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Abstract— The early Parkinson’s disease (PD) with mild
cognitive impairment (ePD-MCI) is a typical non-motor
symptom reflected by the brain dysfunction of PD, which
can be well depicted by the dynamic characteristics of
brain functional connectivity networks. The aim of this
study is to determine the unclear dynamic changes in
functional connectivity networks induced by MCI in early
PD patients. In this paper, the electroencephalogram (EEG)
of each subject was reconstructed into the dynamic func-
tional connectivity networks with five frequency bands
based on adaptive sliding window method. By evaluating
the fluctuations of dynamic functional connectivity and the
transition stability of functional network state in ePD-MCI
patients compared with early PD without mild cognitive
impairment patients, it was found that in the alpha band, the
functional network stability of central region, right frontal,
parietal, occipital, and left temporal lobes was abnormally
increased, and the dynamic connectivity fluctuations in
these regions were significantly decreased in ePD-MCI
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group. In the gamma band, ePD-MCI patients showed
decreased functional network stability in the central, left
frontal, and right temporal lobes, and active dynamic
connectivity fluctuations in the left frontal, temporal, and
parietal lobes. The aberrant duration of network state in
ePD-MCI patients was significantly negatively correlated
with cognitive function in the alpha band, which might pave
the way to identify and predict cognitive impairment in early
PD patients.

Index Terms— Parkinson’s disease, mild cognitive
impairment, brain functional connectivity, network state
transition.

I. INTRODUCTION

PARKINSON’s disease (PD) a neurodegenerative disease
in the central nervous system [1], whose clinical man-

ifestations included motor symptoms (bradykinesia, rigidity,
resting tremor, etc.) and non-motor symptoms [2]. About
a quarter of PD patients are diagnosed to be accompanied
with mild cognitive impairment (MCI) [3]. And cognitive
impairment greatly increases the risk of developing dementia
in PD as it progresses [4]. Symptoms such as planning impair-
ment, intellectual disability, and memory impairment caused
by Parkinson’s disease dementia (PDD) will seriously harm
patients’ health [5]. Thus, in order to prevent the occurrence
of PDD more effectively, early research of Parkinson’s disease
with mild cognitive impairment (PD-MCI) is necessary.

Abnormal local electrical activity in the brain of early PD
patients can be detected and recorded by electroencephalogram
(EEG) [6]. It has been shown that Parkinson’s patients have
abnormal changes in certain frequency bands of EEG [7].
Chaturvedi et al. [8] used phase lag index (PLI) to iden-
tify patients with early PD-MCI based on EEG, and the
identification effect was related to EEG frequency bands.
Bousleiman et al. [9] found that patients with PD-MCI had
reduced alpha-band power compared with patients with normal
PD. Therefore, in this study, we analyzed the abnormal brain
dynamic activities of patients in five bands (delta, theta, alpha,
beta, and gamma) of EEG.
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In PD-MCI patients, structural networks of basal ganglia
and frontotemporal-parietal lobe were found to be disrupted
based on a functional Magnetic Resonance Imaging (fMRI)
analysis, and the change of the network may be associated
with functional connectivity structural disturbances in PD-MCI
patients [10]. In addition, Bezdicek et al. [11] also confirmed
that cognitive impairment may lead to disruption of brain
connectivity by observing reduced bilateral parietal and pre-
cuneus connectivity in PD-MCI patients. Considering early
Parkinson’s disease with mild cognitive impairment (ePD-
MCI) is a typical non-motor symptom reflected by dysfunction
of brain network, graph theory can characterize the interrelated
structures of the patients brain to understand the related brain
networks [12]. Based on graph theory, Chaturvedi et al. [8]
found that the PLI had better effect than frequency measure-
ment, and Suarez et al. [13] found that PD-MCI patients had
reduced functional connectivity in the alpha and delta bands.
The static functional connectivity which is used frequently
assumes that statistical dependencies between different brain
regions remain stable over time in the resting state [14].
However, the inside of the brain is active and organized, albeit
in the resting state [15], [16]. The dynamic functional network
represents the non-stationary patterns of brain state during the
temporal evolution of brain function, describing the topology
of the network on spatial scale and the dynamic fluctuation on
temporal scale [17]. Hence, dynamic functional connectivity
(dFC) is worthing to be explored. To this end, we investigated
the dFC patterns of ePD-MCI on the millisecond timescale.
Based on dFC, Diez-Cirarda et al. [18] found that PD-MCI
patients had an increased number of state transitions in low
functional connectivity state and network instability state com-
pared with healthy control (HC). Therefore, some dynamic
network parameters reflecting the state transition of brain
network can be used as biomarkers to judge PD-MCI patients.
In this work, we used transitional stability to characterize brain
dynamic functional networks (DFNs) and to find abnormal
changes in different regions of the brain in patients with
ePD-MCI.

MCI is more common in early PD. In the middle and
late stages of PD, cognitive impairment often develops into
dementia with temporal evolution. Thus, to investigate the
effect of MCI in PD on the temporal evolution of DFNs in
the brain, this work aims to understand the differences in
brain activity underlying ePD-MCI symptoms and to obtain
the potential biomarker of ePD-MCI by analyzing abnormal
fluctuations of brain functional connectivity and network state
transitions associated with ePD-MCI. Further combining the
results with clinical neuropathological scores to pave the
way to identify and predict cognitive impairment in early
PD patients.

