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A Multi-Source Transfer Joint Matching Method
for Inter-Subject Motor Imagery Decoding
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Abstract— Individual differences among different sub-
jects pose a great challenge to motor imagery (MI) decod-
ing. Multi-source transfer learning (MSTL) is one of the
most promising ways to reduce individual differences,
which can utilize rich information and align the data dis-
tribution among different subjects. However, most MSTL
methods in MI-BCI combine all data in the source subjects
into a single mixed domain, which will ignore the effect
of important samples and the large differences in multi-
ple source subjects. To address these issues, we intro-
duce transfer joint matching and improve it to multi-source
transfer joint matching (MSTJM) and weighted MSTJM
(wMSTJM). Different from previous MSTL methods in MI,
our methods align the data distribution for each pair of
subjects, and then integrate the results by decision fusion.
Besides that, we design an inter-subject MI decoding frame-
work to verify the effectiveness of these two MSTL algo-
rithms. It mainly consists of three modules: covariance
matrix centroid alignment in the Riemannian space, source
selection in the Euclidean space after tangent space map-
ping to reduce negative transfer and computation over-
head, and further distribution alignment by MSTJM or
wMSTJM. The superiority of this framework is verified on
two common public MI datasets from BCI competition IV.
The average classification accuracy of the MSTJM and
wMSTJ methods outperformed other state-of-the-art meth-
ods by at least 4.24% and 2.62% respectively. It’s promising
to advance the practical applications of MI-BCI.

Index Terms— Brain–computer interface, inter-subject
variability, transfer joint matching, multi-source transfer
learning.
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I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is a direct interactive
system between the brain and the outside world that

can convert brain signals into control instructions to interact
with external devices [1]. Due to the high temporal resolution
and good portability, electroencephalogram (EEG) is the most
commonly used control signals for BCIs [2]. Motor imagery
(MI) is a popular active BCIs paradigm where users image
the movements of their body parts but don’t execute them.
Since MI is a spontaneous brain activity and doesn’t require
external stimuli, it has been widely studied and applied in
stroke rehabilitation and online BCI game fields [2].

Nevertheless, the large inter-subject variability in brain
patterns will hinder the widespread use of BCI devices.
Because the data distribution change caused by individual dif-
ferences will significantly degrade the decoding performance
of MI-BCI [3], [4], [5], [6]. Typically, a 20-30 minutes system
calibration phase needs to be done at the beginning, aiming
at acquiring sufficient labeled samples to train a subject-
specific model for a new user [7]. It’s time-consuming and
fatiguing for users. Whereas if the calibration is reduced,
the available labeled samples are limited, resulting in poor
decoding performance [8]. Thus, developing a reliable inter-
subject system that can shorten calibration time and maintain
satisfactory performance is highly desirable in the practical
application of MI-BCI [9].

One promising way to reduce individual differences and
data requirement is transfer learning (TL) [4], [10]. It can
transfer shared knowledge across different subjects, and use
some existing data to alleviate the limitation of insufficient
data of target subjects [4], [11]. For cross-subject transfer,
the multiple existing subjects are usually called the source
domains, and the current new user with few or without labeled
samples is called as the target domain. Several related works
have attempted to reduce individual differences by considering
the information on different levels of instances, features, and
models [5], [6], [12].

In recent years, some studies have proved that data of
multi-source subjects can obtain better accuracy than sin-
gle subject [6], [13], since it can expand the available
data and increase data diversity, which would facilitate the
transfer model to learn more generalized and robust repre-
sentations [14], [15]. Thus, some researchers have adopted
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Fig. 1. Overview of inter-subject framework. Triangles and circles represent two classes of data distribution in different spaces, and different colors
represent subjects from different domains, where data with plus symbol (+) are task-irrelevant samples that are difficult to classify.

multi-source transfer learning (MSTL) to reduce individual
differences in MI-BCI field. Multi-source fusion adaptation
regularization (MFAR) is based on Euclidean alignment via
rest-state knowledge (EARK) [16]. Cai et al. integrated two
Riemannian manifolds into a TL framework to align marginal
distribution and joint distribution simultaneously, named man-
ifold embedded TL (METL) [17]. Besides that, Liang et al.
proposed a multi-source fusion TL (MFTL) algorithm [18].
Reference [7] presented two TL methods, where multi-source
joint domain adaption (MJDA) worked in Riemannian space,
while multi-source joint Riemannian adaption (MJRA) worked
in Euclidean space.

To sum up, most of these inter-subject transfer works can
be summarized into two categories: one is to select the most
similar subject as a source domain to assist the target subject
task, and the other is to directly combine multiple source
domains of other existing subjects into a mixed domain [15].
The former does not make full use of available data and needs
to find the optimal golden subject as the source domain [19].
The latter treats each instance and each source domain equally,
which ignores the large difference in multiple subjects, a com-
mon nature in physiological signals [20], [21]. It would cause
negative transfer and degrade the MI decoding accuracies, even
result in worse results than using one appropriate subject as the
source domain sometimes [13]. In fact, an effective transfer
method should assign a large weight to vital instances in the
source domain [22]. It is the same true for source domains with
more similar distribution [23]. In general, distribution shift
exists not only between each pair of source and target domains,
but also exists on different source domains, so directly
combining multiple domains may influence each other during
knowledge transfer [14]. Thus, how to effectively use the rich
information from multiple sources is important to MSTL.

