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Brain Network Reorganization During Visual
Search Task Revealed by a Network Analysis of

Fixation-Related Potential
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Jie Xu, and Yu Sun , Senior Member, IEEE

Abstract— Visual search is ubiquitous in daily life
and has attracted substantial research interest over
the past decades. Although accumulating evidence has
suggested complex neurocognitive processes underlying
visual search, the neural communication across the brain
regions remains poorly understood. The present work
aimed to fill this gap by investigating functional net-
works of fixation-related potential (FRP) during the visual
search task. Multi-frequency electroencephalogram (EEG)
networks were constructed from 70 university students
(male/female = 35/35) using FRPs time-locked to target
and non-target fixation onsets, which were determined by
concurrent eye-tracking data. Then graph theoretical analy-
sis (GTA) and a data-driven classification framework were
employed to quantitatively reveal the divergent reorgani-
zation between target and non-target FRPs. We found dis-
tinct network architectures between target and non-target
mainly in the delta and theta bands. More importantly,
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we achieved a classification accuracy of 92.74% for tar-
get and non-target discrimination using both global and
nodal network features. In line with the results of GTA,
we found that the integration corresponding to target and
non-target FRPs significantly differed, while the nodal fea-
tures contributing most to classification performance pri-
marily resided in the occipital and parietal-temporal areas.
Interestingly, we revealed that females exhibited signifi-
cantly higher local efficiency in delta band when focusing
on the search task. In summary, these results provide some
of the first quantitative insights into the underlying brain
interaction patterns during the visual search process.

Index Terms— EEG, eye-track, fixation-related potential
(FRP), functional connectivity, network analysis.

I. INTRODUCTION

HEURISTICALLY, visual perception is the brain’s ability
to interpret the information received by eyes [1]. It plays

an important role in various cognitive functions including
reading, writing, and object identification. As one of the key
attention mechanisms in the field of visual perception, the
top-down pathway combines incoming information with our
prior knowledge or expectations, helping to quickly make
sense of the environment [2]. Although the top-down mod-
ulation on task-related visual perception has already been
demonstrated in multiple neuroimaging modalities (i.e., elec-
troencephalogram (EEG) [3], functional magnetic resonance
imaging (fMRI) [4], and local field potential (LFP) [5]), exist-
ing works investigating the underlying neural mechanisms are
inadequate and the current understanding is still rudimentary.

Among neuroimaging techniques, EEG has been widely
used due to its low-cost, non-invasiveness, portability, and
adaptability to multiple experimental paradigms. To reveal
how our brain works during the process of visual percep-
tion, traditional event-related potential (ERP) experimental
paradigms are typically employed where the participants are
requested to identify predetermined stimulus with their eyes
fixed to minimize the confounding influence of substantial
eye-movements [6]. Nevertheless, it is more often the case in
naturalistic scenarios when we actively explore visual scenes
to find desired objects through saccades instead of waiting for
stimuli appearing on the screen. In this situation, these non-
stimulus-locked visual-related events are hard to be identified
with uni-modal EEG signal due to complex patterns of eye
movements. Actually, eye movements are capable of serving
as natural markers corresponding to visual-related events to
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assist active brain-computer interface (BCI) [7]. Considering
that uni-modal EEG or eye-tracking signals have already been
employed in visual search tasks and have yielded appreciable
results [8], [9], several recent efforts have been made to
incorporate simultaneous EEG and eye-tracking recording to
investigate neural activities under visual perception in the
condition of free viewing. In comparison with conventional
ERP analysis where EEG is time-locked to external stimulus,
EEG can be segmented relative to eye fixations, which is
denoted as fixation-related potential (FRP) and has gained
substantial interest in various study areas [10], [11], [12].

As a subcategory of ERPs, FRP inherits the characteristic of
ERP components and reflects multiple neural activities behind
certain fixation events [7]. For instance, lambda response,
a positive wave that occurs approximately 80 ms after fixation
in occipital areas, is believed to reflect the fundamental visual
information process [13]. Moreover, recent investigations have
shown it’s possible to obtain longer latency FRP components
that provide a thorough insight into cognitive mechanisms.
Through averaging the EEG signal time-locked to fixations
on target object, a relatively late component in FRP associated
with P300 potential was observed [14], [15], which is typically
related to cognitive functions such as attention and object iden-
tification. Considering the ability of P300 in discriminating
target stimulus and distractors [16], it can be inferred that the
fixation-related P300 could provide discriminative information
in terms of FRP classification. For example, Brouwer et al.
achieved satisfactory single-trial FRP classification accuracy
and revealed the reliable discrimination of a P300-liked FRP
component [11]. Similar results were observed in a free
viewing experiment where Kaunitz et al. found the great
contributions of FRP at around 450 ms to the classification
performance [17]. Beyond the fundamental visual information
processing within a short post-fixation epoch, these evidences
suggest the fixation-related P300 component reflects signif-
icant neural activities that could promote FRP classification
performance.

