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Concurrent Contribution of Co-Contraction to
Error Reduction During Dynamic

Adaptation of the Wrist
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Abstract— MRI-compatible robots provide a means of
studying brain function involved in complex sensorimo-
tor learning processes, such as adaptation. To properly
interpret the neural correlates of behavior measured using
MRI-compatible robots, it is critical to validate the measure-
ments of motor performance obtained via such devices.
Previously, we characterized adaptation of the wrist in
response to a force field applied via an MRI-compatible
robot, the MR-SoftWrist. Compared to arm reaching tasks,
we observed lower end magnitude of adaptation, and
reductions in trajectory errors beyond those explained by
adaptation. Thus, we formed two hypotheses: that the
observed differences were due to measurement errors of
the MR-SoftWrist; or that impedance control plays a sig-
nificant role in control of wrist movements during dynamic
perturbations. To test both hypotheses, we performed a
two-session counterbalanced crossover study. In both ses-
sions, participants performed wrist pointing in three force
field conditions (zero force, constant, random). Participants
used either the MR-SoftWrist or the UDiffWrist, a non-MRI-
compatible wrist robot, for task execution in session one,
and the other device in session two. To measure antic-
ipatory co-contraction associated with impedance con-
trol, we collected surface EMG of four forearm muscles.
We found no significant effect of device on behavior, val-
idating the measurements of adaptation obtained with the
MR-SoftWrist. EMG measures of co-contraction explained
a significant portion of the variance in excess error reduc-
tion not attributable to adaptation. These results support
the hypothesis that for the wrist, impedance control sig-
nificantly contributes to reductions in trajectory errors in
excess of those explained by adaptation.
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I. INTRODUCTION

NEUROREHABILITATION is centered on the idea that
retraining motor function can be advanced by incorpo-

rating concepts of neuromotor control into therapy. Although
many every day manipulation tasks are performed using the
hand and wrist, relatively few studies have focused on the
neuromotor control of the wrist, especially during human-robot
interaction. To address this gap in knowledge, our group has
developed the MR-SoftWrist, an fMRI-compatible 3 degree of
freedom (DOF) wrist robot, to study neuromotor control of the
wrist during sensorimotor tasks via fMRI [1], [2]. In our work,
we focus on characterizing adaptation-specific processes, that
enable our flexible control of movement in novel environments
and contribute to the motor learning process.

Adaptation refers to the formation of an internal model of
the task dynamics, learned through trial and error, that is used
to predict and compensate for environmental perturbations
[3], [4]. Adaptation results in transient changes in behavior
(after effects) when perturbations are removed. To localize
brain regions responsible for this dynamic motor control pro-
cess, we seek to associate measurements of motor kinematics
and kinetics with measurements of brain function obtained
via fMRI [5]. Previously, adaptation data collected with the
MR-SoftWrist showed different patterns of adaptation from
those measured arm reaching tasks reported in the litera-
ture [6], [7]. Namely, the magnitude of adaptation was lower
than what is typically reported for reaching tasks following
a similar number of trials [8], [9], and the end magnitude of
adaptation observed in our studies did not explain the large
reduction in trajectory errors observed.

From these results, we formed two hypotheses. The first
was that behavioral measures taken with the MR-SoftWrist
may be influenced by the inherent compliance of the device.
Adaptation is measured during error clamp trials, in which the
robot applies a force tunnel that maximally restricts lateral
deviations to measure participants force profiles that reflect
their prediction of required task dynamics. Ideally, the walls of
this force tunnel would be infinitely stiff to enable perfect mea-
surement of the applied forces. To achieve MRI-compatibility,
the MR-SoftWrist utilizes a series elastic actuator design with
piezoelectric motors that results in a limited error clamp
stiffness bounded by the stiffness of the springs [1], [10]. This
inherent compliance of the MR-SoftWrist makes it unclear if
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the differences in adaptation observed in our experiments are
due to differences in motor control of the wrist, or due to
limitations in the measurement of force profiles taken with the
MR-SoftWrist. To address this issue, we developed a benchtop
wrist robot, the UDiffWrist, that can apply virtual walls with
much greater stiffness to validate our behavioral measures
of dynamic adaptation of the wrist executed with the MR-
SoftWrist [11].

Alternatively, if our behavioral measures are not unduly
influenced by measurement error, we hypothesized that reduc-
tion in trajectory errors in excess of those predicted by our
measures of adaptation were due to concurrent co-contraction.
All behavioral measures analyzed in our study of adaptation
focus on the feed-forward phase of movement. In the feed-
forward phase of movement, impedance control is known to
contribute to error reduction in novel or unlearnable dynamic
environments [12], [14], [15], [16]. Impedance control refers
to the generalized strategy of stiffening the joint via muscle
co-contraction to reduce kinematic errors caused by perturba-
tions, and can be assessed via EMG. In arm reaching tasks,
impedance control is typically dominant early in task execu-
tion, but is reduced to negligible amounts as adaptation pro-
gresses. From our previous studies, it appears that impedance
control may play a more persistent role in control of the
wrist, contributing to excess error reduction not explained by
measures of adaptation.

In this study, we tested both hypotheses via a two-session
counterbalanced crossover experimental design. In both ses-
sions, participants performed the same task schedule, consist-
ing of a zero force task, an adaptation task, and a random
force task. Half the participants used the MR-SoftWrist for
task execution in session 1, while the other half used the
UDiffWrist. For session 2, participants used the other robotic
device for task execution. To limit effects of savings on session
2 behavior, sessions 1 and 2 were conducted 3-4 weeks apart.
For all tasks, muscle activation of the primary wrist muscles
engaged in task execution—flexor carpi radialis (FCR), flexor
carpi ulnaris (FCU), extensor carpi radialis (ECR), extensor
carpi ulnaris (ECU)— was collected using surface EMG [17].

