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Abstract— The brain-computer interfaces (BCIs) based
on steady-state visual evoked potential (SSVEP) have been
extensively explored due to their advantages in terms of
high communication speed and smaller calibration time.
The visual stimuli in the low- and medium-frequency ranges
are adopted in most of the existing studies for eliciting
SSVEPs. However, there is a need to further improve the
comfort of these systems. The high-frequency visual stim-
uli have been used to build BCI systems and are generally
considered to significantly improve the visual comfort, but
their performance is relatively low. The distinguishability of
16-class SSVEPs encoded by the three frequency ranges,
i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with
an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz,
is explored in this study. We compare classification accu-
racy and information transfer rate (ITR) of the correspond-
ing BCI system. According to the optimized frequency
range, this study builds an online 16-target high frequency
SSVEP-BCI and verifies the feasibility of the proposed
system based on 21 healthy subjects. The BCI based on
visual stimuli with the narrowest frequency range, i.e.,
31-34.5 Hz, have the highest ITR. Therefore, the narrowest
frequency range is adopted to build an online BCI system.
An averaged ITR obtained from the online experiment is
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153.79 ± 6.39 bits/min. These findings contribute to the
development of more efficient and comfortable SSVEP-
based BCIs.

Index Terms— BCI, electroencephalography, high-
frequency visual stimulation, SSVEP.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) directly connects the
brain with external devices [1], [2]. BCI is a promis-

ing technology for the development of systems that assist,
repair, or enhance the human sensorimotor or cognitive func-
tions [3], [4]. The applications of BCI have expanded from
the medical field to various non-medical fields, such as games
and entertainment [5], fatigue monitoring [6], biometrics [7].
Currently, various methods are presented, such as electroen-
cephalography (EEG), magnetoencephalography (MEG), func-
tional magnetic resonance imaging (fMRI), and near infrared
spectroscopy (NIRS), to monitor the brain activity and build
BCIs [8]. Since EEG has the advantages of high time reso-
lution, non-invasiveness, and cost effectiveness, it is widely
adopted for building non-invasive BCIs [9], [10], [11], [12].
Currently, EEG has been used for developing multiple BCI
paradigms [9], [13], [14], such as steady-state visual evoked
potential (SSVEP)-based BCI, P300-based BCI, and sensori-
motor rhythms (SMRs)-based BCI.

Among these existing EEG-based BCIs, SSVEP-BCI has
been extensively investigated due to its high communication
speed and less calibration time [15], [16], [17], [18], [19],
[20], [21]. Currently, SSVEP-BCI has been applied in multiple
fields, including robot control [12], [18], [22], [23], cognitive
evaluation [24], [25], and text speller [15], [17], [20], etc.
SSVEPs are periodic brain responses elicited by repeated
visual stimuli, manifested by increased brain activities at
stimulus frequencies and their harmonics [26]. Furthermore,
SSVEPs are phase-locked to the visual stimulation. As a
result, phase coding and frequency coding are the two most
commonly used methods for realizing multi-target SSVEP-
BCI. In SSVEP-based BCIs, multiple visual flashing stimuli
with different frequencies or phases are presented simul-
taneously on a screen. The users can select the desired
option by focusing on the target stimulus. By analyzing
the elicited SSVEPs, it is possible to infer the gaze target.
Recently, various encoding approaches inspired by multiple
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access (MA) technologies adopted in telecommunication have
succeeded in increasing the number of targets [14]. The
number of targets in SSVEP-BCIs has increased to more
than 100 [20], [27]. At the same time, advanced EEG signal
processing and machine learning approaches have been used to
improve the performance of SSVEP detection. More recently,
the ensemble task-related component analysis (TRCA)-based
method and the task-discriminant component analysis (TDCA)
have been used to significantly improve the performance
of SSVEP detection [17], [28]. With the development of
encoding technology, signal processing, and system imple-
mentation, SSVEP-BCIs’ performance has improved signifi-
cantly in recent years. The information transfer rate (ITR) of
SSVEP-BCIs has increased from about 20 bits/min to more
than 300 bits/min [17]. Nakanishi et al. realized a 40-target
SSVEP-BCI speller with 325.33 bits/min, and subjects per-
formed a target-selection task at 800 ms per character with
an average accuracy of 89.83% [17]. Among these high ITR
SSVEP-BCI studies, the stimulation frequencies of these sys-
tems were usually selected from low- and medium-frequency
ranges, i.e., below 30 Hz [15], [16], [17], [20]. Although
low- and medium-frequency visual stimuli can evoke larger
SSVEP amplitude responses leading to better system perfor-
mance [29], they are prone to cause visual discomfort and
fatigue [30]. Therefore, the comfort of these systems should
be further improved. Several studies have attempted to use
high-frequency stimuli design, i.e., above 30 Hz, for improving
visual comfort [30], [31], [32]. Volosyak et al. reported a mean
ITR of 12.10 bits/min and accuracy of 89.16% for a 4-target
SSVEP-BCI system using high-frequency flickers, i.e., 34, 36,
38, and 40 Hz [32]. Chabuda et al. built an 8-target SSVEP-
based BCI using high-frequency stimuli, i.e., 30-39 Hz, and
achieved a mean ITR of 47 bits/min [33]. Ajami et al.
used a threshold-based version of the least absolute shrink-
age and selection operator (LASSO) to classify SSVEPs
induced by five visual stimuli, i.e., 35, 36.2, 37.3, 38.3,
and 39.4 Hz [34]. In a 4-target high-frequency SSVEP-BCI,
an average ITR of 17 bits/min and accuracy of 97.75% were
reported by Chen et al. [18]. Recently, Mao et al. developed
a 6-target SSVEP-based BCI by combining one stimulation
frequency (30 Hz) and six phases and obtained a mean ITR
of 67.2 bits/min in offline analysis [35]. Hsu et al. applied iter-
ative filtering - empirical mode decomposition (IF-EMD) for
detecting three high-frequency (i.e., 47, 50, 53 Hz) SSVEPs,
and achieved an averaged ITR of 54.94 bits/min [36]. In the
past few years BCIs based on high-frequency SSVEPs have
made some progress, but the performance of these systems is
still relatively low (usually less than 70 bits/min).