Although previous studies successfully distinguished tar-
get and non-target fixations using the FRP characteristic in
time domain, the relationships among brain regions have
been barely explored, which has already shown its promising
potential for cognition-related state classification [18]. In fact,
our brain is a complex network, within which the infor-
mation is continuously shared between spatially distributed,
but functionally linked brain regions regardless of the brain
states [19], [20]. Most recently, network analysis methods have
attracted convergent interest and made great achievements
in the field of ERP. In recent studies of oddball paradigm,
evoked P300 amplitude was found to significantly correlate
with the efficiency of resting-state brain network [21] as
well as the small-world metrics of functional network in task
conditions [22]. In addition, Li et al. revealed the difference in
functional brain networks under different stimulus sequences,
indicating that the effect of stimulus sequences on P300
network could be quantitatively measured by brain network
properties [23]. However, to the best of our knowledge, only
one existing work to date has considered network analysis
in the field of FRP, which aimed to investigate differences

between memory encoding and retrieval processes using an
EEG epoch length of 200 ms [24]. The authors revealed that
task requirements dynamically control the functional brain
network involved in early visual perception. There is still a
gap between network analysis and target or non-target FRPs
in terms of abundant information in later FRP components.

In our recent work, we have demonstrated that the discrim-
inative FRP features in occipital areas and achieved an appre-
ciable single-trial FRP classification performance [25]. Similar
findings have also been reported with regard to saccade-related
potential (SRP) where target and non-target SRPs could be
distinguished through EEG voltages features [26]. Although
satisfactory classification performance was achieved in terms
of single-trial FRP or SRP target identification, little atten-
tion has been paid in these previous studies to explore the
underlying neural mechanisms related to target and non-target
identification during the visual search tasks. Motivated by the
development of brain network research on ERP, we inves-
tigated the differences of underlying network reorganiza-
tions between target and non-target FRPs in this work [25].
Specifically, concurrent eye-tracker and EEG signals were
recorded during a customized visual search paradigm [27].
To obtain more comprehensive connectivity patterns, EEG was
divided into four frequency bands (i.e., delta, theta, alpha,
and beta), while a strict artifacts removal process through
independent component analysis (ICA) [28] was used to
reduce the noise influence. Subsequently, we constructed brain
networks using weighted phase lag index (wPLI) [29] and
quantitatively assessed the topological network properties. The
network metrics were further fed into a machine learning
framework synthesized by feature selection and classification
processes for FRP identification, while additionally estimating
the features’ discrimination and investigating their associations
with the underlying cognitive processes. Based upon prior
neuroimaging research on ERP [22] and FRP [11], [17], [24],
we hypothesized that the reorganization of networks differs
between target and non-target fixations, which is capable of
distinguishing FRPs via several previously-validated classifi-
cation models. Moreover, on the basis of gender differences
in visual perception [30], we further hypothesized that gender
would make an impact on the visual search task, which would
be shown in both behavioral performance and network metrics.

II. METHODS AND MATERIALS

A. Participants
In this work, seventy healthy university participants

(male/female = 35/35) with a mean age ± standard deviation
of 22.4 ± 2.3 years were recruited from Zhejiang University.
All participants reported normal or corrected-to-normal vision
and were pre-screened through telephone interviews to exclude
those with chronic illness, sleep disorder, childhood history
of ADHD, or long-term medication history. Prior to the
experiment date, they were requested to get sufficient sleep
(>7 hours) for 2 consecutive days. Participants consuming
caffeine or alcohol, or undertaking strenuous exercise for
24 hours preceding the study were rescheduled. The study
protocol was approved by the Institutional Review Board
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Fig. 1. A schematic diagram of the experiment. (a) Experiment setup for EEG and eye-tracking data collection. (b) Sample screenshots of the
searching interface presented on the monitor from two random trials. When the participant gazed upon the AOI (i.e., the red rectangle with a size
of 100 × 100 pixels) of a certain icon, the icon was highlighted and enlarged together with the surrounding eight icons for the convenience of
identification. (c) Task design for each participant. The experiment consists of two parts with 240 trials in total, where the participants were asked
to search for the target icon as quickly and accurately as possible and to memorize its location in search period and confirm the result in response
period.

of Zhejiang University and written informed consent was
obtained from all participants after the explanation of the
experiment.

B. Experimental Design
The details of the experimental paradigm have been

described previously in [25] and [27]. Briefly, as illustrated
in Fig. 1, the participants were asked to sit in front of the
computer screen at a distance of 60 cm (field of view (FOV) =

13.86◦
× 13.86◦) using a chin support. A total of 25 app

icons arranged in 5 × 5 were presented on the screen (1920 ×

1080 pixels) against a gray background ([R, G, B] = [192, 192,
192]), among which the participants were asked to search for
a target icon as quickly and accurately as possible. Initially,
the icons were 24 × 24 pixels in size, corresponding to an
FOV of 0.67◦

× 0.67◦. During the visual search task, when
the gaze was located within a certain icon, the icon and the
surrounding eight icons were simultaneously highlighted and
1.5 times enlarged (36 × 36 pixels, FOV = 1◦

