEG epochs. Depending on the triggers, EEG data from −0.5s
to 4.5s were intercepted to show the entire course of changes
under each mode. The Hilbert transform was used to extract
the SSVEP envelopes using a band-pass filter from f − 1 to
f + 1, where f was related to the stimulus frequency.

Classification accuracies were compared under the different
neuromodulation modes. A delay of 140 ms was used on the
classification algorithms to compensate for the delay in the
visual pathway [26], and EEG epochs were intercepted from
0.14 s to (t + 0.14) s, where time 0 was the start time of
the stimulus, t was the data length (from 0.1 to 4.0 s in
the offline experiment and from 0.1 s to 1.5 s in the online
experiment with a step of 0.1 s). The training-free method of
Filter Bank Canonical Correlation Analysis (FBCCA) [27] and

training-required method of Task-Related Component Analysis
(TRCA) [28] were adopted for the frequency detection of
SSVEPs.

The characteristics of brain states were compared under
different neuromodulation modes. Irregular-Resampling Auto-
Spectral Analysis (IRASA) [21] was introduced to separate
the oscillations and fractionations from the original EEG and
to mine characteristics associated with power rhythms.

F. IRASA Method
IRASA was employed to separate oscillatory x(t) and

fractal activities f (t) from the original EEG y(t), as shown
in equation (1):

y(t) = f (t) + x(t) (1)

SSVEP and spontaneous EEG were correlated with
oscillatory and fractal activity, respectively. The IRASA results
reflected the features of the power rhythms associated with
brain neural activities.

IRASA exploits the frequency features of the oscillations as
well as the self-affine features of the fractals [21]. The original
EEG spectrum was first resampled using a range of factors, and
then an estimate of the fractal spectrum was obtained through
the median of the resampled results. The fractal spectrum was
subtracted from the original spectrum to obtain the oscillatory
spectrum. A linear function was obtained by fitting the fractal
spectrum with the least-squares estimate on the logarithmic
scale. The “offset” and “exponent” refer to the log-power
intercept and the slope of the fitted linear function, separately.
The single-trial EEGs ([0 4] s) of the offline experiments were
used as inputs to IRASA to perform feature extraction, and
the fractal linear curves were fitted in the frequency range of
[1 50] Hz. A statistical and comparative study was conducted
under different experimental modes to verify the effectiveness
of tDCS-based neuromodulation.

G. Statistical Analysis
SPSS Statistics of IBM Corporation was used for statistical

analysis. One-way repeated-measures analysis of variance
(ANOVA) was employed to test for differences in EEG
classification under the different neuromodulation modes.
If the data did not fit the sphericity assumption (assessed
using Mauchly’s test of sphericity), the Greenhouse–Geisser
correction was applied. All pairwise comparisons were
Bonferroni-corrected. Statistical significance was defined as
p < 0.05.

III. OFFLINE EXPERIMENT

A. Experimental Setting
Figure 2(a) displays the procedure of the offline experiment.

First, a block of SSVEP stimulation tasks was performed
as pre-stimulation EEG data were recorded. Second, subjects
received sham-tDCS stimulation lasting 21 minutes. The
sham-tDCS parameters were such that the stimulation current
increased from 0 to 2 mA over 30 s, remained at 2 mA for 30 s,
and finally decreased from 2 mA to 0 mA over 30 s. During the
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Fig. 2. Parameter settings in the offline experiment. (a) The process of offline experiment. (b) The flowchart of SSVEP in each block.

remaining 19.5 min, tDCS was inactive. Then, another SSVEP
stimulation task was performed with the tDCS electrodes
removed. The other electrodes’ impedances were confirmed to
be below 10 k�, and sham EEG data were recorded. Fourth,
subjects received anodal-tDCS stimulation for 21 minutes,
where the stimulation current increased from 0 to 2 mA over
30 s, remained at 2 mA for 20 min, and finally decreased
from 2 mA to 0 over 30 s. This design was similar to that of
a previous study [29]. Fifth, a third set of SSVEP stimulation
was performed with the tDCS electrodes removed. The other
electrodes’ impedances were verified to be lower than 10 k�,
and anodal EEG was acquired. The modes of sham-tDCS
and anodal-tDCS were the same as those of our previous
study [30]. In this paper, sham-tDCS was performed prior to
anodal-tDCS, which was a similar sequence to previous tDCS-
relevant studies [31], [32].