The previous studies show that stimulus parameters, such
as stimulus color [37], stimulus size [38], and stimulus
background luminance [39] affect the amplitude of SSVEPs
[40], [41], [42]. Goto et al. verified that the amplitude of
SSVEP evoked by black-and-white flicker stimuli was higher
than that evoked by isoluminant color combination stimuli
(red/blue, red/green) [37]. Duszyk et al. reported that larger
dimensions of flickering fields led to a significantly stronger
SSVEP response [38]. Zhang and Chen reported that the
black background luminance induced larger SSVEP amplitude

and greater signal-to-noise ratio (SNR) as compared with
gray background luminance [39]. The high SSVEP amplitude
facilitates SSVEP detection [31]. Furthermore, it has been
reported that a spatial proximity from 4◦ to 13◦ visual angle
leads to a higher SSVEP-BCI performance [43]. Therefore,
the performance of BCI systems can be improved by opti-
mizing the stimulus parameters. However, the existing studies
mostly optimize the stimulus parameters for low- and medium-
frequency SSVEPs. It is still unclear whether optimizing
the stimulation parameters for low- and medium-frequency
SSVEP-BCI is applicable for high-frequency SSVEP-BCI.
In order to improve the high-frequency SSVEP-BCI perfor-
mance, this study adopts three frequency ranges to build
16-target SSVEP-based BCI, including: 1) 31-34.75 Hz with
an interval of 0.25 Hz; 2) 31-38.5 Hz with an interval of
0.5 Hz; 3) 31-46 Hz with an interval of 1 Hz. Two exper-
iments, i.e., experiment 1 and online experiment, are used
to optimize and test the performance of the proposed BCI
system. In experiment 1, we initially estimate the optimized
frequency range with 16-target SSVEP data recorded from 24
subjects. The performance of the 16-target SSVEP-based BCIs
with different frequency ranges is evaluated based on ITR and
accuracy. Based on the optimized frequency range, this study
builds an online 16-target high-frequency SSVEP-BCI. The
online BCI experiment is designed to verify the feasibility of
the proposed system based on 21 subjects.

II. METHODS

A. Subjects
Twenty-nine healthy subjects (fourteen males), aged 21-30

years with normal or corrected-to-normal vision participate in
this study. Twenty-four subjects and twenty-one subjects par-
ticipated in experiment 1 and online BCI experiment, respec-
tively. Sixteen subjects participated in the two experiments
simultaneously. The interval between experiment 1 and online
BCI experiment is about 1.5 months. Since eight subjects
had graduated, we were unable to recruit them for the online
BCI experiment and only five subjects took part in the online
BCI experiment. All the subjects submitted written informed
consent before participating in the experiment. This study
is approved by the Institutional Review Board of Tsinghua
University (No. 20210032).