II. MATERIALS AND METHODS

A. Subjects
In our work, 33 patients with primary PD and 13 HC were

recruited from Tianjin Medical University General Hospital.
All patients had early PD with Hoehn and Yahr (H&Y)
stage I-II. All patients were asked to interrupt their medication

TABLE I
BASIC INFORMATION OF PARTICIPANTS

12 hours before collecting the EEG signals to rule out any
effect of medication on the results. All patients ensured no
head tremors when collecting EEG to exclude interference.
Patients with cerebrovascular disease and cognitive impair-
ment within two years of PD diagnosis were excluded. All
patients took part in cognitive function tests. According to
the Montreal Cognitive Assessment (MoCA) scale, the score
between 21 and 25 was defined as MCI, and the score between
26 and 30 was defined as cognitively normal. According to this
criterion, PD patients were divided into two groups: 13 patients
with ePD-MCI and 20 patients with early Parkinson’s dis-
ease without mild cognitive impairment (ePD-nMCI). Table I
recorded the basic information of subjects in the three groups.
The differences between ePD-MCI and ePD-nMCI patients
were analyzed by ANOVA method. And the only significant
difference between the two groups was on the MOCA scale.
The local ethics committee approved the work, and the work
obtained informed consent from the subjects, which was in
accordance with the Helsinki Declaration.

B. EEG Acquisition and Preprocessing
The EEG acquisition equipment in this experiment was an

amplifier (Symtop, Beijing, China) and the silver chloride
powder electrode cap. The sampling frequency of the amplifier
was 500Hz. According to the international 10-20 system of
Electrode, a total of 19 EEG signals were collected. In addi-
tion, four additional signal channels (above and below the
eyes, left and right temples) were collected to record horizontal
and vertical electrooculogram (EOG) respectively, which were
used to monitor the eye movement and blinking of subjects
during the collection process, so as to remove ocular artifacts
during preprocessing. The subjects were asked to lie flat in
a quiet and dim room, close their eyes and stay awake. And
then they wore an electrode cap to collect resting EEG signals.
The EEG collection time of each subject was more than
15 minutes.

The collected EEG signals were preprocessed with
MATLAB 2018b (MathWorks Inc., Natick MA, United
States). The collected scalp brain electrical signals had high-
frequency interference of equipment noise, so it was necessary
to filter out the noise. The zero-phase shift filtering that does
not change the phase relationship of EEG data was used to
determine the spectral range from 1 to 45Hz [19]. In the work,
fastICA (fast Independent Component Analysis) algorithm
was used to extract the relevant independent components
from the 19-channel EEG signals, and the pearson correlation
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Fig. 1. Fluctuation analysis of the dFC. (A) The surrogate data produced by AAFT. (B)-(C) DFNs were created using several PLI windows based
on authentic EEG and surrogate data. By analyzing the standard deviation of PLI sequence between p and q channels in each time window, the
dynamic changes of brain connectivity between the respective channels were determined. (D) Calculating the ratio of the standard deviation of the
real data and the standard deviation of the surrogate data to obtain the real fluctuation of the brain dynamic functional connectivity, which denotes
as kPLI. (E) Network state transition analysis.

coefficient was used to calculate the correlation between each
component and the horizontal and vertical EOG [20]. The
component with the absolute value of correlation coefficient
greater than 0.5 was considered to have strong correlation
with the collected EOG, and the component strongly correlated
with EOG was set to zero and filtered out. Finally, the large
noise interference which was difficult to be eliminated by the
algorithm was removed by artificial eyes. The preprocessed
EEG signals were divided into five frequency bands by zero-
phase shift filtering, which were delta band (1-4Hz), theta band
(4-8Hz), alpha band (8-13Hz), beta band (13-30Hz), and
gamma band (30-45Hz) [21]. And we analyzed the character-
istics of dynamic brain functional network based on the five
sub-bands.

C. Construction of the DFNs Based on Adaptive
Sliding Window

In this paper, an adaptive sliding-window method based
on empirical mode decomposition (EMD) was used to esti-
mate the local stationary process of dynamic brain activ-
ity in patients. The EMD method has an effective ability
to characterize the local transient feature of time-varying
nonlinear and non-stationary signals. Moreover, the sliding
window extracted by EMD is adaptively determined according
to the data. The DFNs constructed by different individuals
are different, which is more helpful to capture information
with significant differences in the time-varying process [22].
Time-dependent sliding-windows are determined based on
the frequency content of each time point of the data itself
without any prior information. The research has proved that

the single-scale time-dependent window size captures the time-
related period (reciprocal of frequency) information at each
time point, and the results showed that this adaptive window
method can capture more dynamic information related to
behavioral and cognitive functions. The definition of EMD
and the calculation method of time-dependent windows were
given in the supplementary material. Zhuang et al. [23] have
demonstrated the effectiveness of this method. Based on the
adaptive sliding-window method, the process of constructing
DFNs was from Fig. 1A to B. And the number and lengths
of windows divided by the data in this paper were described
in Tables I and II of the supplementary material.