The procedure of SSVEP stimulation for the offline
experiments was as follows (see Fig. 2(b)). Each set comprised
72 trials (9 frequencies × 8 repetitions), which were presented
in random sequence. For the first 0.5 s of each trial, a visual
cue in the form of a red rectangle was presented around
the target stimulus, at which point the participants were to
focus their attention. After the cue time, the red rectangle
disappeared and all nine targets started flashing for 4 s, during
which time the participants were required to focus on the
black cross of the target and ignore the other stimuli. There
was a 0.5 s interval between trials, during which the screen
stopped flashing; the participants could use this interval for a
short break. During visual stimulation, a red triangle below the
target was used to indicate the location the participants needed
to focus on, and subjects were asked to avoid blinking. Each
trial lasted 5 s and each set lasted 6 minutes.

B. Results
1) SSVEP Amplitudes: Figure 3 shows the nine channel

averaged envelopes of the fundamental-frequency SSVEPs.
Pairwise comparisons indicated that the pre-stimulation
amplitudes were lower than those of anodal-tDCS (p < 0.05,
[719:812] ms), and the amplitudes of sham-tDCS were lower
than those in anodal-tDCS (p < 0.05, [696:1218 1854:2054]

Fig. 3. Averaged envelopes of the nine fundamental-frequency
SSVEPs. Time ranges with significant differences are marked with gray
shading.

ms). Pairwise comparisons at each frequency indicated that
the pre-stimulation amplitudes were lower than those of sham-
tDCS at 9.25 Hz (p < 0.05, [64:283] ms) and 10 Hz (p <

0.05, [149:529] ms). The pre-stimulation amplitudes were
lower than those of anodal-tDCS at 10.5 Hz (p < 0.05,
[646:1021] ms), 10 Hz (p < 0.05, [0:529] ms) and 10.75 Hz
(p < 0.05, [775:954] ms). The sham-tDCS amplitudes were
lower than those of anodal-tDCS at 10.5 Hz (p < 0.05,
[704:1132] ms), 10.75 Hz (p < 0.05, [107:313] ms), 9.5 Hz
(p < 0.05, [562:2225] ms), 10.25 Hz (p < 0.05, [639:2106]
ms) and 11 Hz (p < 0.05, [468:759] ms).

Figure 4 shows the nine-channel averaged amplitudes of
the fundamental-frequency SSVEPs after accounting for the
visual system delay. In Fig. 4(a), it can be seen that the
pre-stimulation amplitudes were lower than those of sham-
tDCS at 10 Hz (p = 0.0208) and of anodal-tDCS at 10.5 Hz
(p = 0.0144) and 10 Hz (p = 0.05), while the sham-tDCS
amplitudes were lower than those of anodal-tDCS at 9 Hz
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Fig. 4. Averaged amplitudes of the nine fundamental-frequency
SSVEPs. (a) [0 1000]ms, (b) [1001 4000]ms.

(p = 0.0467), 9.5 Hz (p = 0.0138), and 10.25 Hz (p =

0.0347). In Fig 4(b), the pre-stimulation and anodal-tDCS
amplitudes are larger than those of sham-tDCS at 9.25 Hz
(p = 0.02), 10.0 Hz (p = 0.0377), 9.5 Hz (p = 0.0188),
and 10.75 Hz (p = 0.0143), 9.5 Hz (p = 0.0164), 10.25 Hz
(p = 0.0056), respectively.

2) Classification Accuracy: Figure 5 shows the information
translate rates (ITRs) (b,d) and accuracies (a,c) of the FBCCA
(a,b) and TRCA (c,d) methods. One-way repeated ANOVA
among pre-stimulation, sham-tDCS and anodal-tDCS indicates
that there were statistically significant differences of the TRCA
accuracies for the EEG data lengths of 300 ms (F(2, 20) =