× 1◦, Fig. 1(b)).
At the beginning of the experiments, a predefined icon (60 ×

60 pixels, FOV = 1.67◦
× 1.67◦) was displayed on the screen

for 3-second, indicating the search target in all the following
trials. Generally, a trial included the consecutive phases of
“Fixation”, “Blank”, “Search”, and “Response” (as shown in
Fig. 1(c)). Specifically, each trial started with a fixation cross
lasting for 1 s. After a 0.8-second blank screen, the search
interface comprising 5 × 5 randomly arranged icons was
presented for 5-second, during which the cursor was invisible

and the participants were requested to find the target icon
and to memorize its location. When finishing the period of
search task, the mouse cursor appeared again. Simultaneously,
all the icons on the display were masked with a dotted line.
At that moment, the participants were required to move the
cursor to the position of the target icon and click to confirm
the result. Then the program would proceed to the next trial
automatically. For each participant, 240 trials were divided
into two equal parts, with a 120-second break between them
to avoid time-on-task effect. Moreover, a 5-second break
and a 10-second break were introduced after completing
every 15 trials and 30 trials respectively. To ensure that the
participants were familiar with the experimental paradigm,
pre-experiment practice was conducted for each participant
prior to the real recording. The experiment started after three
consecutive blocks with correct responses. Of note, an error
rate of 5% (i.e., 240 × 5% = 12 trials) is regarded as the
threshold for unsatisfactory performance, and ten additional
trials would be added to the experiment for every twelve
trials with incorrect responses. For instance, if the participants
gave wrong responses in 12 trials out of 240 trials, they were
presented with 10 additional trials (i.e., 250 trials in total).

C. Data Acquisition and Preprocessing

In this experiment, eye-tracking and EEG data were col-
lected concurrently. To synchronize two kinds of signals using
EyeLink’s precise clock, the EyeLink Software Development
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Kit (SDK, https://www.sr-support.com/forum-9.html) was uti-
lized to send experimental markers to both the eye-tracking
computer and the EEG computer during the search task. The
detailed eye-tracking and EEG data acquisition parameters and
preprocessing processes are introduced below.

1) Eye-Tracking Data: The EyeLink 1000 Plus eye-tracking
system (SR Research, Ottawa, Canada) was adopted to record
eye-tracking data at a sampling rate of 1000 Hz, while
the software Data Viewer (v4.2.1) was utilized for the data
analysis. Prior to the experiment, the eye-tracking system
was calibrated for each participant. To identify saccade and
fixation events, the software thresholds were set as 8000◦ s−2

for saccade acceleration and 40◦ s−1 for saccade velocity.
When the current saccade velocity or acceleration exceeds
the threshold, the software marked the start of a saccade;
otherwise the software marked the end of a saccade. Fixations
in the EyeLink system are identified using a saccade-pick
algorithm. The software produced a fixation after a saccade
end. Moreover, the area of interest (AOI) of an icon was
defined as the 100 × 100 pixel area centered on that icon.
When the participants gazed upon an AOI of target icon, the
fixation was labeled as target, while a fixation was classified
as non-target when it fell on an AOI including a non-target
icon.

2) EEG Data: EEG data were recorded from 64 Ag/AgCl
electrodes arranged according to international 10−20 system
with a BrainAmp EEG amplifier (Brain Products, Gilch-
ing, Germany). Vertical and horizontal electrooculograms
(EOG) were acquired from electrodes placed above and
below the right eye (VEOG) and on the lateral to the outer
canthi (HEOG) respectively. Electrode impedance was con-
trolled below 10 k� throughout the recording and the main
interference was avoided by antialiasing with a bandpass
(0.5−100 Hz) and a 50 Hz notch filter. Both EEG and
EOG were digitized at a sampling rate of 500 Hz using
FCz as reference and stored for offline analysis. Among
70 participants, two were ruled out due to data recording issues
and another two were excluded through visual inspection for
excessive artifacts in the EEG recording. Subsequently, a stan-
dard EEG preprocessing pipeline was adopted. Specifically,
raw EEG signals were downsampled to 256 Hz and filtered
using a 0.5−40 Hz zero-phase FIR bandpass filter. After
manual cleaning by visual inspection, ICA was implemented
through the extended infomax algorithm [28] to decompose
EEG signals into 63 independent components (ICs). ICs with
high correlations to EOG signals were removed to correct the
ocular artifacts, while muscle activity artifacts related ICs were
removed manually (average number of removed ICs: 9.84 ±

3.47, in detail, 9.90 ± 3.34 for males and 9.79 ± 3.64 for
females without significant gender difference (t60 = −0.122,
p = 0.903)). A common average reference was then applied.
All data preprocessing steps were carried out using customized
codes and the EEGLAB toolbox [31] in MATLAB R2020a
(The MathWorks Inc, US).

D. Epoch Extraction
For FRP analyses, the preprocessed EEG was segmented

into epochs time-locked to fixation onset (i.e., the time at

which the fixation fell in the AOI), ranging from 200 ms before
to 500 ms after fixation onset. Subsequently, an interval from
-200 to -100 ms was utilized for baseline correction to prevent
the influence of the preceding saccade [12], [14]. According to
the results of eye-tracking data analysis introduced in section
II-C, FRP epochs were further classified as target epochs
and non-target epochs. All the subsequent FRP analyses are
conducted on an epoch-level. Of note, a trial might contain
multiple target and non-target epochs. To avoid the contamina-
tion of signals due to overlapping phenomena, a target would
meet the criterion when there existed no non-target fixations
or other events (e.g., the end of the search process) 500 ms
after it occurred, while a non-target was qualified if there was
no target fixation between 500 ms before or after it. In each
trial, only the first eligible FRP epochs on the non-target and
target that met the criteria mentioned above were considered.
Trials corresponding to correct responses were included for
epoch extraction and further analyses.