To resolve the above problems, this paper propose an
inter-subject MI-BCI framework to reduce individual differ-
ences, as shown in Fig. 1. The hypothesis is that, despite
some differences, the stable and consistent patterns still exist
across subjects [24], [25]. A simple yet effective TL method,
transfer joint matching (TJM) [22], is introduced into the
MI decoding task to address the problems of few labeled
trials available for a new subject and inter-subject variability.
The framework adopts a semi-supervised domain adaptation
(SSDA) setting [26]. It assumes that individual differences
lie in multiple levels, including instance and feature levels.

TJM jointly performs two TL methods, instance reweighting
and feature matching alignment, in a principled dimensionality
reduction procedure. It’s suitable for EEG data with noises and
high-dimensional features [27], [28]. However, it works only
in a single source to the target, so we extend it to a multiple
sources condition. The main contributions of this paper are as
follows.

• We improve TJM to multi-source methods, referred to
as MSTJM and weighted MSTJM (wMSTJM). They can
effectively utilize the information of multiple subjects to
overcome the lack of new subject data and consider the
large differences in multiple source subjects.

• We propose an inter-subject MI-BCI framework to reduce
inter-subject variability based on MSTJM or wMSTJM.
It could reduce the effects of individual differences and
task-irrelevant instances. In addition, only ten calibration
data are needed to select important source subjects whose
data distribution is similar to that of target subjects.

• The superiority of this framework is verified on two pub-
lic MI datasets of BCI Competition IV. The classification
accuracies can achieve 85.53% and 82.69% respectively,
superior to most state-of-the-art (SOTA) methods.

The rest of this paper is organized as follows: MI-BCI
related works are briefly reviewed in Section II. Then we
describe the inter-subject framework based on MSTJM and
wMSTJM. Experimental settings and results are shown in
Section IV. The following are discussions and conclusion.

II. RELATED WORK

A. Methods on Inter-Subject Variability
To cope with the inter-subject variability and construct a

generic MI decoding model, common spatial pattern (CSP) is a
commonly used spatial filter method in MI-BCI, and there are
many variants, such as regularized CSP [29], and filter bank
CSP [30], since the spatial information and frequency band
are important for decoding MI. When performing MI, it will
typically elicit a decrease in mu and beta rhythms contralateral
to the movement [24], [25]. Another commonly used method
in recent years is based on deep neural networks, making
use of good learning capacity [24], while it requires many
labeled training samples. The performance of MI decoding
is limited when only a few labeled calibration data can be
obtained from the current user at the beginning. Besides that,
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a series of MI decoding algorithms have been proposed, such
as selecting the optimal frequency band or channels [31], [32],
and adding physiological information [15]. However, most
of them ignore the distribution shift between training and
test samples, resulting in a degradation of decoding perfor-
mance [33]. Thus, it’s highly necessary to find a way to achieve
high decoding performance with limited calibration data.

B. TL on Inter-Subject Variability With Limited Data
TL can not only bridge the gap in the data distributions

among different subjects, but also compensate for the lack of
labeled data by leveraging data of other existing subjects [34].
Thus, in recent years, TL has been widely applied in BCI
[4], [34]. According to the learning strategies, TL in MI-BCI
can be divided into 3 categories, including instance-based,
feature-based, and model-based transfer [11], [18].

The first type of instance-based TL usually selects important
instances which have more impact on the parameter estimation
or weights instances according to the distribution similarity,
such as active transfer learning [12]. While it cannot handle
task-irrelevant instances or noises when randomly selecting
instances [17].

The second feature-based TL maps the features of both
domains into a common latent space or feature distribu-
tion matching. Some widely used TL methods have been
introduced into MI-BCI, such as transfer component analy-
sis (TCA) [35], balanced distribution adaptation (BDA) and
weighted BDA (WBDA) [36]. Another widely used method is
based on Riemannian manifold, since the congruence invari-
ance property of Riemannian metric can reduce the influence
of brain’s volume conduction effect [6], [37]. Typical works
are the minimum distance to Riemannian mean (MDRM)
classifier [37], Riemannian geometry alignment (RGA) [5],
and manifold embedded knowledge transfer (MEKT) [6].
Moreover, Wu et al. proposed Euclidean space data alignment
(EA) [38], and covariance matrix centroid alignment (CA) [6]
to simplify the calculation of geodesic. However, most studies
perform TL on a certain level. Long et al. proved that jointly
performed feature matching and instance reweighting would
be more effective when there are large differences [22].

The last model-based TL focus on sharing parameters.
Pre-training model and fine-tuning it on a few labeled
instances is one of the most popular methods [24], but [39]
suggested that the effect of fine-tuning is not obvious when
the distribution shift is large.