To validate behavioral measures taken with the MR-
SoftWrist, we compared behavior measured between devices
and experimental sessions to test the hypothesis that there
would be no significant differences between robotic devices.
To investigate concurrent co-contraction, we compared EMG
measured in the dynamic adaptation task, in which partici-
pants are expected to use a predominantly adaptation-based
strategy for error reduction, to EMG measured in the ran-
dom force task, in which we expect participants to use a
predominantly co-contraction-based strategy for perturbation
rejection. To investigate the contributions of co-contraction to
excess error reductions, we hypothesized that error reduction
in excess of that explained by models of adaptive behavior
would be associated with EMG measures of co-contraction.

II. MATERIALS AND METHODS

Our study utilized a two-session counter balanced
design. In session 1, participants interacted with either the
MR-SoftWrist or the UDiffWrist to perform a series of three
wrist pointing tasks; a zero force task for characterization

Fig. 1. Experimental protocol. Top: Sequence of motor tasks performed
in each session, delineated by dashed lines, that include the “baseline”
motor performance task, the dynamic adaptation task, and the random
force task. The solid black line depicts the magnitude and direction of the
force applied in each task. Enumerated blocks of 24 trials within each
task are shown below for reference in our statistical analysis. Middle:
Experimental set up displaying the robotic devices, handle and forearm
supports, and associated EMG systems. Bottom: Schematics of task
dynamics in each condition.

of baseline motor performance, a velocity-dependent curl
force task for characterization of dynamic adaptation, and a
randomly alternating curl force task for characterization of
impedance control (Fig. 1). Approximately three weeks after
session 1, participants performed the same set of tasks using
the other robotic device in session 2. In each session, partic-
ipants kinetics and kinematics were recorded by the robotic
device used for task performance, while surface EMG of the
four primary wrist muscles was acquired to measure muscle
activity associated with neuromotor control in each task.

A. Participants
27 healthy young adults free from neurological or mus-

culoskeletal injury participated in this study. 15 participants
were assigned to use the MR-SoftWrist for session 1 and
the UDiffWrist for session 2 (MRSW-UDW), and twelve
participants were assigned the reverse order (UDW-MRSW).
One participant from each group was eliminated for failure
to follow task instructions, and one participant from the
MRSW-UDW group was removed for hardware malfunction,
resulting in 13 individuals with session 1 data for the MR-
SoftWrist (N = 13; 6 male, age: 25 ± 3.58 years), and
11 individuals for the UDiffWrist (N = 11; 5 male, age:
25 ± 3.67 years). 4 participants from MRSW-UDW group,
and 2 participants from the UDW-MRSW group did not return
for the second session, resulting in 9 participants in each group
with data for both sessions. The study was approved by the
Institutional Review Board of the University of Delaware, IRB
no 906215-10.

B. Experimental Procedure
The experimental protocol is shown in Fig. 1. Prior to task

performance, EMG sensors were placed on the participant,
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and appropriately sized handle and forearm supports were
selected (Fig. 1, Bottom). Participants used the same handle
and support for both robotic devices. Participants’ hands were
secured into the handle such that it fit snug around their open
palm, without touching the fingers. Participants’ fingers were
taped with athletic tape at the finger joints to prevent grasping
of the handle. For each session, participants performed a
familiarization task with the robotic device to learn task
instructions and interaction with the robot in the zero force
condition. Following training, participants performed a series
of three motor tasks over roughly 40 minutes. EMG activation
was measured during isometric contractions performed imme-
diately before the familiarization task and after the last task
for normalization purposes and to assess any changes in signal
quality across the session. Participants wore noise cancelling
headphones (COWIN E7) that played white noise to eliminate
environmental distractions during task execution.

C. Robotic Devices
The MR-SoftWrist is an fMRI-compatible robot (Fig. 1,

Bottom right) that supports flexion-extension (FE) and
radial-ulnar deviation (RUD) on the wrist in a circular
workspace (radius 20 deg). The device has a maximum output
torque of 1.5 N·m about each axis, and can display kinesthetic
environments ranging from a zero force mode that minimally
perturbs the user’s movements (trial average resistive torque =

0.05 Nm; peak resistive torque < 0.17 Nm), to a stiffness
control mode that displays a high stiffness environment (max
virtual stiffness, kv = 0.45 Nm/deg) [1]. User interaction
forces are measured via springs and linear encoders placed
in series between the piezoelectric motors and the load (user).

The UDiffWrist (Fig. 1, Bottom left) is a low-impedance
wrist robot that features a cable-differential transmission with
a workspace matching that of the MR-SoftWrist. The device
has a maximum output torque of 31.4 Nm about each axis
(FE, RUD), and a lower impedance compared with the MR-
SoftWrist [11]. For all tasks, the impedance of the UDiffWrist
was increased via application of a viscous damping force to
match that of the MR-SoftWrist, confirmed via experiments
performed in the zero force condition. User interaction forces
were measured using a 6-axis force transducer ATI Mini40
F/T Sensor located at the base of the handle.

In this experimental protocol, each robot operated in one
of three control modes: a zero force mode (ZF), a curl
force mode (CF), and an error clamp mode (EC). In the
zero force mode, the desired interaction torque is set to zero
(τF E = τRU D = 0) to display a transparent environment
to the user. In the curl force mode the robot applied a
velocity-dependent torque, (τ ), perpendicular to the direction
of movemement proportional to subjects velocity, (θ̇ ), defined
as [τF E ; τRU D] = [0, B; B, 0][θ̇F E ; θ̇RU D]. Counterclockwise
and clockwise force field conditions were achieved with
B = ±3.49 Nm·s/deg, respectively [3]. In the error clamp
mode, the robot produced a force channel that clamps lateral
trajectory errors to zero, to enable measurement of lateral force
profiles that reflect participants expectation of required task
dynamics [10].