E. Functional Connectivity and Brain Network
Construction

To estimate the phase synchronization between each pair of
channels, wPLI was utilized to calculate functional connectiv-
ity and construct brain networks. As an extension of phase lag
index (PLI), wPLI possessed two advantages over PLI in terms
of reduced sensitivity to uncorrelated noise and increased
ability to capture true changes in phase-synchronization [29].
Briefly, the Hilbert transform was initially employed to obtain
the instantaneous phase of signals. Let x j (t) represent the
real-time series of the j th channel; the analytical form X j (t)
is denoted as:

X j (t) = x j (t) + i x̄ j (t), (1)

where x̄ j (t) is the Hilbert transform for x j (t). If Xk(t)
indicates the analytical signal of the k-th channel, the complex
cross-spectrum for the two channels can be expressed as:

Z(t) = X j (t)Xk(t)∗, (2)

where Xk(t)∗ represents the complex conjugate of Xk(t).
Then, wPLI is calculated based on the imaginary component
of the cross-spectrum:

wP L I =
|⟨ℑ(Z)⟩|

⟨ℑ(Z)⟩
=

|⟨|ℑ(Z)|sign(ℑ(Z))⟩|

⟨|ℑ(Z)|⟩
, (3)

where ⟨·⟩ and |·| refer to mean and absolute value operations
respectively, ℑ(Z) indicates the imaginary part of Z , and
sign denotes the signum function. The value of wPLI ranges
from 0 to 1, with 0 indicating no phase consistency between
two channels and 1 indicating full synchrony.

Notably, although delta and theta event-related oscillations
were regarded as the major contributor to P300 signals [32],
accumulating evidence indicated that event-related desynchro-
nization in alpha band was associated and involved in cognitive
function such as visual working memory representation [8],
while the beta-band oscillations were suggested to be involved
in visual processing and attention [33]. With these in mind,
the data analysis presented in this study considered four
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frequency bands (i.e., delta: 2−4 Hz, theta: 4−8 Hz, alpha:
8−13 Hz, and beta: 13−30 Hz). Specifically, four finite
impulse response (FIR) bandpass filters were designed to
extract frequency-specific patterns and consequently provide
a comprehensive assessment of brain networks. Subsequently,
wPLI was calculated in each 500 ms FRP epoch and averaged
within two classes (i.e., target and non-target) to amplify the
neural connectivity time-locked to the fixation. Consequently,
two 63 × 63 weighted matrices corresponding to target and
non-target were created for each frequency band and each
subject.

F. Network Analysis
First, average connectivity strength was obtained via aver-

aging all the connectivity edges in a network. To remove
spurious connections and maintain the most intrinsic connec-
tions, a sparsity (i.e., the ratio of the number of existing edges
to the maximum possible number of edges in a network)
threshold-based approach was adopted prior to the following
graph theoretical analysis. By setting the values of those
thresholded edges to 1, we constructed binary networks with
values of either 0 (unconnected) or 1 (connected) to ensure
the assessment of intrinsic between-group differences in the
topological structure without bias from different weights of
significant connections. Given that no clear definition of an
accurate threshold has been provided, a wide range of sparsity
thresholds from 0.1 to 0.4 with a step of 0.01 was employed
as mentioned in [34]. To avoid multiple comparisons at the
individual sparsity threshold and to reduce the dependency of
statistical results on the arbitrary choice of a single threshold,
integrated metrics (mathematically corresponding to the areas
under the metric curve) were estimated for all global and nodal
network measures over the predefined sparsity range [34], [35].
Specifically, considering small-world topology, an attractive
model for brain organization that is typically characterized as
a higher cluster coefficient and a shorter characteristic path
length than a random network [36], small-world properties
including clustering coefficient (C), characteristic path length
(L), and small-worldness (SW ) were estimated in this work.
To provide a clear and direct physical meaning to the concept
of small-world properties from the perspective of information
flow [35], global efficiency (Eglobal ) and local efficiency
(Elocal ) were also calculated. Nodal metrics were estimated
using betweenness centrality (BC) and eigenvector centrality
(EC). The Brain Connectivity Toolbox (BCT) was employed
for the estimation of these graph theoretical metrics [37].
The detailed definitions and descriptions of the above network
metrics are presented in the Supplementary Materials.