Thus, we adopt CA as a preprocessing step, then TJM inte-
grates feature distribution matching and instance reweighting
into a unified framework to reduce individual differences.

III. THE PROPOSED METHOD

Our inter-subject MI-BCI framework based on MSTJM
or wMSTJM will be presented in this section. It consists
of 3 modules, as illustrated in Fig. 1. In the first modules,
we adopt CA as preprocessing to align the centroid of
the covariance matrix of source and target trials by taking
Euclidean mean as a reference matrix, which can minimize
marginal probability distribution shift and whiten EEG into

TABLE I
NOTIONS SUMMARY AND THEIR DESCRIPTIONS

an approximate identity matrix. The second module is source
selection after features Tangent Space Mapping (TSM). The
source subjects similar to the target subjects are selected by a
few calibration data (ten trials). In the third module, MSTJM
or wMSTJM is utilized to reduce the data distribution shift
among different subjects and the influence of task-irrelevant
instances or noise. Then the results of multi-source trans-
fer learning models are fused in the decision-making stage,
by majority voting rules or weighted voting rules. The details
will be described below.

A. Problem Description
1) Definition 1 (Domain): Given the collection of labeled

source domains DS = {D1,D2, . . . ,DN }, and the target
domain DT , each subject from multiple existing subjects is
regarded as a source domain, {(Xi , yi )}

ns
i=1, where ns is the

number of labeled trials used. Xi ∈ RE × TS is i-th EEG trial,
where E and Ts are the number of electrodes and time points,
and yi ∈ RC is the corresponding label for Xi of C classes.
The target domain is consists of a few labeled samples in
DT l and many unlabeled samples in DT u . These few labeled
samples in the target domain are also called calibration data
in MI-BCI from the new subject. A feature space X and a
marginal probability distribution P(X) form a domain D, i.e.,
D = {X , P(X)}, where X ∈ X .

2) Definition 2 (Task): A task T consists of C label set Y
and a modle f (x) to learn a relationship after given domain
D, i.e., T = {Y, f (x)}, where y ∈ Y . Note that f (x) =

Q(y | x), it also can be explained from the perspective of
conditional probability distribution. In our experiments, only
binary classification problem is considered, i.e., C ∈ {−1,+1}.
The goal of TL is to predict yt ∈ Yt using data in DS and
DT l by the constructed task-specific classifier H : Xt → yt.

3) Problem Setting: Under SSDA setting, besides a labeled
source domain Di =

{
(x1, y1) , . . . ,

(
xns , yns

)}
, there are a

small number of labeled calibration data and many unla-
beled instances in the target domain, i.e., DT = DT l ∪

DT u , where DT l =
{
xns+1, . . . , xns+nl

}
, and DT u ={(

xns+nl+1, yns+nl+1
)
, . . . ,

(
xns+nl+nu , yns+nl+nu

)}
. The aim

is to reduce the inter-subject variability in a new feature
representation space. All notions are summarized in Table I.

B. Covariance Matrix Centroid Alignment
In order to make use of the congruence invariance prop-

erty of Riemannian metric while reducing computing over-
head, we adopt CA as preprocessing and Euclidean mean as
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a reference matrix to minimize marginal probability distribu-
tion shift among different subjects [6].

For i-th EEG trial in the source or target domains, the
sample covariance matrix (SCM) is

Pi =
1

Ts − 1
Xi XT

i , (1)

where Ts is time points of each trial and Pi ∈ RE × E . Since
the SCMs are SPD matrices, thus that each of them can be
regarded as a point in Riemannian manifold spaceM [5], [37].
Then the Riemannian distance of two point P1 and P2 is:
δR (P1,P2) =

∥∥∥log
(

P−1
1 P2

)∥∥∥
F

, where log is the logarithm

for the eigenvalues of P−1
1 P2.

Euclidean mean ME , i.e., the arithmetic mean, is used
to calculate distribution distance. The Euclidean distance of
two points is δE (P1,P2) = ∥P1 − P2∥F on M. Then the
Euclidean mean of SPD matrices can be defined by

ME = arg min
P∈P(n)

I∑
i=1

δ2
E (P,Pi ) =

1
I

I∑
i=1

Pi . (2)

With Euclidean mean ME , the SCMs are aligned by

P′

i = ME
−1/2Pi ME

−1/2. (3)

It’s the same to the target domain samples, so we can obtain

aligned SCMs,
{
P′

si

}ns
i=1,

{
P′

ti

}nl
i=1, and

{
P′

t j

}nu

j=1
.

Two desirable properties of CA can be used to align the
data distribution [6]: 1) Minimization of marginal probability
distribution shift. 2)EEG trial whitening.

According to the nature property of Riemannian manifold,
including congruence invariance, we have

δR

(
P−1

1 ,P−1
2

)
= δR (P1,P2) ,

δR

(
WT P1W,WT P2W

)
= δR (P1,P2) ∀W ∈ Gl(n),

(4)

with Gl(n) = {W ∈ M} the set of invertible matrices. These
properties are very important in MI-BCI, because it means
that the distance between two SPD matrices is invariant to
a change of reference matrix [37]. So we can perform some
operations, such as PCA, on this space without affecting the
distance.