The MR-SoftWrist implemented error clamp forces with a
positional deadband of 0.025 deg, a stiffness of 500 mNm/deg
and damping of 5 mNm·s/deg, and a saturation of 1 Nm. The
UDiffWrist implemented error clamp trials with a deadband
of 0.0025 deg, a stiffness of 1250 mNm/deg and damping of
15 mNm·s/deg, with a saturation of 1.2 Nm. Values for error
clamp force fields were tuned via trial and error to achieve
the stiffest possible virtual walls given the capabilities of the
hardware, as typical in these studies. For the MR-SoftWrist,
error clamp trials restricted maximal lateral deviations to
(mean ± std) 0.205 ± 0.037 deg across all dynamic conditions,
with a range of [−0.394, 0.309] deg across participants. For
the UDiffWrist, error clamp trials restricted lateral errors to
0.0847 ± 0.021 deg across dynamic conditions, with a range
of [−0.312, 0.136] deg across participants. Due to inherent
hardware limitations of the MR-SoftWrist, the UDiffWrist
achieved a greater restriction of lateral deviation, although both
devices sufficiently clamped errors close to zero.

For both devices, gravity compensation and force control
were implemented at 1000 Hz via Simulink controllers using
the Quarc real-time engine coded in MATLAB 2017a. Inter-
action force, velocity and position data were logged at a rate
of 1000 Hz using a on Quanser Q8-USB data acquisition card.
For more on the control and design of the MR-SoftWrist,
see [1], and for the UDiffWrist see [11].

D. EMG
The four muscles of the wrist—flexor carpi radialis (FCR),

flexor carpi ulnaris (FCU), extensor carpi radialis (ECR),
extensor carpi ulnaris (ECU)—were identified via palpation
from their respective origins to insertion points along the
forearm during muscle contraction during agonist activation
(i.e., flexion and radial deviation for FCR, extension and ulnar
deviation for ECU, etc.). To find the optimal position for
sensor placement, the electrode was moved along the muscle
belly until the largest burst of activation was measured during
agonist muscle contraction. The location was prepared for
electrode placement by shaving the arm hair, and cleaning
the skin with abrasive electrode gel followed by alcohol.

At the beginning of each session, EMG activation was mea-
sured during isometric contractions performed in the robotic
device used for task execution as a means to confirm correct
electrode placement (Fig. S1). Participants were cued to apply
and hold a torque of 1 Nm for 7 seconds twice in each direc-
tion (flexion, extension, radial deviation, and ulnar deviation).
Electrode placement and signal quality were confirmed via
observation of clear bursts during agonist muscle activation.
Activation was remeasured in the same isometric contraction
task at the end of the session to confirm no significant change
occurred during the task. A force level of 1 Nm was chosen
instead of maximal contractions, as maximum contractions
(Flexion: 8.3 ± 3.1 Nm, Extension 6.5 ± 1.4 Nm, can elicit
variable activation levels [13]). In our study, 1 Nm elicited
clean bursts of activation, while remaining on roughly the
same scale as the peak force expected in our task (anticipated
∼ 400 mNm).

Due to the presence of significant electromagnetic inter-
ference generated by the UDiffWrist motors, we used two
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different EMG systems to acquire muscle activation. For
the MR-SoftWrist, we used an OT Bioelettronica amplifier
and software (sampling frequency: 2048 Hz), and for the
UDiffWrist we used a Delsys wireless electrode system and
software (sampling frequency: 2000 Hz). For the OT Bioelet-
tronica system, the common ground electrode was placed at
the elbow. For both systems, EMG signal was time synced to
task performance data via a common analog signal. Electrodes
were not moved between tasks.

E. Paradigm
In all motor tasks, participants moved their wrist to control

a cursor on a monitor (Fig. 1, Bottom). The cursor was
displayed continuously as a grey circle (radius 1 deg). Flexion-
extension of the wrist moved the cursor horizontally, while
radial-ulnar deviation moved the cursor vertically. Pronation-
supination was prevented by a forearm support. Participants
were cued to move the cursor in a straight line to one of two
circular targets (radii 1.25 deg) located at (±10, 0) degrees in
flexion-extension, radial-ulnar deviation.

Trial onset was cued by a change in target color from black
to blue. Trial completion was achieved when the error between
the cursor and the target was less than 1.5 deg for more than
250 ms. The reached target then provided timing feedback for
0.5 s by turning red if the movement duration was greater than
650 ms or green if it was less than 300 ms. Otherwise, the
target remained black. The inter-trial-interval between timing
feedback and cuing of the next trial was randomly selected
from a normal distribution N (1.25, 0.2) s, bounded between
[0.25 1.75] s. Each task was divided into blocks of 24 trials,
with 8 s rest periods between blocks to prevent fatigue.

The motor performance task consisted of 4 blocks (96 trials)
performed in the zero force mode to measure behavior (kinet-
ics, kinematics, EMG) during unperturbed wrist pointing.

The dynamic adaptation task consisted of 11 total blocks.
The first 8 blocks of the task consisted of an initial block of
zero force trials, followed by 6 blocks in a counter-clockwise
curl force field, followed by a block of zero force trials. This
portion of the task was used to assess adaptation to a constant
perturbation and immediate after effects of training, consistent
with our previous studies. Blocks 9-11 followed an CCW-
CW-EC perturbation schedule, that consisted of 30 counter-
clockwise trials, 10 clockwise trials, and 32 error clamp
trials. This CCW-CW-EC perturbation schedule, in which
participants re-adapt to an initial perturbation (CCW, counter-
clockwise), followed by brief exposure to an oppositely
directed perturbation (CW, clockwise), before having their
errors clamped to zero (EC), should elicit a rebound of
behavior (spontaneous recovery) that reflects adaptation to the
first perturbation (CCW), and produce unique model estimates
of behavior [6], [9].

The random force task consisted of 10 blocks; two initial
blocks of zero force trials to reestablish “baseline” behavior,
6 blocks in an alternating curl force condition, and two final
blocks in a zero force condition to enable assessment of any
after effects. The alternating curl force field force was gener-
ated in a pseudo-random manner. Force field direction changed

with a 50% probability between each trial, and logic was
applied to prevent greater than 4 consecutive trials occurring
in a ‘constant’ field. For this purpose, we defined ‘constant’
fields as conditions in which all trials were clockwise, counter-
clockwise, or in which alternations occurred on every trial
sequentially (i.e. CW-CCW-CW-CCW) resulting in the appli-
cation of a constant upwards or downward force. Clockwise
and counter-clockwise perturbations were evenly balanced
across this task, such that the average force experienced across
the task was 0.