3.975, p = 0.035) and 500 ms (F(1.226, 12.256) = 5.31, p =

0.014). Pairwise comparisons of the TRCA results indicated
that the pre-stimulation accuracies were lower than those
of sham-tDCS at the data lengths of 1600 ms, 1700 ms,
1900 ms, 2000 ms, 2800 ms (p = 0.0480, 0.0335, 0.0265,
0.0265, 0.0190, respectively). The accuracies and ITRs of
pre-stimulation were lower than those of anodal-tDCS at
the data lengths of 400 ms, 500 ms, 700 ms, 800 ms,
900 ms, 1400 ms, 1600 ms, 1800 ms, 1900 ms, 2400 ms
(p = 0.0452, 0.0193, 0.0220, 0.0356, 0.0414, 0.0265, 0.0260,
0.0480, 0.0265, 0.0266). The accuracies and ITRs of sham-
tDCS were lower than those of anodal-tDCS at the data
lengths of 300 ms, 400 ms, 500 ms, 700 ms (p = 0.0217,
0.0174, 0.0006, 0.0185). Another pairwise comparison of the
FBCCA results indicated that the pre-stimulation accuracies
and ITRs were lower than those of sham-tDCS at the data
length of 1300 ms, 1400 ms, 2100 ms (p = 0.0359, 0.0408,
0.0444). The accuracies and ITRs under pre-stimulation were
lower than those under anodal-tDCS at the data lengths
of 500 ms, 600 ms, [1100:1800] ms, 2000 ms, 2200 ms
(p = 0.0491, 0.0419, 0.0292, 0.0346, 0.0303, 0.0148, 0.0426,
0.0455, 0.0420, 0.0279, 0.0341, 0.0318). The accuracies and
ITRs of sham-tDCS were lower than those of anodal-tDCS at
the data lengths of 500 ms, 600 ms, 1500 ms (p = 0.0048,
0.0445, 0.0499).

3) IRASA Processing: The results of IRASA processing of
the EEG data are shown in Fig. 6. In this study, the offset
and exponent parameters are employed to estimate the effect
of neuromodulation on brain states and further to explain
the effect of tDCS on SSVEP characteristics and SSVEP-
BCI performance. The power spectral density (PSD) of the
original and fractal EEG are represented via the original and
fractal curves, separately. The oscillatory curve was generated
through the subtraction of the fractal from original curve. The
fractal curve was fitted using the power law curve, and its slope
is reflected by the exponent parameter, while the ordinate of
the intersection of the power law curve with the vertical axis
is represented by the offset parameter.

4) Relationship Between Offset and Exponent: Figures 3, 4,
and 5 indicate that SSVEP characteristics (amplitude) and
SSVEP-BCI performance (accuracy, ITR) were significantly
affected by neuromodulation (pre-stimulation, sham-tDCS and
anodal-tDCS). In this section, the averaged EEG data of the
nine electrodes over the occipital region are analyzed to extract
spontaneous EEG features and determine the relationship
between offset and exponent. The results of offset under the
different neuromodulation modes are analyzed statistically in
Fig. 8.

The scatter plots of offset and exponent are displayed
in Fig. 7, and show a nearly positive linear relationship
for the offset and exponent parameters regardless of the
neuromodulation mode. In addition, the scatter plots associated
with the three modes are spatially distributed differently.
Specifically, anodal-tDCS is related to the smallest offset
and exponent, while pre-stimulation is related to the largest
offset and exponent. Therefore, the positive linear relationship
between offset and exponent indicates that they had a similar
role in reflecting brain state properties, a finding which is
supported by previous studies [21], [33]. In this study, the
offset was selected randomly to investigate the effectiveness
of neuromodulation on brain state interventions, as shown in
Fig. 8.

5) Modulation of tDCS on Fractal Characteristics: The offset
and exponent showed a positive linear relationship in Fig. 7,
which suggests that offset and exponent have similar efficacy
in characterizing neuromodulation effects. In the following,
offset is randomly chosen as an indicator of brain state to
study the effect of neuromodulation. The statistical analyses of
offset values for the averaged EEG data of the 9 channels are
shown in Fig. 8. The neuromodulation modes had significant
effects on offset values. First, the averaged offset values
(9 Hz, 9.75 Hz, 10.5 Hz, 9.25 Hz, 10 Hz, 10.75 Hz,
9.5 Hz) under sham-tDCS were lower than those of pre-
stimulation. For example, the offset values under sham-
tDCS (0.2827 ± 0.0467) were significantly lower than those
under pre-stimulation (0.3609 ± 0.0484), with p = 0.0382.
Second, the averaged offset values of the nine frequencies
under pre-stimulation were larger than those under anodal-
tDCS. For example, the offset values under anodal-tDCS were
significantly lower than those under pre-stimulation at 9 Hz
(p = 0.0011), 9.75 Hz (p = 0.0047), 10.5 Hz (p = 0.0013),
9.25 Hz (p = 0.0139), and 9.5 Hz (p = 0.0111). Third, the
averaged offset values (all nine frequencies) under sham-tDCS
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Fig. 5. Offline experiment results. (a)(b) FBCCA method. (c)(d) TRCA method. (a)(c) Classification accuracies. (b)(d) ITRs.