B. EEG Data Acquisition
A Neuroscan SynAmps2 amplifier is adopted to record EEG

signals. The sample rate of the amplifier is set to 1000 Hz.
The reference electrode is located between Cz and CPz, and
the ground electrode is located between Fz and FPz. The
EEG data is recorded using nine parietal-occipital electrodes,
i.e., Oz, O1, O2, POz, PO5, PO3, PO4, PO6, and Pz, since
these electrodes are usually able to obtain SSVEP with high
SNR [20], [44]. Fig. 1 shows the locations of these nine
electrodes. The electrode impedances are less than 10 k�.
In order to remove the power-line interference, a 50 Hz notch
filter is enabled during EEG data collection.

C. System Design
In this study, the sampled sinusoidal stimulation

method [21] is used to present visual stimuli encoded by the
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Fig. 1. The locations of the recorded electrodes.

joint frequency-phase modulation (JFPM) approach [15] on a
computer monitor (SAMSUNG C49HG90DMC, resolution:
3840 × 1080 pixels, refresh rate: 120 Hz). When visual
stimuli are presented using the sampled sinusoidal stimulation
method, the stimulus sequence s( f, ∅, i) with frequency f
and phase ∅ can be obtained by adjusting the luminance of
the screen by the following equation:

s( f, ∅, i) =
1
2

{
1 + sin

[
i/R

]
+ ∅

}
(1)

where, i represents the frame index in the stimulus sequence,
R indicates the refresh rate of the screen, and sin() generates
a sine wave. The dynamic range of the stimulus sequence
is from 0 to 1, where 1 indicates the highest luminance
and 0 represents darkness. Fig. 2A shows the user interface
of the proposed BCI system. Sixteen targets are aligned in
a 4 × 4 matrix. Each target is presented in a rectangle of
173 × 129 pixels. The interval between adjacent targets is 100
pixels. In JFPM approach, two adjacent targets are coded with
different frequencies and different phases at the same time.
Figs. 2B-2D show the frequency and phase values for each
target under each condition. Psychophysics Toolbox 3 [45]
in MATLAB environment is used to implement the visual
stimulus presentation.

D. Experimental Design
The aim of experiment 1 is to investigate the effect of

different frequency ranges on the performance of SSVEP-
based BCIs. In this study, we adopt three frequency ranges to
build 16-target SSVEP-based BCIs. For the first experimental
condition, as shown in Fig. 1B, the stimulation frequencies
range from 31 Hz to 34.75 Hz with an interval of 0.25 Hz. For
the second experimental condition, the stimulation frequencies
range from 31 Hz to 38.5 Hz with an interval of 0.5 Hz (see
Fig. 2C). In the third experimental condition, the frequency
range is chosen from 31 Hz to 46 Hz with an interval of 1 Hz
(see Fig. 1D). The initial phase and the phase interval of the
three experimental conditions are the same, and are set to
0 and 0.35π , respectively [15]. In experiment 1, we record
three blocks for each experimental condition. The order of

the blocks is balanced. Each block contains 64 trials and
each target obtains 4 trials in one block. Therefore, for each
experimental condition, 12 trials are obtained per target. Each
trial lasts 4 s and begins with the presentation of a visual
cue, i.e., a red square, which presents 1 s. Subsequently, all
stimuli flicker for 2 s. The subjects are told to gaze at the cued
target. After stimulus offset, the user interface is presented for
1 s after stimulus offset. The order of the three experimental
conditions in experiment 1 was balanced.

The online experiment is based on the frequency range
selected from experiment 1. The frequency range that resulted
in the highest ITR is adopted in the online experiment.
An online experiment is conducted on 21 subjects for assessing
the performance of the proposed BCI. The user interface and
encoding parameters of the proposed BCI system are shown
in Fig. 2A and Fig. 2B, respectively. In the online experiment,
one training session and one testing session are performed
for each subject. The training session includes 12 blocks,
each containing 16 trials. The training session is mainly
performed to obtain the training data for each individual
without providing any feedback. The test session includes
6 blocks, each comprising 16 trials. Regardless of the training
or testing sessions, each target obtains 1 trial in one block, and
each trial lasts for 1.1 s, i.e., 0.6 s for stimulus presentation
and 0.5 s for attention switching. The visual cue of a red
square for the next target would be presented immediately after
the visual stimulation is completed, and real-time auditory
feedback is provided to the subjects, i.e., an online data anal-
ysis program made a short beep after correctly identifying a
target.