Error clamp trials were interspersed pseudo-randomly
throughout each task with a 1/8th probability, except for the
CW (no error clamp trials) and EC (all error clamp trials)
portion of the dynamic adaptation task [10]. Error clamp trials
only occurred after the first two trials of a block, and had
between trial spacing of 3 to 12 trials. Across all sessions,
participants performed the exact same task schedule.

F. Data Analysis
1) Data Preprocessing: Processing of behavioral data was

conducted using MATLAB (The MathWorks, version 2020b).
All position, velocity, and force data were low-pass filtered
at 25 Hz using a zero-shift 4th order Butterworth filter applied
via MATLAB’s filtfilt function. For each trial, position and
force data from trial onset to trial end were resampled into
1000 data points, and divided between extension and flexion
movements. For both sessions, baseline trajectory and force
profiles were determined for each direction as the average of
all valid trials in blocks 2-4 of the motor performance task and
block 1 of the dynamic adaptation task. Within each session,
direction-specific baseline profiles were subtracted from the
respective flexion- or extension- directed trials for force and
position data, such that all behavioral metrics reflect a change
relative to typical, non-perturbed wrist pointing.

For trial-by-trial data analysis, trial onset was defined as the
instant the absolute cursor velocity exceeded 15 deg/s. Trial
end was defined as the instant the cursor was within 3 deg
of the target in the flexion-extension direction. Trials were
excluded if they matched any of the following conditions: 1)
a trial duration outside the [200, 700] ms range; 2) a maximum
velocity below 40 deg/s; 3) a reversal in goal directed velocity
that occurred before the trial max velocity, indicative of false
starts. At the group level, this resulted in an average exclusion
of 1 ± 0.56% of all trials with a max removal of 2% (24 trials)
across both sessions.

For EMG analysis, we used only session one data, which
had the largest number of participants with usable data. EMG
data were bandpass filtered at 30-500 Hz, rectified, and the
envelope was taken via a 10 Hz low-pass, zero-shift 4th order
Butterworth filter [16]. EMG for each muscle was normalized
by the average activation measured during all agonist isometric
contractions.

EMG data collected from four participants were excluded
due to issues of signal drop out or significant drift across all
muscle groups. For the ECU, the remaining 20 participants
(MRSW, N = 12, UDW, N = 8) were included in all
subsequent analyses. For the FCR, an additional participant
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was removed for low SNR, and two for signal drift, resulting
in 17 total participants (MRSW, N = 9, UDW, N = 8). For
our global activation measure (detailed below), we included all
participants (N = 20) with valid muscle activation measured
in at least two of the four muscle groups.

2) Behavioral Outcome Measures: All behavioral metrics
were calculated in the first 150 ms after movement onset,
to capture behavior primarily associated with the feed-forward
motor-control processes of adaptation and impedance control
prior to online error-based response [16], [18].

a) Adaptation index: As error clamp trials occur unex-
pectedly, force profiles measured in these trials reflect the
participants’ expectation of the task dynamics [10]. Thus,
we defined adaptation index on error clamp trials as the ratio
between the area under the measured force profile and the
area under the ideal force profile necessary to compensate for
a counter-clockwise curl force field [6]. An adaptation index of
one indicates perfect adaptation to a counter-clockwise force
field, while an adaptation index of negative one indicates
perfect adaptation to a clockwise force field. An adaptation
index of zero represents no adaptation.

b) Trajectory error: On all field trials, we calculated par-
ticipants’ angular trajectory error (i.e. performance error) as
the internal angle between the cursor at its maximum lateral
deviation and the straight line connecting the start and end
targets [19].

c) Excess error reduction: Based on the results of our pre-
vious work, we chose to use the two-state model of adaptation
to explain behavior attributable to dynamic adaptation in our
task [6], [8]. The model equations are reported below:

e(n) = f (n) − x(n)

x(n) = x f (n) + xs(n)

x f (n + 1) = A f x f (n) + B f e(n)

xs(n + 1) = As xs(n) + Bse(n) (1)

In this model, performance error, e(n), is modeled as the
difference between the applied force field, f (n), and the par-
ticipant’s motor output, x(n),that is quantified experimentally
by adaptation index. x(n) represents adaptation of the internal
model on trial n, and is the sum of two inner states; a fast
learning state, x f , and a slow learning state, xs that are updated
on every trial by performance error, e(n), in proportion to their
retention (A f and As) and update parameters (B f and Bs).
Here, A f < As and B f > Bs , as the slow state retains more
from trial to trial and is less sensitive to error than the fast
state. All parameters are constrained between (0, 1).

We hypothesized that reductions in trajectory errors in
excess of those predicted by measures of adaptation were
due to concurrent co-contraction. To define “excess error
reduction”, we first fit the two-state model to adaptation index
data measured in the dynamic adaptation task. Models fit to
adaptation index data produce estimates of trajectory errors
that are scaled by the magnitude of the perturbations experi-
enced (1 for CCW/-1 for CW). To scale measured trajectory
errors to model-estimated trajectory errors, we regressed the
measured trajectory errors onto the model-estimated trajectory
errors at each change in force application (i.e. trials 121, 265,

Fig. 2. Group average kinematic and EMG data measured in each force
condition. For the ECU, extension is an agonist movement and flexion
is an antagonist movement. Shaded regions depict s.e.m. “Baseline”
includes all baseline zero force trials; “Early” and “Late” force conditions
(CF: Curl force, RD: Random force) include the first and last block
of trials in the constant perturbation phase of each force condition,
respectively. In the time window of interest, lateral deviations and speed
are well matched across conditions.

289, 319). We chose to use the initial trial following each
force transition as they occur unexpectedly and most readily
reflect behavior based on participants prediction of expected
task requirements. Measured trajectory errors were normalized
by the scalar value returned by this regression.