Fig. 6. Processing effect of IRASA on EEG data, which shows the PSD
in logarithmic coordinates.

were larger than those under anodal-tDCS. For example, the
offset values under sham-tDCS at 9.5 Hz (0.3109 ± 0.0562)
were significantly higher than those under anodal-tDCS

Fig. 7. Offsets and exponents in different neuromodulation modes.

(0.2409 ± 0.0465), with a significance value of p = 0.02084.
The above results show that the fractal parameters (offset and
exponent) were modulated by tDCS-based neuromodulations,
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Fig. 8. Statistical results of offset and exponent (error bars referred to
the standard errors of the mean).

Fig. 9. Online experiment process.

and anodal-tDCS and pre-stimulation on the whole were
related to the smallest and largest values, respectively. Similar
conclusions as for the offset values were obtained when
analyzing the exponent values.

IV. ONLINE EXPERIMENT

A. Experimental Setting
Since in the offline experiments induced better SSVEP

performance enhancement under anodal-tDCS than under
sham-tDCS, during the online experiments sham-tDCS was
ignored and the focus was on the further validation of the
effectiveness of anodal-tDCS on the performance of SSVEP-
BCIs.

The experimental procedure was as follows (Fig. 9). First,
two blocks of SSVEP stimulation tasks were performed, with
a 1-minute break in-between. Second, participants received
anodal-tDCS for a duration of 21 minutes. The parameters
of the anodal-tDCS stimulation were the same as those of the
offline experiment, i.e. the stimulation current was increased
from 0 to 2 mA over 30 s, then remained constant at 2 mA for
20 minutes, and finally decreased from 2 mA to 0 over 30 s.
Third, two sets of SSVEP stimulation tasks were performed
again, with a 1-minute rest between the two sets.

The experimental equipment and environment used in the
online experiments were the same as those of the offline
experiments, with the trials (9 frequencies × 8 repetitions)
within each block presented in a random sequence. During

the offline experiments, the length of EEG data related to the
largest ITR found using FBCCA was around 1.5 s, so the
visual stimulation time during the online experiments was set
to 1.5 s. The duration of each trial was 2 s (0.5 s for the
visual cue of the red rectangle and 1.5 s for the SSVEP
stimulus). Different to the offline experiment, during the
online experiment a feedback loop was introduced, resulting
in a complete closed-loop system. If the target was correctly
identified, an audible feedback of “Di” appeared at the end
of the trial as a feedback message, while no audible feedback
was presented if it was not correctly identified.

B. Results
Figure 10 shows the ITRs (b,d) and classification accuracies

(a,c) obtained using FBCCA (a,b) and TRCA (c,d) during
the online experiment. Statically significant differences were
observed under pre-stimulation and anodal-tDCS. Pairwise
comparisons indicated that the averaged accuracies and ITRs
under pre-stimulation were significantly lower than those
under anodal-tDCS at the data lengths of 700 ms for FBCCA
(p = 0.0384) and [100 300:800 1000] ms for TRCA
(p = 0.0210, 0.0471, 0.0018, 0.0090, 0.0273, 0.0054, 0.0081,
0.0299), respectively.

Furthermore, the results of single block were also compared.
First, the accuracies and ITRs during the second block of
anodal-tDCS were not only significantly larger (p < 0.05)
than those of the first block of pre-stimulation for TRCA
([300:1000] ms) and FBCCA ([900:1000 1200 1400] ms),
but also were significantly larger (p < 0.05) than those of
the second block of pre-stimulation for TRCA ([600:1000
1200:1400] ms) and FBCCA ([900:1000 1200 1400] ms).
Second, the accuracies and ITRs of the second block of
anodal-tDCS were significantly larger (p < 0.05) than those
of the first block of anodal-tDCS for FBCCA ([800:1200] ms)
and TRCA ([100 500:1100] ms). Third, the accuracies and
ITRs of the first block of anodal-tDCS were significantly larger
(p < 0.05) than those of the first block of pre-stimulation for
TRCA ([100] ms) and FBCCA ([700] ms), and significantly
larger than those of the second block of pre-stimulation for
TRCA ([100] ms) and FBCCA ([400] ms).