G. Feature Selection and Classification
To investigate the alterations of the networks properties

in various visual search phase from a data-driven modeling
perspective, FRP classification was performed with the afore-
mentioned network properties. Using both global (Eglobal ,
Elocal , C , L , and SW ) and nodal (BC and EC) metrics in
four frequency bands, we obtained 5 × 4 = 20 global features
and 2×63×4 = 504 nodal features, with the full fusion dataset

Algorithm 1 Classification
Require:

E EG ∈ RC×T : raw EEG data;
labels ∈ RNS : FRP labels, labels ∈ {0, 1};

Ensure:
Predicted labels corresponding to maximum accuracy;
Set of features with over 50% occurrence rate;

Begin:
1) Constructed functional networks, binarization, calculated inte-
grated global (Eglobal , Elocal , C , L , and SW ) and nodal (BC and
EC) metrics;
2) Fully fused network metrics to construct feature set D ∈

RNS×NF ;
for cv = 1 to 10 do {ten-fold cross-validation}

Dtest =Dcv
Dtrain=D − Dcv
for i = 1 to NF do {feature selection}

weights(i) = F-score(Dtrain, labels)
end for
rank = sort (weights)
for j = 1 to 200 do {classification (KNN, NB, SVM)}

selected = rank(1 : j)
Dtest = Dselected

test
Dtrain = Dselected

train
models = Classi f iers(Dselected

train , labels)
predictions = predict (models, Dselected

test )
acccv, j = evaluate(predictions, labels)

end for
acc j = mean(acccv, j , 1)

end for
3) Repeated the above loop for 10 times, calculated the average
classification accuracy ave_acc j ;
4) Picked the maximum accuracy across models and feature num-
bers, obtained corresponding prediction labels and feature number;
5) Calculated the occurrence rate of each feature O R j , selected
features with O R j greater than 50% as the discriminative feature
set.

comprising 20 + 504 = 524 features for each FRP class and
each subject. Then z-score method was applied for feature
standardization. To avoid the possible overfitting issue caused
by high-dimensional features and obtain reliable and efficient
classifiers, we aimed to select an optimal feature subset. To this
end, the Fisher score (F-score) was employed to estimate the
discriminability of individual features [38], which could be
calculated as:

F(i) =

∑c
k=1

(
x̄k,i − x̄i

)2∑c
k=1

1
nk−1

∑nk
j=1

(
xk, j,i − x̄k,i

)2 (4)

where F(i) denotes the F-score of the i-th feature. x̄i and
x̄k,i represent the average of the i-th feature corresponding
to the entire dataset and k-th class, respectively. xk, j,i is the
value of the i-th feature in the j-th sample of class k. nk
is the number of samples in the k-th class. A larger F(i)
value indicates a better discriminability of feature i . Based
on the descending sort of all F-score values, a wide range
of feature subsets (i.e., from the top 1 to 200) was selected
in turn and classified by k-nearest neighbor (KNN). Of note,
here the number of neighbors was set as 10, and 10 ten-
fold cross-validations were performed in total. Due to the
slightly different training set in each fold of cross-validation,
the final feature set differed slightly from fold to fold. Thus
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Fig. 2. The statistical differences of average connectivity strength
between target and non-target in four frequency bands. Bars represent
mean ± standard error. ** represents p < 0.01, *** denotes p < 0.001.

the contribution of various network metrics to classification
performance was not evenly distributed. The occurrence rate
was defined as the proportion of network features appearing
in the final feature set of each cross-validation fold to a
total of 100 (10 × 10) folds. A feature with an occurrence
rate over 50% was regarded as a discriminative feature.
The classification framework is illustrated in Algorithm II-F.
To determine whether the selected features could maintain
high classification performance that is independent of dif-
ferent classification models, we performed the classification
framework on two additional previously-validated models (i.e.,
naive Bayesian (NB) and support vector machine (SVM)).
Furthermore, to investigate the contribution of various types
of features, ten-fold cross-validation was performed based
on discriminative feature subsets (i.e., global features, nodal
features, and fusion features) obtained from KNN with the
aforementioned framework and repeated ten times. In the
current work, KNN and NB were implemented based on
the Statistics and Machine Learning Toolbox. The number of
neighbors was set as 10 for KNN model, while the NB model
assumed that the input features were distributed according
to Gaussian distribution. The LIBSVM software [39] was
employed to build the SVM model, which utilized the radial
basis function (RBF) kernel with γ = 0.5 and the penalty
parameter C = 1.

H. Statistical Analysis
To investigate the difference in brain states between target

and non-target identification, we conducted paired t-test on
the average connectivity strength and aforementioned network
metrics. Furthermore, we implemented a two-way ANOVA
with factor #1 gender (i.e., male and female), factor #2 fixation
events (i.e., target and non-target) in this work to explore the
gender effect in consideration of network properties. A value
of p < 0.05 was considered significant. Corrections for mul-
tiple comparisons of nodal characteristics were performed via
false discovery rate (FDR) correction. The paired t-test was
performed using SPSS 26 software (IBM, New York).

To quantitatively assess the significance of classification
accuracy, a permutation test was conducted in this work.
Briefly, classification was applied 1000 times by randomizing
the class labels to estimate the distribution of the classification
accuracy. Then p-value was calculated as the probability of
the accuracy corresponding to randomized samples to be
greater or equal to that in the original samples. Classification

performance is considered significant when the p-value is less
than 0.05.

III. RESULT

A. Behavior Performance
Motivation on the task was deemed poor when the accuracy

of a participant was 1 S.D. lower than the group average.
Consequently, 4 participants were excluded at this step, and
the final dataset consisted of 62 participants (male/female =

29/33). On average, the included participants performed well
in the visual search task with a mean accuracy of 99.76%
(S.D. = 0.41%). Additionally, the Mann-Whitney U test
was performed to investigate the gender effect on behavior
performance, and no significant difference was found between
males and females (p = 0.524).