For each participant, we quantified “excess error reduction”
as the average residual error between their model-estimated
trajectory errors (fit to subject-level adaptation index data) and
normalized trajectory errors measured in the steady-state phase
of the dynamic adaptation task (block 7), where we previously
observed the largest discrepancy between adaptation and error
reduction. Group-level excess error reduction was defined as
the squared residual error between model-estimated trajectory
errors fit to group average adaptation index data and the
normalized average trajectory errors measured across all tasks.

3) EMG Outcome Measures: On each trial, we quantified
muscle activation as the average EMG signal measured over
the time interval of −150 ms to 50 ms surrounding movement
onset, consistent with previous studies that used intervals
ranging from −200 ms to 130 ms to measure muscle acti-
vation associated with co-contraction and adaptation, prior to
influence from online error correction processes [16], [20],
[21]. Within this time window, the maximal average deviation
was less than 1 degree, and occurred at 50 ms (Fig. 2, bottom).
As short latency reflexes typically occur 30-50 ms following a
muscle stretch, with long-latency reflexes occurring > 50 ms
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post-stretch, the selected time window is expected to have
limited influence from stretch related reflex activity. Indeed,
visual inspection of the EMG traces confirmed that this time
interval captured task related increases in muscle activation
with limited influence from reflex related activations (Fig. 2,
Top). Moreover, there was no significant difference in the
absolute velocity measured within this time interval between
task conditions that may contribute to differences in activation
measured between tasks unrelated to control strategy (Fig. 2,
bottom right).

a) Antagonist muscle activation: Previous studies have used
“wasted contraction” to quantify antagonist muscle activation,
defined as the minimum activation measured between agonist
and antagonist muscle pairs [21]. However, this measure
requires the combination of signal from multiple muscles
that may be influenced by differences in normalization and
noise between EMG channels. As such, we chose to define
antagonist muscle activation as the activation measured in
muscles that act as “pure antagonists” during execution of our
tasks within the time interval surrounding movement onset.

In the zero force condition for flexion trials, both the
ECR and ECU muscles act as antagonists to goal-directed
movement; similarly, for extension trials the FCR and FCU
muscles act as antagonist muscles. In the dynamic adaptation
task, the counter-clockwise force field applies perturbations
perpendicular to the direction of movement. As such, exten-
sion trials experience radial perturbations, while flexion trials
experience ulnar perturbations. Consequently, for extension
trials, we identified the FCR as a pure antagonist muscle,
as it acts as an antagonist for both goal-directed movement
and perturbation rejection. Similarly, we identified the ECU as
the pure antagonist muscle for flexion trials. Instead, the ECR
and FCU muscles were considered to act as partial agonists
in all trials, either in contributing to perturbation rejection or
goal-directed movements depending on the trial direction.

In the random force task, the perturbations alternated evenly
between clockwise and counter-clockwise directions. Conse-
quently, across the task, no muscle can be defined as a ‘pure’
agonist/antagonist in the radial-ulnar task dimension. However,
given the balanced, rapid nature of these alternations, we do
not expect this task to produce a learned response in any
muscle group in either the ulnar or radial direction, but rather
an increased activation along both dimensions evenly [22].
Moreover, the time window evaluated in our task occurs prior
to significant reflex related activity associated with curl force
perturbations that may influence muscle activation measured
between tasks. As such, antagonist muscles in this task were
defined based on goal-directed movement only, in the same
way as the zero force condition. To remain consistent between
tasks, we chose to examine activation in the FCR for extension
trials and the ECU for flexion trials.

b) Global Activation: To enable comparisons with previous
work, we additionally investigated global activation measured
as the average activation measured across all muscles within
the time window of interest as a proxy for stiffness [16], which
accounts for activation of all agonist and antagonist muscles.

c) EMG measures of co-contraction: To investigate the asso-
ciation between co-contraction and excess error reduction,

we defined EMG measures of co-contraction for each partic-
ipant as the change in muscle activation (antagonist, global)
between the steady-state phase of the dynamic adaptation task
(mean of block 7) from their baseline activation (mean of
blocks 3-4 in the motor performance task). At the group
level, we defined co-contraction as the average activation
measured in antagonist muscles across subjects for each trial
for investigation of group level excess error reduction across
all tasks.

4) Statistical Testing:
a) Mixed model analysis of behavior: To test for differences

in adaptation measured between devices we performed a mixed
model analysis of adaptation index measured in the dynamic
adaptation task. The between-subject factors were robotic
device (levels: MR-SoftWrist, UDiffWrist), and session of task
execution (levels: Session 1, Session 2). The within-subject
factor was experimental phase, with levels: Baseline, defined
as the last block of the motor performance task, Early
Counter-Clockwise and Late Counter-Clockwise, defined as
the beginning (block 2) and end (block 7) of the constant per-
turbation phase in the dynamic adaptation task, respectively,
After Effects, defined as block 8 of the dynamic perturbation
task performed in the zero force condition, Relearning, defined
as the re-introduced counter-clockwise curl force condition
spanning blocks 9 and 10, Initial Error Clamp, defined as the
first 4 trials in the error clamp phase, and Asymptotic Error
Clamp, defined as the final 4 trials in the EC phase, after
participants reach asymptotic performance. In each phase, the
average adaptation index measured across all EC trials (3-4
trials) was taken as the outcome measure for each participant.
Blocks within each task are reported in Fig. 1 for reference.

Because adaptation is an error-based learning process,
we performed a mixed model analysis of the same form on tra-
jectory errors measured in the dynamic adaptation task to test
for confounding effects of differences in errors experienced
during task execution. The between subject factors were the
same as above. The experimental phases included: Baseline,
defined as the last four trials of the motor performance task,
Early and Late Counter-Clockwise, defined as the first and last
four trials in block 2 and 7 of the dynamic adaptation task,
respectively, After Effects defined as the first four trials of
block 8, Early and Late Relearning defined as the first and last
four trials of the re-introduced counter-clockwise curl force
condition, respectively, and Early Clockwise, defined as the
first four trials of the clockwise curl force condition.