V. DISCUSSION

A. Effect of Neuromodulation on the Characteristics of
EEG Oscillatory Components

The effect of neuromodulation on the oscillatory features
was analyzed. The focus of the analysis was on the modulation
effect of tDCS on the transient-state response of SSVEP,
which is closely related to the BCI performance. In fact,
in SSVEP-BCIs, the time course of SSVEP can be divided into
two periods: transient-state response (TSR) and steady-state
response (SSR) [34]. As the periodic stimulation was activated,
a TSR appeared and then stabilized to form an SSR waveform
that oscillated repeatedly at frequencies associated with the
visual stimuli [35], [36], [37], [38]. As signal processing
technologies have been improved, the data length used for
target identification has been reduced, which has made TSR
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Fig. 10. Online experiment results. (a)(b) FBCCA method. (c)(d) TRCA method. (a)(c) Classification accuracies. (b)(d) ITR.

increasingly important. In this study, the focus is on SSVEPs
occurring within [0 1.5] s.

The results indicate that tDCS, and anodal-tDCS in
particular, can be used to increase the TSR amplitudes
and further enhance SSVEP-BCI performance. Figure 3
shows the effect of tDCS-based neuromodulation on SSVEP
envelopes, with anodal-tDCS inducing the strongest TSR.
In addition, Fig. 4 demonstrates the advantage of anodal-
tDCS in terms of the average SSVEP amplitude within the
duration of TSR. Furthermore, Fig. 5 shows the effectiveness
of neuromodulation on the enhancement of SSVEP-BCI
performance. Finally, Fig. 10 further validates the effectiveness
of anodal-tDCS during online experiments, demonstrating
its potential to improve BCI performance through brain
state intervention. The effectiveness of sham-tDCS is
demonstrated, although it is slightly inferior compared to
anodal-tDCS.

Anodal-tDCS not only increased the arousal levels of brain
states (Fig. 8), but also caused an enhancement of the BCI
performance (Figs. 5, 10). The results reflect the positive
relationship between brain state arousal and BCI performance,
which is also supported by previous studies. For example,
the decline of sustained attention and fatigue in BCI usually
manifests through slow responses, decreased EEG quality, and
reduced classification accuracy [37], [38], [39].

The quality of the EEG data from the offline experiment
(Fig. 5) was superior to that of the online experiment
(Fig. 10). It is hypothesized that this was mainly due to
the completely different participants of the offline and online
experiments.

The results that anodal-tDCS enhanced SSVEP responses
can be explained via the tDCS mechanism, a technique that
regulates neuronal activity in the cerebral cortex [8], [9].
Neurophysiological experiments have demonstrated that neu-
ron response to static electric fields (direct current) was
achieved through changes in firing frequency [16], [25]. The
spontaneous firing of neurons increases and decreases when
anodal-tDCS and cathodal-tDCS are applied to neuronal cells,
respectively [29], [30]. Thus, anodic and cathodic stimulations
of neurons lead to enhanced and reduced neuronal excitability,
respectively, which is ultimately reflected in enhanced and
diminished evoked neural responses.

B. Effect of tDCS on Brain States
In this paper, a comparison of the effects of the three

experimental modes of pre-stimulation, sham-tDCS and
anodal-tDCS, on EEG fractal features is conducted, thus
providing evidence to reveal the effect of neuromodulation on
brain states.
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The results of Fig. 8 demonstrate the sensitivity of fractal
features to tDCS-based neuromodulations. On the one hand,
anodal-tDCS induced the lowest offset and exponent values.
For example, at all nine frequencies, the mean offset under
anodal-tDCS was lower than those under pre-stimulation.
On the other hand, sham-tDCS also induced a negative effect
on the fractal parameters, although it was less significant
than that of anodal-tDCS. The results suggest that the
fractal component properties can be modulated via tDCS-
based neuromodulation, as both sham-tDCS and anodal-tDCS
showed negative modulation of the offset and exponent values,
especially the latter.

The results reflect the modulatory effect of tDCS neuromod-
ulation on brain states. The fractal parameters are quantitative
descriptions of the EEG power law characteristics, where the
exponential or offset values are roughly positively correlated
with the share of low-frequency energy in the power law,
i.e. larger exponent or offset values correspond to more low-
frequency energy components in the power law, and vice versa.
On the other hand, the energy distribution of the power law has
been shown to be a valid measure of brain state [4], [40]. For
example, the exponent of 1/ f activity shows a roughly positive
relationship with sleep depth [41], [42]. The main components
of the EEG were theta, delta and alpha oscillations in the N1,
N3 sleep and awake states, separately. EEG features associated
with fatigue states include increases in delta and theta activities
and reduced power in beta activity [43]. Overall, the increase
in the level of brain state arousal tends to be accompanied by
a reduction of low-frequency energy and a growth in high-
frequency energy. Therefore, the power law features can be
explored as indicators to measure brain states at different
arousal levels.