E. Amplitude Spectrum and SNR of SSVEPs
Based on the 2-s offline data epochs, we calculate the

amplitude spectrum and SNR of SSVEPs. The fast Fourier
transform (FFT) is adopted to compute the amplitude spec-
trum. The length of data epochs for FFT is 2 s, thus the
frequency resolution is 0.5 Hz. The zero-padding is used to
increase the FFT resolution for the first experimental condition
of experiment 1, i.e., the length of the data in the time domain
is extended by padding with zeros at the tail of the time
signal. Then, the length of data is extended to 4 s for the
first experimental condition of experiment 1.

The SNR is calculated as the ratio of SSVEP amplitude
spectrum to the average amplitude spectrum of the 8 adjacent
frequencies:

SN R = 20log10
y ( f )∑4

k=1
[
y ( f − 0.5 × k) + y ( f + 0.5 × k)

]
(2)

where, y ( f ) is SSVEP amplitude spectrum of stimulation
frequency f .

F. SSVEP Detection Method
The epochs are obtained in [0.14 s 0.14 + d s] from the

raw EEG data according to stimulus events generated by the
stimulus program, where d represents the data length for EEG
analysis. Subsequently, we downsample all the EEG epochs
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Fig. 2. A visual stimulus design of the 16-target SSVEP-based BCIs. (A) The user interface of the proposed BCI system. (B) Frequency and
phase values of each target for the first experimental condition in experiment 1. (C) Frequency and phase values of each target for the second
experimental condition in experiment 1. (D) Frequency and phase values of each target for the third experimental condition in experiment 1.

to 250 Hz as the ensemble TRCA-based method [17] has
shown a dramatic improvement in the performance of SSVEP-
based BCI. This method is utilized to detect SSVEPs in
this study. In ensemble TRCA, individual calibration data for
the n-th visual stimulus is represented as xn ∈ RNc×Ns×Nt ,
n = 1, 2, · · · , N f . Here, Nc is the number of channels, Ns is
the number of sampling points in each trial, Nt is the number
of training trials, and N f is the number of targets. In this
study, N f and Nc are set to 16 and 9, respectively. For the
training stage, the filter bank analysis is first applied to the
individual calibration data for decomposing the EEG data into
Nk sub-bands (k = 1, 2, · · · , Nk). In this study, Nk is set
to 2. The frequency range of the k-th sub-band is from k
× 30 Hz to 90 Hz. Now, the i-th trial of the k-th sub-band
component is represented as xk

n,i . The TRCA seeks to find a
linear coefficient vector wk

n ∈ RNc to maximize the following
equation.

V k
n =

Nt∑
i, j

i ̸= j

Cov

((
wk

n

)T
xk

n,i ,
(
wk

n

)T
xk

n, j

)

=

(
wk

n

)T


Nt∑
i, j

i ̸= j

Cov
(

xk
n,i , xk

n, j

)wk
n

=

(
wk

n

)T
Sk

nwk
n (3)

In order to avoid the arbitrarily scaling weights, we consider
the following constraint:

Ck
n =

Nt∑
i

V ar
((

wk
n

)T
xk

n,i

)

=

(
wk

n

)T
( Nt∑

i

Cov
(

xk
n,i

))
wk

n

=

(
wk

n

)T
Qk

nwk
n = 1 (4)

The constrained optimization problem is mathematically
expressed as follows:

wk
n = argmax

w

wT Sk
nw

wT Qk
nw

(5)

The optimized coefficient vector is obtained by using the
eigenvector of the matrix Q−1S. An ensemble spatial filter
wk

∈ RNc×N f is expressed as follows:

wk
=

[
wk

1, w
k
2, · · · , wk

N f

]
(6)

The individual training template x̄k
n ∈ RNc×Ns is expressed

as:

x̄k
n =

1
Nt

Nt∑
i

xk
n,i (7)

For the testing stage, the filter bank analysis is also applied
to single-trial testing data x̂ ∈ RNc×Ns to decompose the
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Fig. 3. The average amplitude spectrum (A) and SNR (B) of 33 Hz
SSVEP from Oz electrode corresponding to the first experimental con-
dition of experiment 1. The red circles represent the fundamental and
harmonic components of 33 Hz SSVEP.