The experimental phases were defined to capture key fea-
tures of expected behavior during force field transitions and
asymptotic performance. For adaptation index data, increases
in the Early Counter Clockwise, Late Counter Clockwise,
After Effects and Relearning phases compared to Baseline
would all be indicative of adaptation. We expect the force-field
reversal to cause an initial washout of adaptation to the
counter-clockwise force field, that rebounds after a few trials,
consistent with spontaneous recovery. As such, we expect to
see no significant difference from baseline in the Initial Spon-
taneous Recovery phase, and significantly greater adaptation
from baseline in the Asymptotic Spontaneous Recovery phase.
For trajectory error data, decreases between the Early and
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Late Counter Clockwise phases (i.e. error reduction) would
demonstrate a learned response to the dynamic perturbation,
while decreases in the After Effects phase from the Baseline
phase would signify after effects, indicative of adaptation.

We additionally tested for differences in behavior measured
between devices in the Random Force task. We used the same
mixed model structure described above, with between-subject
factors robotic device and session, and within-subject factor
experimental phase. We defined 8 experimental phases of
interest corresponding to average behavior measured in blocks
2-9 of the random force task, for both trajectory errors and
adaptation index data. Because the perturbations alternate
directions, we used the absolute value of our trajectory error
metric for this analysis. We expect to see significant increases
in trajectory errors during force application, but no significant
changes in adaptation index in any phase, as no significant
adaptation should occur.

For all mixed-models we used a full factorial design that
included the main effects of Experimental phase, Session, and
Robotic Device, as well as all interaction terms between fixed
factors. When the mixed model returned a significant effect
of any fixed factor, post-hoc Tukey test were used to quantify
the effect on behavior.

b) Mixed model analysis of EMG: To establish expected
patterns of co-contraction in each task (dynamic adaptation,
random force), we performed a mixed-model analysis on
antagonist muscle activation (ECU and FCR) and on global
activation. We used a full factorial design, with “Device” as a
between subject factor to control for any differences between
EMG acquisition systems, and “Experimental phase” as a
within subject factor. For both tasks, we expect to see an
initial increase in co-contraction in response to the unexpected
perturbations. In the dynamic adaptation task, co-contraction
should decrease to baseline levels as individuals adapt to
produce the ‘correct’ activation pattern to reject perturbations
and reduce wasted activation and metabolic costs [20], [21].
In the random force task, we expect co-contraction to decay
gradually but remain elevated compared to baseline at the end
of the task, as participants continue to co-contract to reduce
perturbations, indicative of impedance control [12].

Experimental phases included; Baseline 1, defined as the
last block of the motor performance task, Early Dynamic
Adaptation and Late Dynamic Adaptation, defined as blocks
2 and 7 of the dynamic adaptation task, respectively, Base-
line 2, the second zero force block of the random force task,
and Early Random Force and Late Random Force, defined
as blocks 3 and 8 of the random force task, respectively.
For each participant, the average activation for all valid trials
within each experimental phase was taken. Post-hoc Tukey
test were used to quantify the effect of significant factors on
EMG activation. We additionally performed a control analysis
of absolute trial velocity (max and mean) measured in these
same experimental phases, to confirm that effects observed
in our analysis of EMG activation were not attributable to
changes in movement kinematics.

c) Association between excess error reduction and
co-contraction: To determine the relationship between
co-contraction and excess error reduction (i.e. the portion of

Fig. 3. Group average behavioral results (solid lines) and subject level
data (individual markers) are reported for each device and each session
(Session one: trials 1-600; session two: trials 601-1200). Participants
are represented with the same marker between sessions and across
metrics. For visualization only, we applied a moving average of 2 trials
to group average adaptation index data to smooth variability associated
with intermittent sampling. Grey bins at the bottom of each figure
highlight the experimental phases used in the mixed model analyses.

trajectory errors not explained by adaptation) we performed
a correlation between participant’s residual error reduction
and their subject-specific EMG measures of co-contraction.
We additionally performed a linear regression between
group average excess error reduction and average EMG
measures of co-contraction across all tasks. For the group
level analysis, data were binned in blocks of four trials,
corresponding to two flexion and two extension trials,
to reduce the influence of noise. For both group level
and subject level analyses, we investigated the relationship
between excess error reduction and co-contraction defined
in pure antagonist muscles (FCR and ECU), as well as our
global activation measure. We additionally investigated the
relationship between co-contraction and alternate behavioral
metrics (trajectory errors and adaptation index) to determine
the specificity of our results.

III. RESULTS

A. Mixed Model Analysis of Behavior
Adaptation index and trajectory error data measured across

all tasks are shown in Fig. 3 with grey bins at the bottom of the
figure indicating experimental phases considered for statistical
analysis.

1) Adaptation Index: The mixed model fit to adaptation
index measured in the dynamic adaptation task (R2

ad j = 0.67)
returned a significant main effect of experimental condition
(p < 0.001) but no significant effect of Robot (p = 0.68),
Session (p = 0.77), or any interaction terms. Model param-
eter estimates showed that adaptation index was significantly
greater in all experimental phases compared to baseline (p <

0.001) except for the initial error clamp phase, in line with
effects predicted by adaptation and spontaneous recovery.

The model fit to adaptation index in the random force
task had a poor fit (R2

ad j = 0.235), as expected given that
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no adaptation should occur in this task. The model returned
a significant main effect of Experimental condition (p =

0.011) and Session (p = 0.0435), but no significant effect of
robot (p = 0.79), nor any interaction terms. Post-hoc Tukey
testing returned no significant difference between the baseline
block and any experimental phase, in line with no significant
adaptation with task execution. The main effect of session
was driven by greater adaptation index in session 2 compared
with session 1 (Session 1 = 0.0033 ± 0.033 deg; Session
2 mean = 0.0914 ± 0.033 deg), which suggests that washout
of adaptation in session 2 was slower compared with session 1.

