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Operator State in a Workplace Simulation
Modulates Eye-Blink Related EEG Activity
Emad Alyan , Edmund Wascher, Stefan Arnau, Ruth Kaesemann, and Julian Elias Reiser

Abstract— Evaluating and understanding the cognitive
demands of natural activities has been difficult using
neurocognitive approaches like mobile EEG. While task-
unrelated stimuli are commonly added to a workplace
simulation to estimate event-related cognitive processes,
using eyeblink activity poses an alternative as it is inherent
to human behavior. This study aimed to investigate the
eye blink event-related EEG activity of fourteen subjects
while working in a power-plant operator simulation -
actively operating (active condition) or observing (passive
condition) a real-world steam engine. The changes in
event-related potentials, event-related spectral perturba-
tions, and functional connectivity under both conditions
were analyzed. Our results indicated several cognitive
changes in relation to task manipulation. Posterior N1 and
P3 amplitudes revealed alterations associated with task
complexity, with increased N1 and P3 amplitudes for the
active condition, indicating greater cognitive effort than
the passive condition. Increased frontal theta power and
suppressed parietal alpha power were observed during
the active condition reflecting high cognitive engagement.
Additionally, higher theta connectivity was seen in fronto-
parieto-centro-temporo-occipital regions as task demands
increased, showing increased communication between
brain regions. All of these results suggest using eye blink-
related EEG activity to acquire a comprehensive under-
standing of neuro-cognitive processing while working in
realistic environments.

Index Terms— EEG, ERP, ERSP, neurophysiology, eye
blink activity, functional connectivity, cognitive states.

I. INTRODUCTION

IN RECENT decades, there have been several attempts
to objectively evaluate cognitive states in work-related

contexts to prevent hazardous situations resulting from either
cognitive under- or overload [1]. The objective quantification
of physical strain at workplaces has been mandatory for many
decades, resulting in various thresholds for a worker’s bearable
physical load. Given the growing proportion of sedentary
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office work, there is a rising need for objective quantification
of psychological strain using different measurement techniques
(e.g., EEG, ECG, pupillometry) [2]. While subjective and
behavioral measures give insights into such states, their
temporal precision is rather restricted. In terms of temporally
precise measuring techniques, the EEG has been identified as
one of the most suitable methods to evaluate event-related
cognitive processes – using event-related potentials (ERPs)
– or over longer periods – using measures in the frequency
domain.

Within work-related environments that are strongly reliant
on visual information, e.g., a power-plant operator workplace,
the detection of covert attentional processes is very important.
This might be restricted using just overtly shown behavior.
By using neurophysiological measures in realistic working
environments – so-called neuroergonomics – there is an
opportunity to overcome the inability to estimate covert
cognitive changes [3]. Here, mobile EEG is a very useful
tool due to its portability, long battery life, and high temporal
resolution [4]. While the estimation of cognitive states in
workplace simulations has been successful using EEG spectral
measures over longer periods [5], [6], there has been no
possibility to look into event-related attentional processes
without adding external events to the task [7].

This restriction can be overcome by using events that
are inherent to the human itself, namely eyeblink activity.
In previous years it was shown that eye blinks are not a
mere action to moisturize the eye or to prevent harmful
environmental influences but to chunk the ongoing visual (and
auditory) information intake. Therefore, blinking behavior
is influenced by cognitive processes, as shown by [8] and
[9], whose findings suggest that eye blinks become less
frequent as cognitive demands rise, reflecting an inverse
relationship between blink rate and task difficulty. Still, the
analysis of related cognitive processes using the EEG is
rather insightful. In the 1980s, an event-related potential was
found after a blink in illuminated conditions – as opposed to
blinking in a pitch-black room – comparable to one found
after experimental visual stimulation [10]. In the following
years, several studies also highlighted the importance of eye
blinks for everyday information structuring to reflect cognitive
processes [11] during visual [12] or auditory tasks [13]. While
these studies showed that it was possible to deduct useful
information from laboratory environments, blinks were shown
to represent useful structuring events in real-life situations
while walking either on a patch of lawn or in an inner city
setting [14], [15].
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When analyzing event-related cognitive processing, dozens
of equal events are needed, necessitating the presentation
of certain (visual) stimuli or – here – blinks that act as a
visual stimulus. When light hits the retina after the eye-
opening, a new ‘’stimulus” is presented that needs to be
processed by sensory and attentional regions of the brain.
By averaging over these equal events, the signal-to-noise
ratio is increased, and spontaneous noise fluctuations will be
(partially) eliminated [16].