EEG data into Nk sub-bands. The k-th sub-band component
of testing data is represented as x̂k

∈ RNc×Ns . The correlation
coefficient between an individual training template and a
single-trial testing data is calculated as follows:

γ k
n = ρ

((
wk
)T

x̄k
n ,
(
wk
)T

x̂k
)

(8)

where, ρ (x, y) is the Pearson’s correlation analysis between
x and y. Finally, the target stimulus can be recognized by the
following equation:

τ = argmax
n

Nk∑
k=1

(
k−a

+ b
)
· γ k

n (9)

where, a and b are determined by a grid search approach in
this study. Based on our previous study [16], the range of a is
from 0 to 2 with an interval of 0.25 and b ranges from 0 to 1
with an interval of 0.25. These parameters corresponding to
the highest ITR are used to build the online system.

G. Simulation of Different Stimulation Phase Value
Based on the stimulation frequency and phase, the data

segments with different phase values is obtained by performing
different time shifts on the 2 s offline data epochs. For each
stimulation frequency, SSVEPs with a zero initial phase is
calculated as:

X̄( fk, 0, n) = X( fk, ∅k, n +
(2π − ∅k) × fs

2π × fk
) (10)

where, n is the index of data sample and fs is the sampling
rate. fk and ∅k represent the stimulation frequency and phase,
respectively. The data segments with different phase values are
obtained by performing different time shifts in the zero initial
phase epochs:

X̂( fk, ∅̄k, n) = X̄( fk, 0, n +
∅̄k × fs

2π × fk
) (11)

where, ∅̄k is the desired phase. Therefore, this method is used
to simulate the epochs with different phase interval values in
this study.

H. Subjective Assessment of Visual Comfort
During experiment 1, the comfort level of the three exper-

imental conditions, i.e., 31-34.75 Hz with an interval of
0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz
with an interval of 1 Hz, are provided by each subject.
The subjective assessment questionnaire is adopted from a
previous study [46]. The subjects are required to grade each
experimental condition with a 6-point scale ranging from 1
(totally unacceptable) to 6 (have a good experience).

I. Performance Evaluation
ITR is the most adopted metric to evaluate the performance

of BCI [47]. Therefore, ITR is utilized to estimate the perfor-
mance of BCI in this study. The ITR is calculated using the
following equation:

I T R =

(
log2 M + P log2 P + (1 − P) log2

[
1 − P
M − 1

])
/T

(12)

where, M is the number of targets, i.e., 16 in this study,
P is the accuracy of target detection, and T is the average
time for a selection, including stimulus presentation time
and attention switching time. An attention switching time of
0.5 s is utilized to calculate ITR in the experiment 1 and
the online experiment. For experiment 1, the performance of
BCI is estimated by a leave-one-out cross-validation. A leave-
one-out cross-validation procedure is adopted to calculate the
ITR and the classification accuracy, i.e., 1 trial is served
as the validation and the remaining 11 trials are used as
the training data. For the online experiment, the ITR and
classification accuracy are calculated based on the results
obtained by the online data analysis program during the testing
stage.

J. Statistical Analysis
This study adopts the SPSS software to perform the sta-

tistical analysis. A repeated measures analysis of variance
(ANOVA) is used for multiple comparisons in the offline
analysis. The Greenhouse-Geisser correction is performed
when the data did not conform to the sphericity assumption by
Mauchly’s test of sphericity. The paired t-test with Bonferroni
correction is used to perform the post hoc comparisons. The
alpha level is set at 0.05.
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Fig. 4. The average amplitude spectrum (left) and SNR (right) from the
Oz electrode under different stimulation frequencies and response fre-
quencies. (A) and (D) correspond to the first condition of experiment 1.
(B) and (E) correspond to the second condition of experiment 1. (C) and
(F) correspond to the third condition of experiment 1. The depression
at 50 Hz was due to the 50 Hz notch filtering during data acquisition.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Amplitude Spectrum and SNR of SSVEPs
Fig. 3 illustrates the average SNR and amplitude spectrum