Then, we constructed the DFNs through P L I based
on adaptive sliding window. P L I was proposed by
Stam et al. [24], whose main purpose is to obtain reliable
estimates of phase synchronization. P L I is used to calculate
the degree of phase coupling between two time series, which
is obtained by calculating the instantaneous phase of the EEG
signal and the asymmetry of the phase difference distribution
between the two signals. The formula is shown below

P L I = |⟨sign [1φ (tk)]⟩| , k = 1, 2, . . . , N (1)

where 1φ (tk) is the time series of phase differences calculated
at N time points. The range of P L I is from 0 to 1. With
the increase of P L I , the coupling strength between signals
increases gradually. P L I = 0 indicates no phase difference or
no coupling centered around 0 mod π and P L I = 1 means a
perfect phase locking around 0 mod π . And we obtained DFNs
for each subject, which was a P L I matrix of 19*19*N , where
N was the number of windows.
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D. Fluctuation Analysis of the dFC
The diagram of fluctuation analysis of the dFC was shown

in Fig. 1A-D.
By calculating the standard deviation of P L I sequence

between channels in each time window throughout the
dynamic process of DFNs, the dynamic fluctuation character-
istics of brain connectivity between corresponding channels
were characterized. However, the noise of EEG signals was
likely to cause random fluctuations in functional connectiv-
ity. Therefore, when analyzing the fluctuations of dFC in
ePD-MCI patients and ePD-nMCI patients, the fluctuations
of functional connectivity based on the true EEG signals of
subjects were not enough to prove the existence of dFC.
In order to observe whether the fluctuation of functional
connectivity can reflect the real dFC, surrogate data was
introduced to solve this problem (see Fig. 1A). We evaluated
the authenticity of fluctuations by selecting an appropriate
zero model to represent a stationary process. Based on the
surrogate data under the same sliding window, a functional
network was established to calculate the dynamic fluctuation
of the functional connectivity of the surrogate data. In this
paper, the amplitude adjusted Fourier transform (AAFT) was
chosen to construct zero model [25]. The AAFT method
was used to generate 20 sets of surrogate data corresponding
to the true EEG, and the corresponding surrogate data was
divided according to the sliding-window determined by the
corresponding true EEG sequence, and the DFNs based on
P L I were also constructed. The surrogate data also calculated
dynamic fluctuation characteristics in the same way as the true
EEG and the mean fluctuation of 20 groups of surrogate data
was calculated (see Fig. 1B and C). Then we calculated the
ratio of the standard deviation of the real data and the standard
deviation of the surrogate data, denoted as kP L I shown in
Fig. 1D. kP L I is given by

kP L I (p, q) =
σ

(
Atrue (p, q)

)
1/M

∑M
i=1 σ

(
Arand

i (p, q)
) (2)

where A represents the DFNs which is P L I matrix of
19*19*number of windows, p and q are the indexes of
EEG channels, and M is the group number of surrogate data
generated. The kP L I of p channel is the average of the column
with p as the abscissa. And the whole brain kP L I is the
average of all channels. The kP L I compares fluctuations of
true data with fluctuations of random data, which can be used
to see if there are real fluctuations in dynamic brain functional
connectivity. The larger the value is, the stronger the dynamic
fluctuation of functional connectivity is.

E. Network State Transition Analysis
The diagram of network state transition analysis was shown

in Fig. 1E.
1) Time-by-Time Graph: In the process of constructing the

time-by-time graph [26], we defined time in the form of P L I
sequences in DFNs. The edges of the time-by-time graph
represented the DFNs time points, while the points on the
graph represented the similarity between the associated DFNs
at various time points. The similarity between networks was

calculated by distance measure, and the distance measure here
was Frobenius norm [27]. The smaller the distance measure
is, the higher the similarity is. And for each channel i , the
formula is as follows:

dF(i) (A (t1) , A (t2)) = ∥A (t1) − A (t2)∥F(i)

=

√√√√√ N∑
j=1

(
ai j (t1) − ai j (t2)

)2 (3)

where t represents the number of windows in DFNs, A rep-
resents the DFNs of each subject, a represents the functional
network between channels, i and j are the indexes of EEG
channels, and N is the total number of channels. Each channel
of subject got a time-by-time graph W , which provided the
necessary information to reveal the same brain state in the
evolution process of dynamic brain functional network [28].

2) Recurrence Plot: According to the obtained time-by-time
graph, the threshold value ϵ of the time-by-time graph W
needs to be determined, which represents the upper limit
of similarity between networks. When the distance measure
is less than ϵ, it means that the brain functional networks
corresponding to the two nodes are similar and belong to the
same state, and the point of the time-by-time graph Wi j is set
as 1. When it is greater than ϵ, the Wi j is set as 0, and the
recurrence plot (RP) is finally obtained. By using this method,
the recurrence matrix R for each subject’s DFNs is given by

Ri, j =

{
1, Wi j < ε

0, Wi j > ε
(4)

where i and j represent the brain functional network at
different moments. Wi j represents the distance measure of
functional network at moment i and moment j .