Given the impact of blinks on brain-related and cognitive
activity, recent literature [12], [14] contradicts arbitrarily
categorizing blinks as artifacts. Interestingly, previous studies
[17], [18] noticed a rise in low-frequency band (delta) signal
time-locked to the blink at rest. Around the maximum of
eye blinks, Bonfiglio et al. [19], [20] documented event-
related synchronizations and de-synchronizations of the EEG,
which were considered in the context of conscious processing
information. They reported that blink-related delta oscilla-
tions could represent brain processes associated with self-
consciousness and environmental awareness [19]. Unlike rest-
ing state studies, Liu et al. [21] demonstrated that blink-related
activities are dynamically regulated to match internal cognitive
processing demands in varied external settings during a task
that requires repetitive reading. Additionally, they confirmed
in another [22] that the areas of the ventral attention network
are engaged during blink-related mental arithmetic tasks.

To evaluate whether an event-related approach is feasible for
real-life cognitive state determination, a workplace simulation
study consisting of a series of alternating active and passive
power plant operator conditions was conducted. To retrieve
blink event markers, a pattern-matching technique was
used [14]. The active task consisted of actively adjusting
the temperature of a miniature one-cylinder steam engine.
In contrast, the passive task required the subject to vigilantly
observe the system and note system temperatures following a
visual signal in semi-random time intervals.

With the help of blink-related ERPs (bERPs), stimulus
processing was investigated using well-studied components
(P1, N1, N2, and P3). Early processing of stimuli is related
to the P1 and N1 components, the first positive and negative
deflection after the blink, which is responsive to the physical
properties of the inputs [23]. These two components develop
in the occipital cortex and are controlled by attention [24].
An increase in P1 and N1 amplitude indicates a higher
amount of selective attention being needed for stimulus
processing [25]. This assertion was further supported by Fu
& Parasuraman. [26], claiming that the P1 component is a
highly sensitive indicator of visuospatial attention allocation.
This impact could also be observed in anterior N2, the
second negative deflection after blinking, linked to executive
functioning [27]. Allison and Polich [28] revealed that the
amplitude of anterior N2 decreases in response to high-
demanding tasks. Also, Kramer et al. [29] observed a decline
in N2 amplitude as the difficulty of a radar monitoring task
increased. The P3 component, the third positive deflection after
the blink, can also be modulated by attention during different
visuomotor task demands [30], [31], [32]. It corresponds
adversely with task complexity [33] and is correlated with

stimulus updating and attentional narrowing towards pertinent
information [34]. The P3 amplitude was found to be higher
when more attentional resources were devoted to the evoking
stimuli [33], [34], [36].

Event-related spectral perturbation (ERSP) can also assist
in identifying the impacts of task demands by measuring
the power variations of a given frequency band in relation
to a task-unrelated baseline [37]. Numerous studies suggest
that EEG bands, particularly the theta and alpha bands, may
be influential cognitive load predictors [38], [39], [40]. For
instance, alpha activity between 8 and 12 Hz was found to
be sensitive to mental workload levels [40], mental fatigue
[41], [42], and occurrences of mind wandering [43]. It plays
a vital role in conditions requiring a high level of visual-
attentional processing [44]. Kamzanova et al. [45] showed
that a rise in alpha activity could negatively correlate with
attention. Alpha suppression, on the other hand, appears to
be associated with task difficulty increases, possibly due to
increased task involvement [46]. The most noticeable changes
in alpha activity are mainly localized in occipital and parietal
regions [5], [39]. Additionally, the change in theta power
between 4 and 7 Hz positively correlates with spent cognitive
resources [40], [47] and task complexity [48], [49]. Theta
power appears to rise when sustained concentration is required
during task execution [5], [49]. Here, frontal cortex areas are
mainly linked with theta activity [5].