When the reference Mre f = ME
−1/2 is adopted,

δR

(
M⊤

refP1Mref, . . . ,M⊤

refPns Mref

)
= M⊤

refδR
(
P1, . . . ,Pns

)
Mref = M⊤

refME Mref = I. (5)

The arithmetic centers of different domains will be approx-
imated as an identity matrix. Thus, the data distribution of
different subjects are brought closer, and the aligned SCMs of
EEG trials after CA is equivalent to whitening on the manifold.

C. Source Selection After Tangent Space Mapping
Following the CA is Tangent Space Mapping (TSM), which

can transform the operation on Riemannian manifold into a
Euclidean tangent space. A SPD matrix Pi is in manifold

Fig. 2. The architecture of (weighted) multi-source transfer joint match-
ing. {h1,h2, . . . ,hn} are base classifiers from different source subjects,
and {w1,w2, . . . ,wn} are the corresponding weights.

space, while by using TSM, it will be converted to a vector
xi ∈ Rd × 1 in tangent space, where d =

E × (E+1)
2 . TSM

can be denoted as

xS,i = upper
(
logM

(
P ′

S,i
))
, i = 1, . . . , ns

xT,i = upper
(
logM

(
P ′

T,i
))
, i = 1, . . . , nl

xT, j = upper
(

logM

(
P ′

T, j

))
, j = 1, . . . , nu . (6)

Here, upper(.) operator represents taking the upper trian-
gular part of an SPD matrix while vectorizing it. The unity
weights are applied to diagonal elements and

√
2 are assigned

to off-diagonal elements [37].
The tangent space consists of a set of tangent vectors at

a point Pi on Riemannian manifold. When two conditions
are met: 1) Pi is embedded in the local space of manifold;
2) P is the mean of the Pi , the distance in tangent space is
approximately equal to that in Riemannian manifold space.
Further details can be found in [37] and [40].

Then, source subjects similar to the target subject are
selected to avoid negative TL and reduce the computation
overhead. After TSM, the source subjects selection can be
done in Euclidean space with accuracy. The SVM is trained
on the TSM features xS of each source subject to get base
classifier h : xS → ys. The vectorized calibration data xT, j are
utilized to evaluate the similarity directly by the classification
accuracies. We hold that if the model has higher accuracy,
the corresponding subject in the source domain may be more
similar to the subject in the target domain, so the data of them
can be mixed as training samples to train the classification
model of target domain when there are limited data.

D. Multi-Source Transfer Joint Matching
The third module is the MSTJM or wMSTJM approaches

for domain adaptation, which combines both MSTL and
decision fusion into a uniform framework, as shown in Fig. 2.
It’s composed of two main steps: 1) distribution alignment
separately according to each selected subject in the source
domain; 2) decision fusion to integrate multiple results of base
classifiers. The difference between MSTJM and wMSTJM is
whether the decision fusion process considers the different
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weights. The scheme for distribution alignment before fusion
instead of integrating before alignment, can consider the
difference between source subject and target subject, but also
the difference in different subjects in the source domains.

1) Distribution Alignment Separately: TJM is introduced to
handle the difference in two levels, including samples-based
and feature-based differences, which transfers knowledge by
jointly implementing instance reweighting and feature distri-
bution matching to construct domain-invariant features in the
subspace [22]. For adaptive instance reweighting, structured
sparsity penalty, ℓ2,1-norm is performed on instances in the
source domains. The features are mapped into a reproducing
kernel Hilbert space (RKHS) H by “kernel trick”, and then
feature distribution is matched by minimizing the maximum
mean discrepancy (MMD) between the source domain and
target domain. Principal Component Analysis (PCA) is used
to combine these two operations since the reconstruction error
of the input data can be minimized to learn a new feature
representation in this dimensionality reduction process.

Given the number of samples n = ns + nl + nu , and the
feature dimension m, the input data matrix can be denoted
as X = [x1, . . . , xn] ∈ Rm × n . Through kernel mapping
ψ(X) = [ψ (x1) , . . . , ψ (xn)], we can calculate the kernel
matrix by K = ψ(X)Tψ(X) ∈ Rn × n . The kernelize PCA
can be denoted as

max
ATA=I

tr
(
ATKHKTA

)
, (7)

where A ∈ Rn × k is the mapping matrix to realize kernelize
PCA. The new representation is embedded in Z = ATK.

MMD is adopted to measure the distance between Kernel-
PCA representations for comparing different distributions in
the RKHS. MMD matrix M can be computed by

Mi j =



1
(ns + nl) (ns + nl)

, xi , x j ∈ Ds ∪DT l

1
nunu

, xi , x j ∈ DT u

−1
(ns + nl) nu

, otherwise.