3) Recurrence Quantification Analysis: Two types of recur-
rence quantification analysis (RQA) parameters were selected
for this work [29], i.e. the recurrence rate (R R) and the
trapping time (T T ). R R is expressed by

R R =
1

N 2

N∑
i, j=1

Ri, j (5)

where N represents the total number of brain functional
networks at different times. R R is used to measure the number
of occurrences of particular state in RP. The higher the R R
is, the more stable the network state transition is.

T T is used to estimate the average time to stay in par-
ticular state during the dynamic evolution of brain functional
networks. The expression is given by

T T =

∑vmax
v=vmin

vP(v)∑vmax
v=vmin

P(v)
(6)

where v is the length of the vertical line in RP, and P(v) is
the total number of vertical lines in RP of length v, which is
given by

P(v) =

N∑
i, j=1

(
1 − Ri, j−1

) (
1 − Ri, j+v

) v−1∏
k=0

Ri, j+k (7)
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A larger T T indicates a longer time for the same state to
continuously appear on the network. Based on the above
method, the R R and T T of one channel are got, and the
R R and T T of the whole brain are the average values of
all channels.

4) Threshold Selection: In the calculation of R R and T T ,
different thresholds may have different effects on the results of
analyzing the differences between ePD-MCI and ePD-nMCI
patients. A smaller threshold may not observe the occurrence
of repeated states (when the threshold value is less than 0.5,
no repeated states can be observed in our work), whereas a
larger threshold may cause dissimilar network states to be
classified into similar states (when the threshold value is larger
than 3, the network is almost always similar in our work).
In the work, the threshold value was determined in the range
from 1 to 3 during the construction of the RP, and the step size
was increased by 0.5, and we finally determined five different
thresholds. The RQA of the RP under different thresholds
was carried out, and the R R and T T of the RP under the
five sub-bands were obtained. In order to find the optimal
threshold across all frequency bands to avoid the confusion of
multiple thresholds caused by the selection of thresholds for
different frequency bands, R R and T T in the five sub-bands
were used as the subjects’ features together. Because this paper
focused on analyzing the influence of MCI on ePD patients,
ePD-MCI and ePD-nMCI patients were classified by support
vector machine (SVM) [30], and 5-fold cross-validation was
performed. Since ten parameters (R R and T T in the five sub-
bands) of 33 ePD patients were used as features, the size of
the SVM input feature vector was 33 * 10. Take MCI as the
label, and the size of the label was 33 * 1. We evaluated the
accuracy (ACC) and area under curve (AUC) values to find
the optimal threshold. The higher the value of ACC and AUC,
the better the classification effect.

F. Statistical Analysis
Statistical analysis was used to quantify the between-group

differences in DFNs analysis for subjects with different cog-
nitive levels. The differences between groups were compared
by the independent sample t-test. Spearman’s correlation was
used to evaluate the correlation between obtained parameters
and MoCA scores. In order to control type I error caused by
multiple comparisons due to the comparison of multiple sub-
bands and electrodes, the false discovery rate (FDR) method
was used to correct the statistical results. pFDRcorrected <

0.05 indicates significant difference or significant correlation.

III. RESULTS

Overall, the dynamic network fluctuations were significantly
different in the delta, alpha, and gamma bands between
ePD-MCI and ePD-nMCI patients (Fig. 2). Specifically, in the
delta band, the dynamic network fluctuation in ePD-MCI
patients was significantly higher than that in ePD-nMCI
patients. (t = 2.171, p = 0.038 with FDR corrected).
In the alpha band, the dynamic network fluctuation in ePD-
nMCI patients was significantly higher than that in HC sub-
jects (t = 2.580, p = 0.037 with FDR corrected), which

Fig. 2. Dynamic fluctuation analysis of global brain functional connec-
tivity network in the five frequency bands (delta, theta, alpha, beta, and
gamma). The analyses among ePD-MCI patients, ePD-nMCI patients,
and HC were based on kPLI. The p values corrected by FDR with
significant differences were shown at the top of the figure in red.
Asterisks (*) denoted p < 0.05; (**) denoted p < 0.01. Detailed p-values
were shown in Supplementary Table III.

may be generated by PD. In addition, although there was
no significant difference in the dynamic network fluctuation
between HC group and ePD-MCI group, it was evident that
the dynamic network fluctuation of ePD-MCI patients was
markedly smaller than that of ePD-nMCI patients due to the
effect of MCI (in the alpha frequency band: ePD-MCI vs.
ePD-nMCI, t = −2.572, p = 0.015; ePD-MCI vs. HC,
t = 0.330, p = 0.930 with FDR corrected). It indicated that
MCI significantly reduced the dynamic network fluctuation
in the alpha band in early PD patients. Furthermore, the
opposite changes were also observed in the gamma band.
The fluctuation of dynamic functional network in ePD-nMCI
patients was significantly lower than that in HC (t = −4.554,
p < 0.001 with FDR corrected), which indicated PD caused
a significantly decrease in the dynamic network fluctuation in
the gamma band. Interestingly, although the dynamic network
fluctuation of ePD-MCI patients was also significantly lower
than that of HC subjects, it was significantly higher than
that of ePD-nMCI patients (in the gamma frequency band:
ePD-MCI vs. ePD-nMCI, t = 2.369, p = 0.024; ePD-MCI
vs. HC, t = −2.912, p = 0.038 with FDR corrected),
which indicated that MCI significantly increases the dynamic
network fluctuation in the gamma band in early PD patients.