Besides ERPs and ERSPs, functional connectivity has been
used to explore complex brain region connections to better
understand the functional brain organization by capturing
localized functions and communication among brain areas.
According to the literature, this approach tends to assist
in comprehending executive functioning by synchronizing
cortical activity between functionally related brain areas
[50], [51]. Involvement in cognitively demanding tasks, such
as executive control, has been linked to increased functional
connectivity [52]. Sciaraffa et al. [53] found that a more
difficult task showed significantly higher interconnections in
the theta band over the frontal brain area than in an easy task.

Several predictions are possible based on this working
hypothesis. We expect increased posterior N1 and P3
amplitudes due to the active power plant operator settings,
which should enhance attentional allocation because of
increasing cognitive and visual demands. In contrast, the
anterior N2 amplitude, which is a proven predictor of executive
control and sensitivity to work demands, may decrease during
the more demanding task (active condition). Additionally,
active operator settings may tend to increase frontal theta
power while decreasing alpha parietal power due to more
task engagement. The active workload setting is anticipated to
increase the strength of theta connectivity between the frontal
(executive and planning) and other areas (sensory, motor, and
cognitive) due to increased engagement of cognitive-motor
processes.

II. METHODS

A. Participants
For this study, 18 participants (16 male, 2 female) were

recruited using online announcements in engineering classes of
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Fig. 1. Miniature steam-engine. The water is filled into the tank and
heated using a Bunsen burner. The ascending steam then flows through
the copper steam tubes through the one-cylinder steam machine, finally
reaching the condensation tube where the steam condenses and is
transported out of the system. For the active condition, the gas supply
can be manipulated to manage the resulting heat using a valve. Also, the
steam that runs through the steam engine can be controlled via a steam
valve. All pressure and temperature values can be accessed using a dial
and an LED display (marked as X).

the FH Dortmund and mail newsletters of the FH Dortmund’s
student association for engineering studies. Data acquisition
took place between February and December 2019. All
participants had no prior or present neurologic or psychiatric
condition, had a normal or corrected-to-normal vision, were
free of hearing deficiencies, were right-handed, and had no
motor or gait impairment. Four of these 18 participants had to
be excluded from analysis due to faulty trigger markers in the
EEG data, which rendered condition segmentation impossible.
The age range of the remaining participants was between
22 and 35 years (M = 27.29, SD = 4.45). Subjects received
compensation of 10Cper hour and gave their informed written
consent. The study was approved by the local ethics committee
of the Leibniz Research Centre for Working Environment and
Human Factors and was conducted in accordance with the
Declaration of Helsinki.

B. Apparatus and Stimuli

The measurements took place in a seminar room equipped
with a miniaturized steam machine with a single engine (see
Fig. 1). To power the engine, water was boiled in the water
tank until vaporizing and ascending into the steam engine. The
amount of generated steam could be controlled by regulating
the heat within the water tank using an adjustable Bunsen
burner. Also, a valve between the water tank and the steam
engine allowed for the manipulation of the steam passing
through the engine at any given time. In the last step, the steam
condensed after passing the engine, and condensed water was
collected below the steam engine apparatus. This miniature
steam engine, therefore, allowed the participants to regulate
pressure levels in the water tank and the electricity generated
by the engine (see Fig. 1). On top of the steam engine
apparatus, a Raspberry Pi 2B (Raspberry Pi Foundation,
Cambridge, UK) was placed to generate trigger signals
recorded in the ongoing EEG data stream to allow for later
segmentation of the data. The Raspberry pi was also extended
with a blue diode to present visual stimuli to the participant.

By changing USB thumb drives, the sequence of visual stimuli
was determined.