B. Analysis of Global Network Properties
Paired t-test was first adopted to assess the differences

in average connectivity strength. Compared with target, sig-
nificantly higher average connectivity strength for non-target
was revealed in delta (t61 = 18.023, p < 0.001), theta
(t61 = 17.726, p < 0.001), and beta (t61 = 3.157, p =

0.002) bands (Fig. 2). These results confirmed the necessity
of using binary networks for the subsequent network analyses.
In Fig. 3, we showed the statistical comparisons of network
metrics. Significant differences were mainly found in delta and
theta bands for Eglobal , L , and SW . Specifically, non-target
showed a higher Eglobal in delta band (t61 = 4.114, p <

0.001) while a lower Eglobal in theta band (t61 = −3.705,
p < 0.001) than target. In contrast to Eglobal , L possessed
an opposite relationship between two networks; that is, non-
target exhibited a lower L in delta band (t61 = −4.141, p <

0.001) while a higher L in theta band (t61 = 3.693, p <

0.001). Moreover, non-target showed significantly lower SW
than target in both delta (t61 = −4.123, p < 0.001) and theta
(t61 = −4.286, p < 0.001) bands. No significant difference
was found in Elocal and C .

C. Analysis of Nodal Network Properties
To visualize and evaluate nodal properties, the topographical

maps of integrated betweenness centrality and eigenvector cen-
trality at each electrode related to target and non-target FRPs
were displayed in Fig. 4. Generally, the two nodal properties
exhibited similar patterns, and significant differences were
mainly found in delta and theta bands, which was in line with
the results of global properties. Specifically, all 39 significant
BC measures were located in delta (30 measures) and theta
(9 measures) bands, while 73 EC measures with significant
differences were distributed in delta (37 measures), theta (28
measures), alpha (7 measures) and beta (1 measure) bands.
Regarding topological distributions, BC showed an occipital
predominance for non-target as well as a parietal-temporal
predominance for target in both delta and theta bands, while
the same phenomenon in EC was found in delta, theta, and
alpha bands.
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Fig. 3. The statistical differences of global network properties between target and non-target in four frequency bands. Bars represent mean ±

standard error. *** denotes p < 0.001.

Fig. 4. The topographical maps of integrated (a) betweenness centrality and (b) eigenvector centrality of each node in four frequency bands.
Values between electrodes were interpolated in each plot. The unit for eigenvector centrality is 10−3. Difference is defined as non-target minus
target under the same conditions. Maps for target and non-target in each frequency band and each metric are presented using the same color
scale, while each difference map is proportionally scaled to optimize color contrast. Electrodes highlighted in black represent the corresponding
measures with p-values lower than 0.05 after FDR correction.

D. Classification Performance and Discriminative
Features

FRP classification was performed to explore the diver-
gent network properties. The receiving operator characteristic
(ROC) curve of each classifier corresponding to the highest
accuracy across feature numbers is shown in Fig. 5(a). As pre-
sented, all three classifiers (i.e., KNN, NB, and SVM) achieved
satisfactory classification performance. Among the three clas-
sifiers, the best classification performance was achieved by
KNN with an accuracy of 92.74% (p < 0.001, 1000 permuta-
tions, sensitivity = 93.06%, specificity = 92.42%, Fig. 5(b))

and an area under the ROC curve (AUC) of 0.971 when
utilizing 87 selected features. Under this circumstance, we then
investigated the discriminative features based on their occur-
rence rate. As such, 85 out of 524 features exceeded the
predefined threshold, of which 6 were global and 79 were
nodal. Specifically, global network features included Eglobal ,
L , and SW in delta and theta bands, while nodal network
features primarily resided in occipital, and parietal-temporal
areas. The detailed descriptions of discriminative nodal fea-
tures are shown in Fig. 5(c). Moreover, the classification
results based on discriminative features showed satisfactory
performance significantly above the chance level for all feature
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Fig. 5. The results of FRP classification. (a) ROC curves for KNN,
NB, and SVM under the best accuracy across feature numbers. The
dotted line in blue represents random guess. (b) Confusion matrix for
KNN. (c) The topological maps of occurrence rate calculated according
to optimal classification performance of KNN. Electrodes highlighted
in black represent the corresponding measures with occurrence rates
greater than 50%.

TABLE I
CLASSIFICATION RESULTS BASED ON DISCRIMINATIVE FEATURES

subsets (Table I). The highest performance was obtained with
an accuracy of 94.44% and an AUC of 0.983 (for both metrics,
p < 0.001, 1000 permutations) when using 85 fusion features,
while a comparable performance was achieved with 79 nodal
features (accuracy = 93.79%, AUC = 0.980, p < 0.001), and a
much poorer performance was obtained with 6 global features
(accuracy = 76.21%, AUC = 0.814, p < 0.001).