In this study, tDCS-based neuromodulation induced smaller
offset and exponent values, which reflects increased arousal
levels of brain states. Since the fractional or offset
values were negatively and positively correlated with high-
frequency and low-frequency energies, respectively, tDCS-
based neuromodulation induced a reduction in low-frequency
energy and a growth in high-frequency energy, signaling an
increase in the brain state arousal level. This conclusion is
supported by previous studies. For example, fractal parameters
have been used to describe changes in brain states during
the process of rapid serial visual presentation (RSVP)-BCI,
with offset and exponent values increasing with increasing
fatigue and decreasing sustained attention [33]. Transcranial
electrical stimulation causes a decrease in reaction times and
a simultaneous increase in skin conductance, which suggests
a general increase in brain state arousal [44].

C. Effectiveness of IRASA Method
SSVEP-BCI researchers tend to focus on oscillatory

properties and ignore the fractal properties. In fact, fractal
EEG properties are potential indicators useful for brain state
assessment in BCIs. The separation of oscillations and fractal
components is an important problem for scholars in the field
of SSVEP-BCIs.

In this paper, IRASA is employed to extract the fractal
oscillations and fractals from original EEG. Specifically,

Fig. 6 demonstrates the effect of IRASA on the extraction of
the spectral features of the fractal components. As a result, the
fractal components are fitted to curves that are characterized
by parameters (offset and exponent). The curve-fitting is robust
and intuitive compared to conventional methods because it
reflects the variation of EEG energy with the frequency of
interest ([1 50] Hz). In addition, parameters (offset and expo-
nent) are used to characterize the spectral characteristics of
the fractal components in quantitative, which better promotes
and facilitates the assessment and comparison of various brain
states induced by neuromodulation. Figure 7 indicates the
relationship between offline and exponent, and Fig. 8 further
verifies that the offset is effective in characterizing the different
brain states induced by neuromodulation. The findings suggest
that parameters such as offset or exponent can reflect variations
in fractal EEG quantitatively and are valid indicators for
assessing neuromodulation-induced brain states, indicating the
validity of IRASA.

D. Expected Applications
The expected applications of the proposed method are

demonstrated through the following points. First, it is expected
that the method will be used for the improvement of
BCI performance. This study validates the effectiveness
of neuromodulation, specifically anodal-tDCS, in enhancing
the arousal level of brain states and improving SSVEP-
BCI performance, and therefore provides insight into BCI
performance improvement based on state intervention and
enhances the practicality of BCI systems.

Second, the method is expected to be used in the brain
state evaluation using BCIs. The oscillations and fractals are
extracted through IRASA and their properties are compared
under the pre-stimulation, sham-tDCS and anodal-tDCS. The
results reflect the effect of brain state on fractal EEGs. This
study demonstrates that the parameters (offset and exponent)
of the fractal components can be used as valid brain state
evaluation indicators.

Third, it is expected that the method will be used for EEG
modeling. In previous EEG modeling studies in the field of
BCIs, the fractal component was neglected, which has led to
inaccurate EEG models. In addition, the effect of brain state on
EEG models was neglected. By involving the characteristics of
fractals as well as the influence of brain state, EEG modeling
is expected to be improved.

E. Possible Improvements
This study can be expanded in the following ways. First, the

stimulation frequencies can be expanded to verify the effect of
tDCS under different frequencies. Second, more subjects can
be involved to ensure the robustness of the tDCS results. Third,
this study did not investigate the duration of the improvement
effect on SSVEP-BCI after tDCS stimulation, and this will be
the focus of ensuing studies.

VI. CONCLUSION

In this study, a neuromodulation technology based on
transcranial direct current stimulation is explored with the aim
of enhancing the performance of SSVEP-BCIs. The findings



ZHANG et al.: tDCS-BASED NEUROMODULATION IMPROVES THE PERFORMANCE OF BCIs BASED ON SSVEP 1373

provide insight into the enhancement of BCI performance
based on personal state interventions, as well as an effective
method for quantitative brain state monitoring.
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