of SSVEPs at 33 Hz derived from the Oz electrode under the
first experimental condition of experiment 1. As illustrated
in Fig. 2, both SNR and amplitude spectrum exhibit obvious
peaks at 33 Hz and 66 Hz. Fig. 4 shows the mean SNRs and
amplitude spectra under different stimulation frequencies and
response frequencies. The fundamental frequency and second
harmonic can be observed in both amplitude spectra and SNRs.
It is noteworthy that, as the stimulation frequency increases,
the amplitude spectrum and SNR of the second harmonic
decreases. Two main frequency components, including the
fundamental and second harmonic, are considered in the
subsequent analysis. In addition, it is also found that when
the stimulation frequency is higher than 41 Hz, in addition to
the fundamental SSVEPs, frequency components of 120 minus
2 times the stimulation frequencies are also evoked for the
third experimental condition of experiment 1 (see Fig. 4C and
Fig. 4F). A possible reason for this phenomenon is that the
screen refresh rate is relatively low to generate stable and
reliable stimulation signals for these stimulation frequencies
(i.e., above 41 Hz). In order to reduce these interfering
components, it is best to increase the screen refresh rate, such
as increasing to 240 Hz.

B. Target Identification Performance
As described in Section II, the optimal parameters, i.e., a, b,

phase interval value, and data length, are determined by using
a grid-search method. These parameters are simultaneously
optimized to obtain the highest ITR. For the first and third

Fig. 5. The ITR corresponding to different a and b under the three
conditions with the optimal data length and phase interval for each
condition. (A) The first experimental condition of the experiment 1.
(B) The second experimental condition of the experiment 1. (C) The third
experimental condition of the experiment 1. The black circles indicate
the highest ITR corresponding to the combination of a and b.

experimental conditions of the experiment 1, the highest ITR is
achieved by a data length of 0.3 s. For the second experimental
condition of experiment 1, the peak ITR is obtained by a
data length of 0.2 s. The optimal a, b, and phase interval
values for the three conditions are slightly different. For first,
second, and third conditions, they are (0.75, 0.75, 1.95π),
(1.75, 0.25, 1.95π), and (1.5, 0, 0.4π), respectively. Fig. 5
illustrates the ITR corresponding to different a and b for the
three conditions with the optimal data length (first condition:
0.3 s, second condition: 0.2 s, third condition: 0.3 s) and
phase interval (first condition: 1.95π , second condition: 1.95π ,
third condition: 0.4π) of each condition. Fig. 6 describes the
average ITR and classification accuracy as a function of phase
interval and data length. The phase interval ranges from 0 to
1.95π with a step of 0.05π . As described in Fig. 6, the first
and third conditions obtain the highest ITR (first condition:
196.40 bits/min, third condition: 162.44 bits/min) for a data
length of 0.3 s. The second condition achieves the peak ITR
(i.e., 193.31 bits/min) for a data length of 0.2 s. The optimal
phase interval values are also not the same (first condition:
1.95π , second condition: 1.95π , third condition: 0.4π). More-
over, the present study explores the relationship between data
length and BCI performance based on the optimal a, b, and
phase interval value for each condition, i.e., first condition:
(0.75, 0.75, 1.95π), second condition: (1.75, 0.25, 1.95π),
third condition: (1.5, 0, 0.4π). Fig. 7 illustrates the ITR and
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Fig. 6. The average accuracy (left) and ITR (right) under different phase
intervals and data lengths. (A) and (D) correspond to the first condition of
experiment 1. (B) and (E) correspond to the second condition of exper-
iment 1. (C) and (F) correspond to the third condition of experiment 1.
The black circles indicate the location with highest ITR.

classification accuracy of the three experimental conditions
under different data lengths. For each experimental condition,
the classification accuracy increases with data length until a
stable state is achieved (see Fig. 7). When the data length
is longer than 3 s, the accuracy for the first experimental
condition is superior to that of the other experimental con-
ditions. For each experimental condition, there is an inverted
U-shaped relationship between ITR and data length. The first
and third experimental conditions obtain the highest ITRs (first
condition: 196.40 ± 14.59 bits/min, third condition: 162.44 ±

16.32 bits/min) for a data length of 0.3 s. While the second
experimental condition obtains the highest ITR (i.e., 193.31 ±

18.81 bits/min) for a data length of 0.2 s. When the data
length is longer than 0.3 s, the ITR of the first experimental
condition also outperforms that of the other two experimental
conditions. For each data length, one-way repeated measures
ANOVA reveals a considerable difference between the three
conditions on the accuracy or ITR (all p < 0.05).