(8)

Then MMD between source and target domain is∥∥∥∥∥∥ 1
ns + nl

ns+nl∑
i=1

ATki −
1

nu

ns+nl+nu∑
j=ns+nl+1

ATk j

∥∥∥∥∥∥
2

H
= tr

(
ATKMKTA

)
. (9)

Eq. (7) is maximized by minimizing Eq. (9), such that
statistics of feature distributions in the first- and high-order
are matched under the new representation Z = AT K .

Although feature matching can partly minimize the distribu-
tion shift among subjects, there are also differences caused by
non-stationary EEG and task-irrelevant noises. The instance
reweighting method is used to further deal with these differ-
ences. The structured sparsity regularizer, ℓ2,1-norm is applied
to the transformed matrix A. By introducing row-sparsity to
each instance, so the instances are reweighted as follows:

∥As∥2,1 + ∥Au∥
2
F (10)

where As := A1:(ns+nl ),: is the transformed matrix for source
instances, and Au := Ans+nl+1:ns+nl+nu ,: is the transformed
matrix for the target instances.

By integrating Eq. (7) and Eq. (10), the optimization prob-
lem can be expressed as:

min
A

tr
(

ATKMKT A
)

+ λ
(
∥As∥2,1 + ∥Au∥

2
F

)
s.t. AT KHKT A = I, (11)

where λ is the balance parameter to weigh the importance
of feature matching and instance reweighting. By solving the
transformation matrix in the new representation Z = ATK, the
discrepancy between different subjects can be reduced.

2) Decision Fusion of Base Classifiers:
After TJM, the test data of target subject is transformed

into a new subspace, and the distribution of them is relatively
consistent with the corresponding single subject in the source
domains. Then the key issue is how to integrate the new repre-
sents of test data from multiple TL models. We adopt parallel
architecture to construct base classifiers of each subject in
the source domains, and then the final decisions of new test
samples from these base learners are fused by majority voting
or weighted voting, corresponding to MSTJM and wMSTJM.

For MSTJM, suppose labeled source domains DS =

{D1,D2, . . . ,DN }, and binary classification problem, i.e., C ∈

{−1,+1}. The goal is to learn a more robust and accurate
classifier H = {h1, h2, . . . , hN } by integrating multiple base
classifiers h : zS → ys to predict yt using data in DS and DT l .
The base classifiers are constructed by SVM classifiers, using
data of each subject in the source domains. Given a sample
x and base classifier hi , the prediction of each classifier is(
h1

i (x) ; h2
i (x); . . . h

N
i (x) ). Here, h j

i (x) represents the output
of hi on class label C j . Then the output label is obtained by
the most voted class through the majority voting method by
Eq. (12), which could achieve a good performance [41].

H(x) = Cargmax

N∑
i=1

h j
i (x) (12)

For wMSTJM, weighted voting is utilized to ensemble
multiple outputs by considering the unequal similarity of
different subjects. After constructing base models, a few
labeled calibration data xT, j in the target domain DT l are
used to measure differences between each pair of source
subject and target subject. We intuitively believe that the higher
the accuracy, the more similar the two subjects are. Thus,
higher weights are endowed to the corresponding subjects,
and the integration weights are learned adaptively for each
target subject to cope with subject variations. In general, the
voting weights should be normalized. The final output is the
label with the highest voting class through the weighted voting
method by Eq. (13). If the voting scores of two classes are the
same, randomly select one as the final label.

H(x) = Cargmax

N∑
i=1

wi h
j
i (x), s.t. wi ⩾ 0,

N∑
i=1

wi = 1.

(13)
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Fig. 3. Recording paradigms of motor imagery.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Preprocessing
Two common public MI datasets were used in the exper-

iments, BCI competition IV1 dataset 1 and dataset 2a, as
[6], [16]. Recording paradigms of these two datasets are
similar, displayed in Fig. 3. The duration of MI execution is
about 4 seconds starting from 2 seconds.

1) Dataset1: The Berlin BCI group [42] provided
59-channel EEGs, sampled at 1000Hz. Each subject randomly
performed 2 classes of MI tasks (left hand, right hand, foot),
a total of seven subjects. Only labeled calibration MI data from
left and right hands were used in this paper. Each subject had
200 trials, 100 trials for left hand or right hand.

2) Dataset2a: The Graz University of Technology [43]
provided 22-channel EEGs, sampled at 250Hz. Each subject
performed 4 classes of MI tasks, including left hand, right
hand, feet, tongue MI tasks. Nine subjects participated in the
experiment, and each of them performed 288 trials in each
session. For consistency as [6] and [16] and labeled samples,
we only used training session trials to verify our MSTLs. Each
subject had 144 trials, 72 trials for left hand or right hand.

For both datasets, a 8-30Hz bandpass filter was used to
remove artifacts and help to analyze the characteristics of Mu
and Beta rhythms [6], [24], [25]. The time interval of each
trial EEG data was segmented between [2.5, 5.5] seconds.