The participants were assigned to two distinct tasks.
Initially, they were required to operate the steam engine to
reach a specific pressure level in the water tank. To do so,
they had to regulate the heat supply, the quantity of incoming
cooling water, and the pressure valve to attain the desired
pressure level and maintain it for a short period to stabilize
the system’s state. Afterward, they recorded the temperature of
the water tank, the temperature of the incoming cooling water,
and the temperature of the outgoing cooling water. They then
calculated the difference in temperature between the incoming
and outgoing cooling water. The starting pressure was set at
0.8 bar, and the participants were instructed to increase it
incrementally by 0.2 bar. In this active scenario, the blue diode
of the Raspberry Pi served only to indicate the start (2 flashes)
and end (3 flashes) of each block.

In the second task, participants did not actively manipulate
the machine but passively observed the system and the
Raspberry pi diode. Throughout the block, the diode lit up
three times in quasi-random time intervals (with at least
2 minutes in between flashes), indicating that the participant
had to mark down the water tank temperature. The flashes
were only shown briefly (2s) to ensure that participants had
to supervise the diode carefully. As in the first condition,
the diode also indicated the beginning (2 flashes) and end
(3 flashes) of a block. The order of conditions was the same for
all subjects: they started with the active task followed by the
passive task. This procedure was repeated two times, meaning
that every participant completed three active and three passive
tasks. Each condition block had a length of seven minutes,
adding up to 42 minutes of experimentation time.

C. Procedure
Upon arrival in the morning at around 10 am, the

participants were greeted by the experimenters and sat on a
chair in the room to read the experiment’s information sheet
and sign the informed written consent form. Followingly, they
were fitted with a 30-electrode cap and a drop-down ECG
electrode (for more detailed information, see D).

D. Electrophysiological Data Acquisition
EEG data were acquired using 30 active electrodes (Brain

Products GmbH, Gilching, GER) in a standard 10-20-system
montage (Fp1, Fp2, F3, F4, F7, F8, Fz, FC1, FC2, FC5, FC6,
C3, C4, Cz, T7, T8, CP1, CP2, CP5, CP6, P3, P4, P7, P8,
Pz, PO9, PO10, O1, O2, Oz). The actively shielded electrodes
were inserted into electrode holders after a tight flexible cap
(actiCap, Brain Products GmbH, Gilching, GER). After the
fitting process, the electrodes were filled with electrolyte gel
until an impedance of 10 k� was reached. Special attention
was paid to cable management so that electrode cables were
carefully aligned to not cross each other or sway around
while the participant was moving. FCz was used as an online
reference, and AFz served as the ground. Every cable was
routed through specific cable mounts of the actiCap next to
the participant’s ears. To further reduce cable motion, the
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cables from the left and the right side were bundled using
adhesive tape. The EEG cables were routed to the mobile
amplifier (LiveAmp 32, Brain Products GmbH, Gilching,
GER) placed at the back of the participant’s head. The EEG
data were recorded with a sampling frequency of 500 Hz and
a bit depth of 24 bits. The recordings were stored offline
on a micro SD card inserted into the LiveAmp 32 while the
ongoing signal was observed using a Bluetooth connection to
a Windows laptop running the BrainVision Recorder software
(BrainProducts GmbH, Gilching, GER). Upon finishing the
experiment, the data was transferred from the micro SD card to
the laptop and converted into EEGLab readable files with the
help of the LiveAmp File converter software (BrainProducts
GmbH, Gilching, GER).

E. Data Processing
Data analyses were computed using MATLAB and

EEGLAB custom scripts [54]. The raw EEG data were high-
pass filtered at 0.1 Hz and low-pass filtered at 16 Hz using
finite impulse response (FIR) filters (eegfiltnew) to remove
environmental and muscular artifacts. Before re-referencing
the data to the common average, the clean_artifacts function
was used to search for and identify bad channels with default
parameters (flatline = 0.5s, burst = 5, line noise = 4,
correlation = 0.8, and window = 0.25). Next, the data were
filtered through a high-pass zero-phase Hamming window
FIR filter with a cutoff at 1.5Hz. Afterward, the data were
decomposed into statistically independent components (ICs)
utilizing AMICA [55]. The independent components were then
copied onto the average referenced data (the data used before
the high-pass filtering).