In each frequency band, the p-value of kP L I between
each pair of channels was shown in Supplementary Fig. 1.
In order to represent the changes more clearly in brain regions
with each channel, the average kP L I of one channel and
the other 18 channels was compared as the kP L I of this
channel. As shown in Fig.3, in the left frontal, left tempo-
ral, left parietal, and occipital lobes in the delta and theta
bands, the dynamic fluctuation of functional connectivity in
ePD-MCI patients was apparently higher than that in ePD-
nMCI patients. Importantly, in the alpha band, the dynamic
fluctuation of functional connectivity in ePD-nMCI patients
was considerably increased throughout the entire posterior
hemisphere in comparison to HC due to the effect of PD. And
the fluctuation of dFC in ePD-MCI patients was significantly



YI et al.: CAPTURING THE ABNORMAL BRAIN NETWORK ACTIVITY IN EARLY PD-MCI BASED ON dFC 1243

Fig. 3. The kPLI analysis in each electrode in the five frequency
bands. The colors in the topographic map on the left represented the
average kPLI parameter magnitudes at the corresponding electrodes for
different groups of subjects. In each column on the right, the red point
indicated that the fluctuation of dFC in the former group was significantly
higher than that in the latter group, and the blue point indicated that
the fluctuation of dFC in the former group was significantly lower than
that in the latter group. The red box corresponded to the comparation
between ePD-MCI and ePD-nMCI groups. The green box corresponded
to the comparation between ePD-MCI and HC groups. The blue box
corresponded to the comparation between ePD-nMCI and HC groups.
The size of the point showed the different levels of significance. The
large points represented p < 0.01, and the small points represented
p < 0.05. For multiple comparisons, FDR correction was performed for
p values. The topography map of kPLI for each subject was shown in
Supplementary Fig. 2.

lower than that in ePD-nMCI patients in the central region,
parietal, occipital, right frontal, and left temporal lobes in the
alpha band, which might be generated by MCI. By the effect
of PD and MCI, there was no significant difference between
ePD-MCI patients and HC. Moreover, in the gamma band, the
dynamic fluctuation of functional connectivity in ePD-nMCI
patients was markedly lower than HC subjects in all regions
due to PD. The fluctuation of dFC in left frontal, temporal,
and parietal lobes of ePD-MCI patients in the gamma band
was significantly higher than that in ePD-nMCI patients.
Based on that, there were less significant differences in left
frontal and temporal lobes between ePD-MCI patients and HC
subjects. Through the analysis of the fluctuation of dFC in the
whole brain and different brain regions, it was found that the
dynamic fluctuations of functional connectivity in early PD
were generally increased in delta and gamma bands, which was
induced by MCI, and these changes mainly occurred in the left
frontal, temporal, and parietal lobes. Whereas the fluctuation
of dFC in early PD without MCI were obviously decreased in
the central, parietal, occipital, right frontal, and left temporal
lobes in the alpha band.

When analyzing the state transition of DFNs, it was neces-
sary to determine the threshold value to construct the RP by
time-by-time graph. We used SVM to calculate ACC and AUC
between ePD-MCI and ePD-nMCI groups, and combined a
total of 10 parameters of R R and T T in five frequency bands

TABLE II
THE CLASSIFICATION RESULTS UNDER THE FIVE THRESHOLDS BASED

ON SVM BETWEEN EPD-MCI AND EPD-NMCI GROUPS

Fig. 4. Analysis of whole-brain RR in the five frequency bands. The
analyses among ePD-MCI patients, ePD-nMCI patients, and HC sub-
jects were based on RR. The p values corrected by FDR with significant
differences were shown at the top of the figure in red. Asterisks (*)
denoted p < 0.05; (**) denoted p < 0.01. Detailed p-values were shown
in Supplementary Table IV.

in each patient into a feature vector as the input of SVM
under each threshold. The size of the input feature vector was
33*10. The mean and standard deviation of ACC and AUC
between ePD-MCI and ePD-nMCI groups under different
thresholds were shown in Table II. From the classification
results, we found that ACC and AUC under threshold 1 were
generally higher than other conditions. It meant that there was
a greater difference in R R and T T between ePD-MCI and
ePD-nMCI patients when the threshold was 1. Therefore, the
threshold value of 1 was selected to construct the RP.