B. Experimental Settings
To estimate our subject-independent MI-BCI framework

based on MSTJM and wMSTJM, we implemented the leave
one-subject-out cross validation (LOSOCV) paradigm on
multi-to-single (MTS) transfer tasks as [17] and [6]. Here,
we took each subject as the current target domain to test the
model in turn, and other existing subjects as multiple source
domains mixed a few calibration trials of a target subject to
train the base models. For dataset1, there were seven MTS
tasks, and dataset2a included nine MTS tasks. The mean value
of the classification accuracy of each target subject was used
as the evaluation metric.

Accuracy =
|x : x ∈ Dt ∧ ŷ(x) = y(x)|

|x : x ∈ Dt |
(14)

where Dt is the test data in the target domain, y(x) is the truth
label of x, and ŷ(x) is the predicted label.

C. Baseline Algorithms
The proposed MSTJM and wMSTJM algorithms were

compared with many algorithms, including classical CSP,

1https://www.bbci.de/competition/

several SOTA Riemannian manifold relevant methods, and
MSTL algorithms for MI decoding. Some common used TL
methods were also considered into our experiments, such as
TCA, WBDA, JDA, CORAL, JGSA and GFK, combined with
different preprocessing steps, such as EA, EARK or CA.

• CSP-LDA, a typical decoding method in Euclidean space.
• EA-CSP-LDA. EA is Euclidean alignment by task-state

knowledge as a preprocessing step [38].
• EARK-WBDA (balanced distribution adaptation) [36].

EARK is Euclidean alignment by rest-state knowledge.
• EARK-TCA (transfer component analysis), minimizing

MMD in new RKHS [35].
• CA-CSP-LDA, centroid alignment in Tangent space [6].
• CA-CORAL (correlation alignment), covariance matrices

matching by minimizing the Frobenius norm [44].
• CA-JGSA (joint geometrical and statistical alignment),

considering shared and domain specific features [45].
• CA-GFK (geodesic flow kernel), domain shifts in a

Grassmann manifold by integrating subspaces [46].
• CA-JDA (joint distribution adaptation), adapts the

marginal distribution and conditional distribution [47].
• RGA-MDRM, a typical Riemannian space method [5].
• MFAR (multi-source fusion adaptation regularization),

combined WBDA, source empirical risk, and manifold
regularization [16].

• METL (manifold embedded transfer learning), using geo-
metric properties in Riemannian manifold and JDA [17].

• S-STM (supervised style transfer mapping) [48], a similar
MSTL method with two different prototypes, nearest
prototype and Gaussian model.

• Semi-STM (semisupervised style transfer mapping) [48],
using both labeled calibration data and unlabeled data in
the target domain to learn STM.

• MEKT (manifold embedded knowledge transfer) [6]. The
reference matrices of MEKT-R, MEKT-E, and MEKT-L
are the Riemannian mean, Euclidean mean, and Log-
Euclidean mean, respectively.

D. Parameters Details
For CSP, we used three pairs of CSP variances to form

6 features as [49]. The parameters were set as original papers
for other methods. In our MSTJM and wMSTJM, the number
of calibration data was set to 10 depending on the aim of
our study and experience, which will be discussed later. The
weights for wMSTJM directly came from the sorted accuracies
of calibration data to adapt to the subject variants. The
regularization parameter and subspace bases were λ = 0.01,
k = 300 for dataset1, and λ = 0.01, k = 200 for dataset2a.
In addition, the number of iterations and kernel type were
fixed as T = 10 and ‘RBF’. Note that the parameters were
the same in both algorithms. In addition, since data distribution
between the source domain and target domain were different
for different subjects, tuning optimal parameters by cross-
validation is not realistic, so we empirically searched the
parameter space to obtain the optimal parameters as [13], [22].
λ searched in the range of λ ∈ {0.01, 0.1, 1}, and k searched
in the range of k ∈ {20, 50, 100, 200, 300}. When the highest
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TABLE II
MEAN ACCURACY AND STANDARD DEVIATION (%) OF DATASET1 AND

DATASET2A FOR OUR wMSTJM AND MSTJM, COMPARED

WITH OTHER SOTA METHODS

TABLE III
THE MEAN ACCURACY (%) OF DATASET1 WHEN EACH SUBJECT

IS TAKEN AS THE TARGET DOMAIN IN TURN

average accuracy achieved on each dataset, the optimal param-
eters were fix up, then the experiment repeated ten times to
avoid randomness.

E. Results of MSTJM and wMSTJM
The average accuracies and standard deviation of different

target subject in turn are illustrated in Table II. Bold indi-
cates the optimal result and underlined indicates the subop-
timal result. The results of MSTJM and wMSTJM achieved
85.53 ± 10.80% and 84.03 ± 11.69% in dataset1, and those of
dataset2a can achieve 82.69 ± 10.03% and 80.95 ± 11.17%
respectively. It’s clear that our algorithms outperform all the
other SOTA algorithms in both datasets. The average accuracy
of the MSTJM and wMSTJ methods in two data sets were
4.24% and 2.62% higher than the suboptimal result. Compared
with MEKT [6], which has similar preprocessing steps, our
MSTJM and wMSTJM could obtain better results, especially
in dataset2a. Meanwhile, CA-JDA [47], S-STM [48] and
METL with JDA [17] showed good results on dataset1. S-STM
and semi-STM had suboptimal results in dataset2a, which
also regarded each subject as a source domain to reduce
the difference in the source domains. The main difference
between them lies in how to transfer knowledge in different
subjects. All results demonstrated the necessity of considering
the differences in the source subjects, and the effectiveness of
MSTJM on EEG data with large differences.