E. Gender Effect
To investigate the gender effect on visual search tasks,

the two-way ANOVA was adopted to examine the network
properties between male and female under different fixation
events. Interestingly, the Elocal in delta band showed signif-
icant interaction effect (F1,120 = 4.369, p = 0.039), but no
significant main effect was found (gender: F1,120 = 2.685, p =

0.104, task: F1,120 = 3.031, p = 0.084). Further post-hoc tests
revealed that the significant interaction effect was attributed to
the higher delta Elocal of non-target in females compared with
that of target in females (F1,120 = 7.845, p = 0.006) and that
of non-target in males (F1,120 = 6.952, p =0.009).

IV. DISCUSSION

To the best of our knowledge, this is the first study per-
forming network analysis methodology on long-term FRPs

to investigate the differences between target and non-target
identification in a visual search task. The significant findings
are as follows: first, divergent reorganizations of brain network
were revealed between target and non-target FRPs during
the visual search at both global and local levels. Second,
we distinguished target and non-target FRPs with satisfactory
accuracy based on the proposed classification framework. Fur-
ther exploration of discriminative features showed the key role
of delta and theta frequency bands, while the topographical
distribution of nodal metrics revealed the predominance of
occipital and parietal-temporal areas. Third, further investiga-
tion found an interaction effect in delta band local efficiency
between genders and fixation events, with females exhibiting
higher value than males in the process of search. The findings
were mostly consistent with the hypotheses that both fixation
events and gender would lead to different brain reorganization
patterns and would be discussed in greater detail below.

A. FRP Classification Performance
To investigate the network reorganization from the per-

spective of a data-driven modeling approach, FRP classifi-
cation was performed. The ROC curves in Fig. 5(a) showed
comparable performance with above 0.9 AUC for all three
classifiers, revealing the generality of the proposed frame-
work. Through KNN, we obtained the highest classification
accuracy of 92.74% and the AUC of 0.971 with 87 features
employed. Paired to the very low p-value of the permutation
test, the excellent performance indicated the effectiveness
of the adopted classification framework along with network
properties for target and non-target FRPs discrimination. Addi-
tionally, we also assessed the performance of the proposed
classification framework using all 524 features and the main
results were largely consistent with that using 200 features
(detailed results were shown in Supplementary Materials),
indicating the weak relevance of the rest features to the
classification results. Further interrogations of the contribut-
ing features indicated that the performance was primarily
attributed to nodal features rather than global features, which
might be due to the limited number of global features.
Moreover, the incorporation of nodal features together with
global features enhanced the performance of KNN. Actually,
distinguishing target and non-target identification events using
FRP is not a trivial problem, as FRP is typically contaminated
by successive eye movements [40]. Compared with other
studies examining FRP classifications [11], [17], [25], our
classification framework achieved the highest accuracy. The
optimal classification performance might be attributed to the
following two points. First, considering that EEG recognition
is a challenging task due to its low signal-to-noise ratio (SNR)
characteristic, here we improved the SNR via averaging target
and non-target FRP epochs respectively for each participant,
while the aforementioned studies performed single-trial FRP
classification. This concept was also supported by Pfeiffer
et al., who observed improvements in FRP decoding per-
formance from single-trial to 40-trial averages [41]. Second,
as FRP generally manifests as temporal variations in EEG
amplitude time-locked to fixation onsets, time point features
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(i.e., the concatenation of EEG samples from certain or
all channels) have typically been used for classification in
previous studies [11], [17], [25], [42]. However, the contri-
bution of time point features to classification performance
is relatively limited, emphasizing the need to explore more
discriminative FRP characteristics [25]. Considering the sig-
nificantly divergent network patterns revealed in this work,
the optimal classification performance might partially be due
to more discriminative network features, which is in line with
the concept that functional networks can provide additional
information and help better characterize brain states [43].
Moreover, it’s noteworthy that we performed classification on
the whole dataset consisting of data from different individuals,
suggesting the potential of network-based features for cross-
subject FRP classification, which is of particular importance
for future practical applications.

B. FRP Related Network Biomarker
FRPs related to target and non-target tend to reflect dif-

ferent cognitive processes [7], and the corresponding neural
biomarkers could be suggested by discriminative network
properties. Here, we explored the discriminative features based
on their occurrence rate. In line with the statistical results,
we found that the network metrics with high occurrence rates
almost exhibited significant differences. In accordance with
findings of important delta-theta activities in P300 components
analysis (for a review, see [32]), our results showed that the
discriminative features at both the global and nodal levels were
primarily located in delta and theta bands.

1) Global Network Biomarker: Prior to the topological
network properties, the investigation of connectivity edges
revealed the significantly higher average connectivity strength
in delta, theta, and beta bands for non-target, suggesting the
more closely linked brain areas and increased information
processing efficiency [21]. Heuristically, brain network pat-
terns corresponding to different frequency bands are assumed
to play a crucial role during the cognitive process [44].
Specifically, delta oscillations were found to be linked to
cognition-related attention [45], while theta activities were
associated with successful memory retrieval [46]. In visual
attention tasks, the ventral visual pathway from the primary
visual cortex to the inferior temporal cortex is typically
active [47], [48], thus leading to increased global integra-
tion [49]. Considering that non-target FRP involved both
brain response to standard stimuli and attention on subsequent
searching process, we further indicated that the brain may
recruit more resources to facilitate parallel information transfer
efficiency and maintain focused during the search process,
consequently manifesting as higher delta global efficiency
in non-target. As target FRP implied the brain response to
deviant stimuli and memorization processes, the higher theta
global efficiency in target could be explained by the long-range
theta phase synchronization for target processing [46]. Similar
findings have also been reported in a visual search work
in which increased theta fronto-parietal connectivity was
observed during anticipation of a specific visual target [50].
In terms of characteristic path length, it’s inversely related
to global efficiency, thus showing comparable occurrence