R R and T T of the whole brain in different frequency bands
were obtained according to the RP. As a whole, the RR values
in ePD-MCI patients were significantly higher than those in
ePD-nMCI patients (Fig. 4). In the delta and beta bands, it was
found that the R R in both ePD-MCI and ePD-nMCI patients
was significantly lower than that of HC (in the delta frequency
band: ePD-MCI vs. HC, t = −4.905, p < 0.001; ePD-nMCI
vs. HC, t = −5.282, p < 0.001; in the beta frequency
band: ePD-MCI vs. HC, t = −3.035, p < 0.014; ePD-
nMCI vs. HC, t = −2.129, p = 0.041 with FDR corrected).
Additionally, when compared with HC, the R R in ePD-nMCI
patients was significantly lower in the theta band (t = −2.184,
p = 0.041 with FDR corrected) and higher in the gamma band
(t = 2.287, p = 0.041 with FDR corrected). Interestingly,
there was no discernible difference between ePD-MCI and
ePD-nMCI patients in the above four bands (in the delta
frequency band: t = 0.156, p = 0.877; in the theta frequency
band: t = −0.540, p = 0.593; in the beta frequency band:
t = −0.728, p = 0.472; in the gamma frequency band:
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Fig. 5. The RR analysis in each electrode in the five frequency
bands. The analyses among ePD-MCI patients, ePD-nMCI patients,
and HC subjects were based on RR. The colors in the topographic
map on the left represented the average RR parameter magnitudes at
the corresponding electrodes for different groups of subjects. In each
column on the right, the red points represented the positions in which
the RR of DFNs in the former group was significantly higher than that
in the latter group. And the blue points represented the positions in
which the RR of DFNs in the former group was significantly lower than
that in the latter group. The red box corresponded to the comparation
between ePD-MCI and ePD-nMCI groups. The green box corresponded
to the comparation between ePD-MCI and HC goups. The blue box
corresponded to the comparation between ePD-nMCI and HC groups.
The size of the point showed the different levels of significance. The
large points represented p < 0.01, and the small points represented
p < 0.05. For multiple comparisons, FDR correction was performed for
p values. The topography map of RR for each subject was shown in
Supplementary Fig. 3.

t = −2.002, p = 0.054 with FDR corrected). It indicates
that PD causes the above-mentioned decrease of R R in delta,
theta, and beta bands, and the increase of R R in the theta
band. It was worth noting that in the alpha band, the R R
in ePD-nMCI patients was much lower than HC due to the
effect of PD (t = −2.606, p = 0.035 with FDR corrected).
Whereas the RR in ePD-MCI patients in the alpha band was
significantly greater than patients with ePD-nMCI (t = 4.800,
p < 0.001 with FDR corrected), and it was not significantly
different from that in HC (t = 1.096, p = 0.355 with FDR
corrected), which suggested that MCI significantly decreased
the network transition stability in the alpha band in early
PD patients.

We found that there were significant differences in R R
of the whole brain network states between ePD-MCI and
ePD-nMCI patients in the alpha band. There were significant
differences between ePD-MCI and ePD-nMCI patients in
alpha and gamma bands (Fig. 5). It was found that in
the alpha band, R R significantly decreased in ePD-nMCI
patients in the central region and parietal lobe compared
with HC, whereas the R R considerably increased in the right
frontal, left temporal, central, parietal, and occipital lobes in
ePD-MCI compared with ePD-nMCI patients, making the R R
in ePD-MCI patients considerably higher in right parietal and

Fig. 6. The analysis of whole-brain TT in the five frequency bands.
(a)-(e) The analyses of differences among ePD-MCI patients, ePD-nMCI
patients, and HC were based on TT. The p values corrected by FDR
with significant differences were shown at the top of the figure in red.
Asterisks (*) denoted p < 0.05; (**) denoted p < 0.01. Detailed
p-values were shown in Supplementary Table V. (f) Spearmans cor-
relation analysis between TT values and MoCA scores of ePD-MCI
patients in the alpha band. For multiple comparisons, FDR correction
is performed for p values. And the results with significant differences
were highlighted in red.

occipital lobes than that in HC. It suggested that the network
transition stability in early PD was abnormally increased in the
right frontal, left temporal, central, parietal, and occipital lobes
in the alpha band by the effect of MCI. Although there was
no significant difference in R R in the whole brain between
ePD-MCI and ePD-nMCI patients in the gamma band, the
R R in the left frontal, central, and right temporal lobes in
the gamma band in ePD-MCI patients was significantly lower
than that in ePD-nMCI patients. Additionally, associated with
the increase in R R between ePD-nMCI patients and HC in
the frontal and central regions in the gamma band generated
by PD, there was no significant difference between ePD-MCI
patients and HC subjects. It indicates that in the gamma
band, MCI leads to the aberrant decrease in network transition
stability in frontal and central regions in early PD patients.

As shown in Fig. 6, the T T between ePD-MCI and ePD-
nMCI patients varied widely in alpha and gamma bands.
Specifically, in the alpha band, the T T of the whole brain in
ePD-nMCI patients was considerably higher than that in HC
(t = 8.917, p < 0.001 with FDR corrected), caused by the
effects of PD. In addition, the T T in ePD-MCI patients was
noticeably higher than ePD-nMCI patients in the alpha band
(t = 4.251, p < 0.001 with FDR corrected), and obviously,
it was also significantly higher than that in HC (t = 14.331,
p < 0.001 with FDR corrected), which might be generated
by MCI. In the gamma band, the T T in ePD-nMCI patients
was significantly higher than that in HC due to the effect
of PD (t = 3.887, p = 0.001 with FDR corrected). And
there was no significant difference between HC subjects and
ePD-MCI patients (t = 1.577, p = 0.320 with FDR corrected)
based on the ePD-MCI patients’ considerably lower T T in the
gamma band compared to ePD-nMCI patients (t = −3.641,
p = 0.004 with FDR corrected). It indicated that the duration
of network state was abnormally increased in the alpha band
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Fig. 7. The analysis of TT in each electrode in the five frequency
bands. The colors in the topographic map on the left represented the
average TT parameter magnitudes at the corresponding electrodes for
different groups of subjects. In each column on the right, the red points
represented the positions in which the TT of DFNs in the former group
was significantly higher than that in the latter group. And the blue points
represented the positions in which the TT of DFNs in the former group
was significantly lower than that in the latter group. The red box corre-
sponded to the comparation between ePD-MCI and ePD-nMCI groups.
The green box corresponded to the comparation between ePD-MCI and
HC groups. The blue box corresponded to the comparation between
ePD-nMCI and HC groups. The size of the point showed the different
levels of significance. The large points represented p < 0.01, and the
small points represented p < 0.05. For multiple comparisons, FDR
correction was performed for p values. The topography map of TT for
each subject was shown in Supplementary Fig. 4.