2) Trajectory Errors: The mixed model fit to trajectory errors
in the dynamic adaptation task (R2

ad j = 0.936) returned a
significant main effect of experimental condition (p < 0.001),
and no significant effect of Robot (p = 0.34), Session
(p = 0.63), or any interaction terms. Post-hoc Tukey testing
returned significant decreases in error between the early and
late counter clockwise phases, indicative of learning, and
significant after effects consistent with adaptation.

The mixed model fit to absolute trajectory errors in the
random force task (R2

ad j = 0.915) returned a significant
main effect of experimental condition (p < 0.001), and
no significant effect of Robot (p = 0.928), Session (p =

0.782), nor any interaction terms. Trajectory errors in all six
blocks in the random force condition were significantly greater
than baseline, but there were no significant after effects, nor
significant change in error across the task.

3) Corollary Analyses: Because our force field is velocity
dependent, we performed a mixed model analysis on mean
velocity measured in the same experimental phases for adap-
tation index and trajectory errors used above. This analysis
returned no significant effect of robot nor interaction term
that could confound comparisons between devices. To test
for effects of device on model estimation, we used a mixed
model analysis to compare the distributions of parameter
estimates for a two-state model fit to subject-level behavior,
that included factors Device and Session. Our results showed
no significant differences in the distribution of parameter
estimates for the two state model fit to either device. As such,
two-state model estimation used for excess error estimations
were not considered significantly different between devices.

B. Mixed Model Analysis of EMG
We performed three individual mixed model analyses to test

for the effect of experimental phase on EMG measures of
co-contraction taken in antagonist muscles (ECU, FCR) and
across all muscles (global activation), controlling for potential
effects of EMG acquisition between systems.

The model fit to the ECU data (R2
ad j = 0.837) identified

a significant main effect of experimental phase (p < 0.001),
but no significant interaction (p = 0.92) nor main effect of
Device (p = 0.25). In line with our expectations, post-hoc
Tukey testing identified significant (p <0.001) increases in
activation compared to baseline in the early dynamic adapta-
tion (DA) phase, and early and late random force (RD) phases
(mean ± standard error; Baseline 1: 54.48 ± 15.41; Early
DA: 125.75 ± 15.41; Early RD: 128.74 ± 15.41; Late RD:

Fig. 4. Top: Average EMG activation measured in each block across
all tasks in session 1 (column 1-3), and the corresponding max trial
speed (column 4). Grey bins denote experimental phases used for
statistical analysis. Bottom: Bar plot of average behavior measured in
each experimental phase included in our mixed model analysis (base-
line: BL, dynamic adaptation: DA, random force: RD). Red asterisks
denote changes in activation that are significantly greater than baseline
1. Change between experimental conditions, and between tasks that
reached significance are shown via black asterisks over a horizontal bar.

102.10 ± 15.41). Activation in the late random force phase
was significantly greater than in the late dynamic adaptation
phase (Late DA: 70.29 ± 15.41, p = 0.0367). There was no
significant difference between the early dynamic adaptation
and early random force conditions, nor between baseline 1,
Late dynamic adaptation, and baseline 2 (Baseline 2: 78.52
±15.41). The model fit to the FCR data (R2

ad j = 0.822) and
global activation data (R2

ad j = 0.838) both showed similar
patterns of significant (p < 0.001) effects as the ECU, and
no significant effect of device (pFC R = 0.81, pglobal = 0.094)
nor interaction (pFC R = 0.051, pglobal = 0.44).

Repeated measures ANOVA of the max and mean trial abso-
lute velocity measured these same experimental bins showed
that there were no significant changes in velocity between
dynamic conditions in any experimental phase. As such,
change in velocity can not account for the observed differences
in activation reported above.

In sum, our measures of EMG activation show expected pat-
terns of co-contraction in the dynamic adaptation and random
force task, consistent with those reported in the literature for
similar task paradigms [12], [20], [21].

C. Association Between Excess Error Reduction and
Co-Contraction

Fig. 5 shows the group level association between EMG
measures of co-contraction and excess error reduction, defined
by the squared residual error between measured trajectory
errors and predicted errors from a two-state model of adapta-
tion. The two-state model fit to average adaptation index data
returned model parameters A f = 0.91689, As = 0.99306,
B f = 0.02878, Bs = 0.008143, and fit trajectory errors
across all tasks with an R2

ad j = 0.94. Across all tasks,
a significant portion of the variability in excess error reduction
was described by EMG measures of co-contraction. The linear
model fit between average antagonist muscle activation and
excess error reduction had an R2

ad j = 0.393, p < 0.001 across
both tasks, an R2

ad j = 0.567, p < 0.001 in the dynamic adapta-
tion task, and an R2

ad j = 0.248 p < 0.001 in the random force
task. Comparison between excess error reduction and average
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Fig. 5. Relationship between EMG measures of co-contraction and
excess error reduction measured at the group level. Top: Model pre-
dicted trajectory errors compared to rescaled group level trajectory
error data. Measured errors (black) are in excess of model predictions
(red). Middle: Overlay of average EMG antagonist muscle activation
(red, mean and s.e.m.) and squared residual errors (black) across all
tasks. Both data sets are smoothed with a 4 bin moving average and
normalized by their relative maxima for visualization purposes. Bottom:
Average antagonist muscle EMG activation fit to squared residual tra-
jectory errors, fit across all motor tasks (red) and separately within the
dynamic adaptation (DA) and random force (RD) tasks (blue dashed
lines).

Fig. 6. Linear regression between residual trajectory errors (excess
error) from subject-specific model estimations to change in EMG activa-
tion in pure antagonist muscles (left) and global muscle activation (right).
Change in EMG activation was measured with respect to baseline levels
of activation measured in the zero force condition. Positive residual
errors are associated with greater error reduction compared to model
predicted values (residual error = modeled error - normalized error).
On the left, ECU muscle activations are shown in magenta (R = 0.509),
FCR in cyan (R = 0.564) and the average across muscles is shown in
black (R = 0.617). On the right, global activation is shown in blue (R =

0.59). For both figures, the linear regression line is shown in black.

global activation, as well as independent antagonist muscle
activations (ECU and FCR) yielded similarly significant (all
p < 0.001) associations across all tasks.