Moreover, the subjective visual comfort scores are compa-
rable across the three experimental conditions (first condition:

Fig. 7. The classification accuracy (A) and ITR (B) of three experimental
conditions in experiment 1 at different data lengths. The error bars
are defined as standard errors, and the asterisks represent an obvious
difference between the three experimental conditions obtained through
one-way repeated measures ANOVA (∗p < 0.05,∗∗ p < 0.01,∗∗∗ p <
0.001).

Fig. 8. The averaged comfort scores of the subjects under different
experimental conditions of experiment 1. The error bars are defined as
standard errors, and the blue circles represent the comfort scores of
subjects.

4.83 ± 0.23, second condition: 5.42 ± 0.16, third condi-
tion: 5.13 ± 0.21) (see Fig. 8). One-way repeated measures
ANOVA reveals that there is no obvious difference between
the three conditions on the subjective visual comfort score
(p > 0.05).

Since the first experimental condition exhibits good BCI
performance, the first experimental condition is adopted to
build an online BCI system. The abovementioned optimal a,
b, and phase interval values, i.e., 0.75, 0.75, and 1.95π , are
directly used in the online BCI system. As shown in Fig. 6,
the highest ITR of the first condition is obtained when the
data length is 0.3 s. However, the corresponding classification
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Fig. 9. Mean classification accuracy for each stimulation frequency
when the data length is 0.6 s. The dashed line represents the chance
level in target identification.

accuracy is only 79.88 ± 3.66 %. A previous study shows
that the reliable communication may be difficult when the
classification accuracy is less than 80% [48]. When the data
length is 0.6 s, an average accuracy rate of 86.41 ± 3.60 %
is obtained. Therefore, a visual stimulation time of 0.6 s is
adopted to build the online BCI system. Fig. 9 shows classifi-
cation accuracy for each stimulation frequency when the data
length is 0.6 s. The optimal a, b, and phase interval values for
the three conditions are determined according to the results
of Fig. 5 and Fig. 6. As shown in Fig. 9, the classification
accuracy of each stimulation frequency is significantly higher
than the chance level (i.e., 6.25%). For all three experimental
conditions, classification accuracy decreased with increasing
stimulation frequency. SSVEPs induced by higher frequencies
have lower discrimination ability. One-way repeated measures
ANOVA reveals significant difference between stimulation
frequencies (all p < 0.05 for all the three experimental
conditions). These results are consistent with the finding that
SSVEPs elicited by higher frequencies have relatively lower
amplitudes and SNRs (see Fig. 4). Compared with the sec-
ond and third experimental conditions, the first experimental
condition has a higher classification accuracy.

Based on the abovementioned optimal a, b, and phase
interval values for the first experimental condition, we further
investigated the impact of number of training data on BCI
performance. The accuracy was calculated with the above-
mentioned optimal parameters using 0.6-s long SSVEP data.
Fig. 10 shows the mean classification accuracy for different
numbers of training trials. As shown in Fig. 10, the accuracy
increased with increasing the number of training data. And the
highest accuracy is obtained when the number of training trials
is 11. One-way repeated measures ANOVA reveals significant
main effect of the number of training trials (p < 0.05).

C. Online BCI Performance
According to the highest ITR obtained in the offline anal-

ysis, the online BCI system adopts a frequency interval of

Fig. 10. Mean classification accuracy with different numbers of training
trials at a 0.6-s long epoch for the first experimental condition of
experiment 1. The error bars indicate standard errors.

0.25 Hz. Furthermore, a 0.6-s stimulation duration and a 0.5-s
attention switching time are used in the online BCI system.
Therefore, the time to output one command is 1.1 s. Mean-
while, a, b, and phase interval values are set to 0.75, 0.75, and
1.95π , respectively. Table I lists the online BCI performance.
As listed in Table I, the average accuracy and ITR are 84.62 ±

1.83 % and 153.79 ± 6.39 bits/min, respectively. The online
BCI performance is comparable with the offline results (online:
84.62 ± 1.83 %, offline: 86.41 ± 3.60 %). The minimum ITR
and maximum ITR are 97.06 bits/min and 211.41 bits/min,
respectively. These experimental results exhibit the feasibility
of the proposed 16-target high-frequency SSVEP-based BCI.

IV. DISCUSSION

This work aims to develop a high-ITR BCI based on
high-frequency SSVEP. Based on the optimized results of
stimulation frequency range, the narrowest frequency range
is selected for building an online BCI system. The online BCI
system achieved a mean ITR of 153.79 bits/min and an average
accuracy of 84.62%.