and abnormally decreased in the gamma band in early PD
patients by MCI. For correlation analysis, in the alpha band,
we observed that the T T of ePD-MCI patients was nega-
tively correlated with the MoCA scale scores (r = −0.713,
p = 0.031 with FDR corrected).

As shown in Fig.7, in the alpha band, we discovered that the
T T in ePD-nMCI patients was considerably higher than that
in HC throughout the whole brain regions due to the effect of
PD. With the significant increase in T T in ePD-MCI patients
in the frontal, parietal, central, and occipital lobes, ePD-MCI
patients T T was considerably higher than HC in the whole
brain in the alpha band. Similarly, ePD-nMCI patients showed
a statistically significant increase in T T throughout these
regions when compared to HC in the gamma band. In contrast
to the alpha band, there was no significant differences between
ePD-MCI patients and HC in the gamma band, while the
significant decreases in T T were existed in ePD-MCI patients
compared to ePD-nMCI patients in the almost whole brain.
It was represented that according to the network state duration
in early PD patients, MCI caused the significant increase in
the frontal, parietal, central, and occipital lobes in the alpha
band, and the significant decrease in the whole brain in the
gamma band.

In the analysis of fluctuation about dFC, it was found that
the fluctuation in the central, parietal, occipital, right frontal,
and left temporal lobes in ePD-MCI patients was significantly

Fig. 8. (a) Spearmans correlation analysis between RR and kPLI in
alpha and gamma bands. (b) Spearmans correlation analysis between
TT and kPLI in alpha and gamma bands. FDR correction was performed
for p values, and the results with significant differences were highlighted
in red.

lower than that in ePD-nMCI patients in the alpha band, and
the fluctuation in left frontal, temporal, and parietal lobes
of ePD-MCI patients in the gamma band was significantly
higher than in ePD-nMCI patients. This was consistent with
the stability analysis of network state transition, so it was
suspected that the stability of network state transition might
be caused by the fluctuation of dFC. Therefore, Spearman’s
correlation analysis was conducted respectively for whole-
brain R R, T T , and kP L I of all participants (all PD patients and
HC subjects) in alpha and gamma bands, as shown in Fig. 8.
R R and kP L I had significant negative correlation in both alpha
and gamma bands, indicating that the increased fluctuation
of dFC leads to more frequent internal DFNs switching. The
correlation between R R and kP L I indicated that the fluctuation
of functional connections affected the stability of network state
transition. However, there was no correlation between T T and
kP L I in the alpha band. The analysis results indicated that
the fluctuation of dFC might lead to frequent network state
switching, but did not affect the duration of state switching.

IV. DISCUSSION

To explore the specificity of brain network in ePD-MCI
patients, a comparative work was carried out in this work
in ePD-MCI, ePD-nMCI, and HC groups. By constructing
the DFNs using EEG data, the fluctuations and state transi-
tion of dFC were analyzed. The main results of this paper
were summarized in Supplementary Fig. 5.The results showed
that, the abnormal fluctuation of dFC between ePD-MCI
and ePD-nMCI was related to rhythm, and the abnormal
fluctuation of dFC was a process from significant rise to
significant fall and then to significant rise with the increase
of the rhythm in the five sub-bands. In our work, it was
found that the excessively stable and hyperactive states were
abnormal phenomena of the ePD functional network affected
by MCI in different rhythms, which may affect the effective
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information integration of different functional brain regions.
Based on the correlation between R R and kP L I , it was found
that the increase in the fluctuation of dFC between regions
corresponded to the decrease in the stability of the dynamic
network, and similarly, the decrease in the dynamic fluctuation
corresponds to the increase in the stability of the network.
There was significant negative correlation between kP L I and
R R in the alpha band and gamma band, indicating that the
fluctuation of dFC affected the DFNs stability.

In comparison to HC, it was shown that ePD-nMCI
patients had higher kP L I and lower R R in the alpha band.
Conti et al. [21] found that some cortical regions of early
PD patients began to establish or increase connectivity with
other regions in the alpha band to make up for the defects
caused by PD, which accorded with our findings that the
fluctuation of dFCs of ePD-nMCI patients was higher than
that of HC in the alpha band. Evangelisti et al. [31] found
that the posterior cingulate was the primary driving region
of the functional connectivity of early PD patients in the
alpha band. The abnormal drives in brain might lead to
our findings of increased fluctuation of dFCs in the whole
posterior hemisphere of ePD-nMCI patients in the alpha band.
Li et al. [32] discovered that the clustering coefficient and
local efficiency of the EEG-based brain network in the alpha
band in PD patients were significantly reduced, suggesting
that their brain networks were more fragile and unstable than
those of HC. On the other hand, it was reported that PD
patients gamma band efficiency had increased overall [21].
It was consistent with the opposite findings, which showed
that ePD-nMCI patients had higher R R and lower kP L I in the
gamma band when compared to HC subjects. Moreover, the
T T of ePD-nMCI patients was increased significantly in both
alpha and gamma bands, which is consistent with studies that
the EEG of PD patients slows down, especially in the alpha
band [33].