Next, we investigated the association between EMG activa-
tion measured in the dynamic adaptation task to excess error
reduction quantified at the end of the constant perturbation
phase of the dynamic adaptation task (block 7), in which we
previously observed excessive error reductions not explained
by our models of adaptation (Fig. 6). The two state model fit
to subject-specific data had an average fit of R2

= 0.536 ±

0.023, range [0.391, 0.723] to adaptation index data, and an
R2

= 0.625 ± 0.091, range [0.299, 0.810] to trajectory errors.

Excess error reduction was significantly correlated with
change in EMG activation compared to baseline within each
antagonist muscle (FCR: r = 0.544, p = 0.0294; ECU: r =

0.509, p = 0.022), across both muscles (r = 0.57, p =

0.0088), and to global EMG activation (R = 0.53, p = 0.0174).
All analyses returned a positive association between larger
EMG activation and greater error reduction compared with
that predicted by models of adaptation.

To test the specificity of these results, we additionally inves-
tigated the association between measured trajectory errors and
modeled adaptation in this phase to subject-specific measures
of co-contraction. This analysis returned no significant associ-
ations within either muscle nor across muscles for trajectory
errors (pECU = 0.70, pFC R = 0.59, pGlobal = 0.15), change
in trajectory error (pECU = 0.9265, pFC R = 0.083, pGlobal =

0.75) nor magnitude of adaptation (pECU = 0.40, pFC R =

0.49, pGlobal = 0.77).
Taken together, these analyses establish that muscle acti-

vation associated with co-contraction explains a significant
portion of the variance in measured trajectory errors that is not
explained by measures of adaptation. In both analyses, greater
levels of co-contraction, approximated by EMG activation in
antagonist muscle groups, were significantly associated with
error reductions in excess of those predicted by models of
adaptation learning.

IV. DISCUSSION

We performed this study with two aims: to validate
behavior measured with the MR-SoftWrist, and to investigate
the concurrent use of co-contraction during dynamic
adaptation of the wrist. To address these aims, we used
a two-session counterbalanced crossover experimental
design. For both sessions, participants performed the same
task schedule, consisting of a zero force task, a dynamic
adaptation task, and a random force task. Participants used
either the MR-SoftWrist or the UDiffWrist for task execution
in session one, and the other robotic device for session two,
conducted 3-4 weeks apart. For all tasks, muscle activation
of the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU),
extensor carpi radialis (ECR), extensor carpi ulnaris (ECU)
was collected using surface EMG.

To validate measurements of behavior collected via the
MR-SoftWrist, we compared outcomes measured with the
MR-SoftWrist to those measured with the UDiffWrist, a func-
tionally equivalent non MRI-compatible wrist robot. Mixed
model analyses showed no significant main effect of Device on
behavior (adaptation index, trajectory errors, velocity) in either
the dynamic adaptation or the random force task. Moreover,
comparison of the two-state model fit to subject-level adap-
tation index data showed no significant difference in model
estimation between devices. Together, these results validate
that adaptive behavior measured with the MR-SoftWrist is not
unduly influenced by the compliance of the device.

In our previous studies, we observed a lower end-magnitude
of adaptation (study 1: mean ± s.e.m.: 0.355 ± 0.0257, after
144 trials; study 2: 0.43 ± 0.05, 180 trials) than is commonly
observed in reaching tasks (0.5-0.7) [8], [9], [16]. However,
participants in this study achieved a greater end magnitude
of adaptation (0.59 ± 0.05). Increased adaptation index may
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be due to modifications in experimental design, including
a new handle design, slightly stiffer error clamp trials and
slightly lower forces. As force modifications were minor,
we believe these changes are likely due to the change in handle
design. Our previous design required subjects to grasp the
handle with a closed fist, necessitating activation of extrinsic
muscles in the forearm that may increase co-contraction and
greater use of impedance control. However, experiments con-
trolling for other factors are needed to confirm our speculation.

Finally, we aimed to determine the contribution of
co-contraction to error reduction not attributable to adaptation
via measures of EMG activation. To validate our measures
of co-contraction, we performed a mixed-model analyses to
compare EMG activation measured in the dynamic adaptation
task to the random force task. For all EMG definitions,
analysis showed initial increases in activation in both tasks that
remained elevated in the random force task, but significantly
decreased to near baseline levels with increased adaptation,
consistent with established patterns of concurrent impedance
control during dynamic adaptation. These results were not
attributable to variability in task velocity and validated
that our EMG measures captured concurrent co-contraction
processes.

Next, to establish the relationship between these measures
and excess error reduction, we performed a linear regres-
sion analysis between group average behavior and average
antagonist muscle activation. EMG measures of co-contraction
explained a significant portion of variance in excess error
reduction measured across the whole task (39%), and within
the dynamic adaptation task (58% ) and the random force task
(24%). While the association was excellent within the dynamic
adaptation task, there was a weaker association observed
in the random force task. We believe this may be due to
poor model estimation of adaptation behavior in the random
force task, producing lower-quality residual error estimation
compared with the dynamic adaptation task, or increases in
exploratory behavior in response to the unpredictable perturba-
tion schedule in the random force task that introduced behav-
ioral variability that is not well explained by either impedance
control nor adaptation. Within the dynamic adaptation task,
correlational analysis of subject-level behavior that showed
that greater EMG activation (i.e. greater co-contraction) was
associated with greater excess error reduction measured at
steady state. Importantly, this association was observed across
all EMG metrics (ECU, FCR, global) to be specific to excess
error reduction, with no significant association to alternate
behavioral measures of trajectory error nor adaptation.

These results indicate that for constant dynamic perturba-
tions of the wrist, reductions in trajectory errors in excess
of those explained by adaptation are largely attributable to
concurrent impedance control, and advance our ability to
investigate the brain regions responsible for each neuromotor
control process using our device during fMRI. Future work
should investigate the use of more complicated models of
adaptation and impedance control to improve the quantification
of these control strategies in high variability environments.
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