Currently, the majority of the existing SSVEP-BCIs adopt
low- and medium-frequency stimuli. Furthermore, the highest
performance of SSVEP-based BCIs is realized by means
of these frequencies. Although low- and medium-frequency
stimuli induce obvious SSVEPs and then improve SSVEP
detection, the comfort of these BCI systems should be
enhanced. In contrast to low- and medium-frequency stimuli,
the high-frequency stimulation is considered less annoying.
Please note that high-frequency SSVEP is more suitable for
building a comfortable system [30], [48], [49]. According
to the comfort questionnaire results (see Fig. 8), all the
three experimental conditions obtain high comfort scores.
These results suggest that the high frequency stimuli used in
this study are acceptable and are helpful for building user-
friendly BCIs. Admittedly, there are still few high-frequency
SSVEP-BCI related studies due to the weak response of
high-frequency SSVEPs. As compared with low- or medium-
frequency SSVEP-BCIs, the performance of high-frequency
SSVEP-based BCIs is still low (usually less than 70 bits/min).
The BCI performance of the online experiment is listed in
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TABLE I
BCI PERFORMANCE OF THE ONLINE EXPERIMENT

Table I. The results show that the subject can manipulate the
proposed BCI system with an ITR of 153.79 bits/min and an
average accuracy of 84.62%. According to Renton et al. [50],
accuracy higher than 80% is considered acceptable to achieve
effective communication. Therefore, according to the above
results, it is suggested that the proposed BCI system is consid-
ered suitable for BCI applications related to communication.
In this study, the proposed BCI system obtains an average ITR
of 153.79 bits/min, which is the highest online ITR reported
so far for high-frequency SSVEP-BCIs. As compared with the
previous studies, the performance improvement in this study is
due to stimulus coding optimization and the use of an efficient
target recognition algorithm. This study innovatively esti-
mates the optimized frequency range with 16-target SSVEP-
BCI data. Based on the optimized frequency range, this
study builds an online 16-target high-frequency SSVEP-BCI.
On the other hand, although the ensemble TRCA-based
method has been used in several low- and medium-frequency
SSVEP-BCIs, only few TRCA related works are conducted
on high-frequency SSVEPs so far. The high performance
of the proposed study reveals that the ensemble TRCA-
based method is also suitable for classifying high-frequency
SSVEPs.

Additionally, this study utilizes three frequency ranges
with three frequency intervals to build high-frequency
SSVEP-BCIs. The first range is from 31 Hz to 34.75 Hz
with an interval of 0.25 Hz; the second range is from 31 Hz
to 38.5 Hz with an interval of 0.5 Hz. The final range is
from 31 Hz to 46 Hz with an interval of 1 Hz. Based on the
offline analysis, we seek to find the optimized frequency range
for designing high-ITR BCI system. The results show that
the lowest frequency range obtains the highest performance
(see Fig. 7). This is in agreement with the results presented
by Abdelnabi et al. [51]. Although the frequency range and
frequency interval of this work are different from the work

presented by Abdelnabi et al. [51], both studies verify that
a relatively narrower frequency range is preferable. Since the
starting stimulus frequency for the three frequency ranges is
identical in this study, a relatively narrower frequency range
is preferred for building high-speed BCIs. A possible reason
for this phenomenon is that the relatively lower stimulation
frequencies elicit stronger SSVEPs (see Fig. 4). Additionally,
by applying dual frequency modulation to encode more tar-
gets [52], the performance of the proposed system can be
further improved.

V. CONCLUSION

This work aims to develop a high-ITR BCI system based on
high-frequency SSVEP. The joint frequency-phase modulation
approach and the ensemble TRCA-based algorithm are used
to realize the 16-target high-frequency SSVEP-based BCI.
By comparing three stimulation frequency ranges, the smallest
frequency interval is selected for implementing the online
BCI system. According to the online experimental result,
an average ITR of 153.79 bits/min is achieved by the proposed
high-frequency BCI system, and the maximum ITR of a single
subject is 211.41 bits/min. Furthermore, these results also
verify the feasibility of the ensemble TRCA-based method to
build a high-frequency SSVEP-BCI. Therefore, these results
provide a basis for achieving optimal system performance of
high-frequency SSVEP-BCI.
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