Based on the differences between ePD patients and healthy
controls, we paid close attention to the significant changes
between ePD-MCI and ePD-nMCI patients. In the alpha
band, the fluctuation of dFC decreased in the right frontal,
left temporal, parietal, central, and occipital lobes, and the
stability of network transition and duration of network state
increased in those regions in ePD-MCI group. They might
be caused by cognitive impairment affecting ePD patients,
and might serve as the potential physiological marker. The
decrease in alpha rhythm and alpha band energy in the brains
affected by cognitive impairment might be the reason for the
overall decrease in functional connectivity fluctuations and
the increase in network transition stability in the alpha band
in ePD-MCI patients. It was discovered that the functional
connectivity of alpha band in PD patients was gradually
decreased and interrupted with the deterioration of cogni-
tive ability [34]. According to sen Bhattacharya et al. [35],
Alzheimer’s disease (AD) caused the brain’s alpha rhythms to
slow down and its alpha band power to decline. In the process
of decreasing alpha power, the brain maintained the stability
of alpha band by local compensation [36], which might lead to
the increase in network transition stability. Decrease in alpha
rhythm activity was also identified as one of the biomarkers to

distinguish PD patients with normal cognition from PD with
MCI [37]. The decreased state transition and increased state
residence time that we found were associated with PDD [38].
Furthermore, we found the abnormally increased fluctuation
of dFC in the gamma band. van Deursen et al. [39] suggested
that the increased gamma-band rhythm in AD patients may
be the reason for the excessive activation of the brain net-
work. Additionally, they found an increase in the coupling
strength between the gamma and the low-frequency bands
in frontal and parietal regions, suggesting a reduction in the
brain network complexity. This is consistent with our finding.
In addition, we found that the functional network of ePD-MCI
patients in the gamma band was in non-stationary mode,
which was specifically manifested in the decline of network
transition stability and network state duration. These changes
in ePD-MCI may be due to the brain overcompensating for the
functional defects, which leads to the damage of inhibitory
neurons, thus causing the excessive neuron activity at high
frequency bands [40] to produce the dynamic non-stationary of
the network. Similarly, the over coupling found in the gamma
band of AD patients indicated that the network complexity was
weakened, which meant that more neural resources need to be
used [39]. Excessive local neuronal activity has been shown
to increase amyloid-Â deposition [41]. The neuropathologi-
cal mechanism analysis of the cognitive impairment in PD
suggests that the decrease in cognitive function in PD may
be related to the occurrence of pathological amyloid-β [42].
Taken together, these discussions explain that MCI can lead
to abnormal changes in the dynamic characteristics of brain
functional connectivity network in alpha and gamma frequency
bands in early PD patients.

In our selected subjects, we did not find a significant
difference in age between ePD-MCI patients and ePD-nMCI
patients, ruling out a potential confounding effect of age on
the results of the analysis. There were also some limitations in
this paper. The assessment of subjects’ cognitive degree was
only based on MOCA, and more detailed neuropsychological
assessment was lacking. Whether the results of our study can
be used as a diagnostic test basis for PD-MCI population,
the external validity still requires in-depth cooperation with
hospitals to obtain new data and conduct repeated tests to
verify it.

V. CONCLUSION

We revealed the characteristics of dynamic brain functional
network in ePD-MCI. The fluctuation of the dFC and the sta-
bility of state transition based on DFNs in each EEG frequency
band were calculated to evaluate the state changes of different
brain regions in ePD-MCI patients. In the alpha band of EEG,
we observed that compared with ePD-nMCI group, the kP L I of
patients with ePD-MCI was significantly decreased in the right
frontal, left temporal, central, parietal, and occipital lobe, while
R R and T T were significantly increased in these regions.
It indicated that in ePD-MCI patients, the dynamic connec-
tivity fluctuation of those regions was abnormally decreased
and the stability of functional connectivity networks was
abnormally increased in EEGs alpha band. In contrast, in the
gamma band of EEG, the kP L I was significantly increased
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and the T T was significantly decreased in ePD-MCI patients,
which suggested that the functional network in ePD-MCI
patients was found to be in a non-stationary mode. The regions
of the brain with abnormally increased fluctuation of dynamic
connectivity mainly concentrated on the left frontal, temporal,
and parietal lobes. And the stability of functional network was
decreased in the central, left frontal, and right temporal lobes.
The aberrant duration of network state in ePD-MCI patients
in the alpha band was significantly negatively correlated with
cognitive function (r = −0.713, p = 0.031 with FDR
corrected), which might pave the way to identify and predict
cognitive impairment in early PD patients.
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