rates and significances in both bands. In particular, recent
evidence has shown small-world brain network patterns in
several cognitive tasks [36]. Further explorations revealed
a relationship between delta-theta connectivity and working
memory [51], while memory encoding exhibited significantly
higher small-worldness than storage or retrieval [52]. There-
fore, we speculated that the findings of higher delta and
theta small-worldness in target were mainly due to cognitive
functions such as encoding and storing the coordinates of the
target.

2) Nodal Network Biomarker: Nodes with a high centrality
were more likely to play an important role in brain networks,
and our findings indicated a similar distribution of the adopted
two metrics. Specifically, nodes with high centrality were
primarily located in occipital area for non-target and parietal
area for target. Our findings therefore provided additional
evidence to support the notion that occipital regions are crucial
for visual attention and top-down control [53], while parietal
areas are associated with memory processing [54]. In addi-
tion, the different distributions in frontal-parietal regions were
also probably due to differences between fovea-related and
periphery-related processes in visual cognition [55], imply-
ing a greater cognitive demand for target identification [56].
Despite similar characteristics, the two centrality properties
still reflected various aspects of cognitive function. The-
oretically, nodes with high betweenness centrality tend to
facilitate the information exchange along the most efficient
path, consequently leading to more integrated networks [57].
Hence, we suggested that the evidently higher delta between-
ness centrality in occipital-temporal areas (PO8, P6, P8, and
CP6) for non-target was related to underlying ventral visual
pathways [47], promoting the integration of the brain network.
Regarding eigenvector centrality, it determines the relative
importance of regions within the whole-brain network hierar-
chy, which can provide additional information compared with
betweenness centrality [58]. The enhanced alpha eigenvector
centrality nodes in occipital regions for non-target might
be associated with the guidance of visual perception that
integrates sensory evidence with task demands [59].

C. Gender Effect on FRP Network Properties
Though there was no significant difference in behavioral

performance between genders, the present study revealed a
significant gender difference in the underlying organization
of brain networks. In recent years, a considerable amount
of literature had been published suggesting structural and
functional differences in the brain between genders [60], [61],
[62]. For example, in [60], a stronger association between
gray matter volume and cognitive performance was revealed
in females using magnetic resonance imaging (MRI). And
Tomasi et al. indicated that women exhibited a higher brain
connectivity strength that may optimize cognitive functions
requiring integration [62]. These findings suggested that gen-
der might have a great impact on P300-related cognitive
tasks [63]. Partially in agreement with previous researches
indicating females showed a greater local efficiency than males
using diffusion magnetic resonance imaging (dMRI) [64],
fMRI [65], and EEG [66] in the resting-state, we extended
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the results to the task-related condition with similar findings,
indicating a higher allocation of attention resources in females
during visual search. It might owe to a more elaborated
event-categorization process accompanied by a more distinct
sensory input in females [67].

D. Methodology Considerations
There still existed some factors that needed to be con-

sidered when interpreting the results of the current study.
Though a study conducted by Bahar et al. have confirmed
the reliability to explore connectivity patterns in source space
through EEG source localization methods [68], we merely
constructed functional connectivity networks in sensor space
using a feasible method to reduce the influence of volume con-
duction. Nonetheless, the relationship between brain regions
in cortical space could be ulteriorly investigated in future
studies to assess the reproducibility of the main findings.
Moreover, prior work has already compared brain response
to target and standard stimuli recorded in an experiment
with eye fixed [69]. However, in this work, EEG epochs
corresponding to non-target might be significantly distorted
by eye movements and overlapping brain responses related
to saccades [40]. It would provide specific phase relationship
patterns and subsequently influence the network connectivity
based on phase synchronization [40]. In fact, approaches
like ICA or other linear models might not consider the full
variety of factors accounting for the overlapping and fail to
remedy this problem. Therefore, in order to extract clean
EEG data corresponding to target and non-target information
processes and investigate their differences in visual search
situations, new experiment protocols [70] or signal processing
algorithms [71] were encouraged for further validation of
current findings.

V. CONCLUSION

In this study, we explored, for the first time, the brain
networks constructed by long-term FRPs related to target
and non-target identification in the visual search experi-
ment. Specifically, through graph theoretical analysis and a
data-driven modeling approach, we revealed FRP related neu-
ral biomarkers at both the global and nodal levels, indicating
the divergent network reorganization patterns during the visual
search task. Moreover, satisfactory classification performance
was achieved through utilizing the fusion of both global and
nodal network features, suggesting its potential to improve the
FRP decoding accuracy. Furthermore, we observed a signifi-
cant gender difference in terms of delta local efficiency, high-
lighting the potential gender influence in further visual search-
related studies. In summary, our findings provide the first
quantitative evidence to show the underlying brain interaction
patterns and facilitate the understanding of neural mechanisms
during the visual search process.
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