To further interpret the results, Table III and Table IV list
the details of each subject when they were taken as the target
domain. ‘S1-S7’ represents 7 subjects in dataset1. The results
are consistent with [5] and [16]. There are obvious individual

TABLE IV
THE MEAN ACCURACY (%) OF DATASET2A WHEN EACH SUBJECT

IS TAKEN AS THE TARGET DOMAIN IN TURN

TABLE V
SIX EXPERIMENTAL SETTINGS AND MEAN ACCURACIES(%)

OF ABLATION EXPERIMENTS

differences in dataset1 and dataset2a, where the results of
S2, S5 in dataset1 and those of S2, S4, S5 in dataset2a
are relatively worse than other subjects. These subjects who
are not proficient in MI are called ‘Bad subject’ [5] or
‘BCI illiteracy’ [3], since they are unable to control the BCI
equipment well. Although many other subjects’ data were
used for knowledge transfer, the results of our MSTL methods
were relatively limited. Thus, it is necessary to develop more
advanced TL methods to overcome individual differences.

V. DISCUSSIONS

A. Ablation Experiments
To figure out which part of the framework works, we did

ablation experiments. The six experimental settings are shown
in Table V, abbreviated as C1-C6. The source-combined
scheme means that all data in the multiple source domains
were combined into a single mixed source. While the multi-
source scheme considers each existing subject as an inde-
pendent source domain to transfer knowledge individually.
Note that the scheme C5 and C6 correspond to MSTJM and
wMSTJM.

The mean accuracies of each target in ablation experiment
are shown in Table V. Obviously, the results of C5 and C6
were much better than those in other cases, especially those
without TL. Compared with C1 and C2, C4 and C5, trans-
ferring each source domain individually gave better results
than combining all source domains. This is consistent with
our hypothesis that the data distribution of source subjects is
different, thus each source need to process separately.

In addition, compared with C2 and C3 in the setting without
TL, weighted voting could improve the decoding performance
than majority voting. However, compared with C5 and C6
in the setting with TL, the mean accuracy of the weighted
scheme in both datasets were worse than those of majority
voting. Further analyzing the results of Table III in dataset1,
the result of ‘S5’ in the wMSTJM was far worse than MSTJM,
about 5%. It’s the same for dataset2a in Table IV, especially
for ‘S5’ and ‘S7’. The weighted scheme is not always effective
against those ‘Bad subjects’. This is because the weights
are directly from the standardized accuracy of 10 calibration
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Fig. 4. The feature distribution visualization of dataset1 for different MI
tasks when subject1 was used as target domain and others as source
domains. Different colors represent features from different subjects,
while different shapes represent subjects in different domains. The blue
circle of S6 is a noise point, marked with a green box.

data of target subject, while the data distribution of them is
significantly different. Moreover, compared with C1 and C2
or C3, the multi-source scheme was superior to the source-
combined scheme. It’s the same to C4, C5 and C6.

To sum up, the effectiveness of MSTJM and wMSTJM
were verified by these ablation experiments. The performance
improvement stems not only from considering the differences
between the source and target domains, but also from con-
sidering the differences between different source domains.
However, when the data distribution is quite significant, this
weighting method will fail. It is worth noting that Eq. (13)
holds only when the outputs of the base models are inde-
pendent of each other [41]. But in our experiments, the base
models established for each subject seem to be relatively
independent, but all of them are used to decode the same MI
decoding problem, which means that there is a strong corre-
lation between the outputs of these base models, so they do
not meet the independence hypothesis. Therefore, in practical
MI application, the results from weighted voting cannot be
guaranteed to be superior to that of majority voting method.
A more adaptive and better weighting method is needed for
MI-BCI.

B. Visualization of Feature Distribution
To further explain the effect of MSTJM and wMSTJM on

distribution, we did feature distribution visualization based on
t-SNE (t-distributed stochastic neighbor embedding) [50]. The
data distribution of dataset1 is intuitively illustrated Fig. 4,
when data of subject1 were used as a target. The SCM features
were vectorized by TSM to form a 1 × 1770 feature, then
it was reduced to 300 after MSTJM. The dimension of all
features was further reduced to two by t-SNE.

In Fig.4(a), the data spatial distribution of left hand MI for
each subject is completely independent. There is an obvious

Fig. 5. The feature distribution visualization of dataset1 when data of
subject 1 were used as target domain and subject 2 as source domains.

noise point, marked with a green box, which is away from
the cluster center for target subject1, abbreviated as T1. After
MSTJM, the effect of noise point is not obvious, and the
distribution of different subjects is relatively reduced. The
data of T1 and S2 are almost overlapped, which indicates
that after MSTJM, the distribution of the two subjects’ data is
relatively close. We also checked the corresponding weights
of calibration data for S2, and it showed the highest accuracy.
Three clusters after MSTJM illustrate that only some data are
similar to the target data, so it’s necessary to select source
domains and data. It’s the same for the MI tasks of right hand.

Moreover, the data distribution of two classes for only two
subjects is also exhibited in Fig. 5, when data of subject1
were used as target domain and subject2 as source domain.
The data distribution of the subjects in the source domain
and the target domain is reduced after MSTJM, which means
the individual difference is reduced. In addition, despite some
mismatching data points, the data from different classes in the
target domain can be separated more easily which is conducive
to classification. For a better classification performance, it is
not only necessary to reduce the intra-class distance, but also
to increase the inter-class distance [51]. Thus, MSTJM and
wMSTJM can further advance classification.

C. Effect of Centroid Alignment
We also used the imagesc to visualize the SCM before and

after CA, as illustrated in Fig. 6. As explained in Section III,
when using Euclidean mean as the reference matrix, the
aligned SCM after CA is approximate to the identity matrix.
The results in Fig. 6 verified this property of CA. Here,
we took the first EEG trial of subject2 in dataset1 and dataset2a
as examples. The left and right columns represent the raw
SCM and the aligned SCM, respectively. It is obvious that
the diagonal elements of SCM are close to 1, while off-
diagonal values are around 0, thus that EEG whitening was
approximately achieved by CA. This property of CA has been
proven before. The marginal probability distribution shift of
EEG trials will be minimized simultaneously for each subject.

Note that CA is used as a preprocessing step, which
is similar to other Riemannian manifold methods, such as
RGA [5], EA [38], EARK [16] and so on. Moreover, we can
also directly match the covariance by calculating the distance
between two matrices [52]. The effectiveness of Riemannian
manifold in the practice of BCI has been verified in the above
researches and many other works. It may become a standard
paradigm for EEG data preprocessing in the future.
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Fig. 6. The SCM before and after CA when taking trial 1 of subject 2 as
an example, where Euclidean mean is reference matrix.

Fig. 7. Accuracy of two baseline methods without TL and MSTMJ,
wMSTMJ with TL in dataset1 and datase2a.

D. Effect of Knowledge Transfer With Limited Data
To further analyze the effect of subject transfer, and confirm

our hypothesis that TL can facilitate MI decoding with limited
data of the target subject, we compared our MSTLs with two
basic methods without TL.

• Baseline 1, SVM was trained using only the labeled
calibration data of target subject, and then the model was
tested using the unlabeled data of target subject.

• Baseline 2, the training samples were mixed data from
calibration data of target subject and labeled data of all
existing subjects in the source domains.

To simulate real-world scenarios when a new subject uses
BCI equipment initially, the number of calibration data was
set to 2, 4, 6, 8 and 10 in sequence. We also verified
the effectiveness of TL simultaneously, when the number of
calibration data increased from 20 to 80 and the step length
increased by 10.

Fig. 7 shows that our MSTLs on both datasets are better
than those without TL, no matter how much labeled data of
the target subjects were taken. Thus, in order to obtain better
decoding performance with a few calibration data, we only
used 10 instances samples of the target subject for calibration.
Moreover, the result of baseline2 is better than those of
baseline 1 when the labeled calibration data is insufficient.

However, with labeled data increase, the results of baseline1
will exceed. This phenomenon is consistent with the results
of [18] and [16].

This is because of the large differences among subjects.
With the increase of target subject’s data, a reliable model can
be trained directly by his own data. Most traditional machine
learning algorithms, such as SVM, hold the assumption of
independent identically distributed (i.i.d.) [11]. When it comes
to the non-i.i.d. data from different subjects, the individual
variability should be reduced by TL methods. It indicates that
there is inter-subject variability among different subjects, and
our MSTLs can not only reduce individual differences, but
also can maintain a relatively stable result with limited data.

VI. CONCLUSION AND FUTURE WORK

This paper proposed two MSTL algorithms, MSTJM and
wMSTJM, to minimize individual differences under the SSDA
setting, which reduces the differences at two levels of instance
and feature. They first align the data distribution of each pair of
subjects in the source domain and target domain, and then fuse
the results of multiple TL models in the decision-making stage.
They not only consider the differences between subjects in the
source domains and the target domain, but also the differences
among subjects in the source domains. We also construct an
inter-subject BCI framework for MI decoding. This framework
consists of three modules: CA, source selection, and data
distribution alignment by MSTJM or wMSTJM. The results of
two public MI datasets demonstrate the superiority of MSTJM
and wMSTJM over other methods.

In the future, we will consider further optimizing our
MSLTs from the following aspects: (1) The limited MI decod-
ing performance may be improved by other deep TL meth-
ods [53], due to the stronger representation ability when using
a larger MI dataset. (2) Domain generalization techniques
could be considered in MI decoding to avoid using labeled
data from the target subject. (3) In order to effectively utilize
the rich information of multi-source domains, an adaptive and
efficient source domain selection method should be adopted
for different target subjects in practice.
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