For blink detection, the local maxima were sought using
the time course of the IC that had the highest correlation
with the averaged anterior EEG activity [14]. A Gaussian
curve was fitted in a temporal frame of +/− 120 ms
around these local maxima. Valid blinks were those with
a sufficient Gaussian waveform (goodness of fit, r-squared
> 0.80) and an amplitude greater than 75% of the median
amplitude of all peaks. The results showed that the active
group had a blink rate of approximately 19.5±3.7 per minute,
while the passive group had a blink rate of 19.8±5.7 per
minute. The IClabel algorithm was then used to classify
components automatically to finally remove any ICs that were
not brain-related [56] (any components with < 30% brain and
> 30% eye, muscle, heart, channel, and other classification
probability). The average number of removed artifactual ICs
per subject was 15.14 (standard deviation = 3.23). However,
activity in the occipital region might be prone to overlapping
visual and muscular components due to the free motion of
subjects while performing the task. Thus, the cutoff frequency
was set to 16 Hz and ICs with > 30% classed as muscle were
excluded to eliminate most muscular artifacts.

The data was down-sampled to 250Hz, and epochs were
extracted from −500 ms to 1200 ms relative to the eye
blink maximum. Next, the acquired epochs were fed into an
automatic epoch rejection EEGLAB function “pop_autorej”
to exclude those with fluctuations exceeding an absolute

TABLE I
SEARCH WINDOWS AND PEAK LATENCIES (MS) OF THE ACTIVE AND

PASSIVE CONDITION-RELATED BLINK MAXIMUM

threshold value of 500 µV and standard deviation threshold of
5 using an iterative approach (maximum rejection per iteration
is 10%).

F. Data Analysis
1) ERPs: For each subject, epochs were baselined at an

interval ranging from -300 to -100 ms relative to the blink
maximum and then averaged across each experimental block
ranging from 0 to 1000 ms for the two conditions (active and
passive). To rule out the possibility of fluctuations in baseline
activity causing variations in ERP amplitude, we investigated
of the effect of baseline correction on the mean of the
pre-blink period (-300 to -100) in both active and passive
conditions and across blocks 1, 2, and 3. The results showed
that there were no significant differences observed across the
conditions and blocks. The effect of conditions on amplitude
was then investigated for P1, P2, N2, and sustained frontal
negativity (SFN) at frontal (Fz, FC1, and FC2) sites. N1
and P3 amplitudes were investigated at parietal (CP1, Pz and
CP2) and occipital (O1 and O2) sites. Mean amplitudes were
calculated using all epochs after rejection. We extracted mean
amplitudes using peak detection because it offers an unbiased
measure of amplitude. Otherwise, the peak amplitude could
be distorted by noise and thus be an overestimation [16].
Therefore, the maximum peak was estimated in time windows
based on visual inspection to determine the mean amplitude
within a 40-ms window around the condition-specific peak.
Table I shows the determined peak latencies for the different
ERP components, brain regions, and experimental conditions.
For instance, a frontal P1 was parametrized at 84 ms for the
active and 91 ms for the passive task.

2) Time−Frequency Power: Changes in EEG power over
time were quantified by analyzing blink-related spectral per-
turbations (bERSP) using Morlet wavelet transformation [57].
The Morlet Wavelet transformation computes the similarity
of the input signal to Gaussian-windowed complex sinusoidal
over time [58]. The spectrum was calculated using a frequency
range of 2–16 Hz, corresponding to 16 different frequencies.
Wavelet cycles from 3 to 8 were utilized to emphasize
temporal and frequency accuracy. The results were expressed
as a decibel (dB) change from a common pre-stimulus baseline
by averaging the power spectra of the pre-blink period data
(-400 to -200 ms) for each subject over both conditions’ trials.
The difference in the average power over all electrodes was



ALYAN et al.: OPERATOR STATE IN A WORKPLACE SIMULATION MODULATES EYE-BLINK RELATED EEG ACTIVITY 1171

TABLE II
ESTIMATED FIXED EFFECTS FROM LME OF ERPS AT FRONTAL,

PARIETAL, AND OCCIPITAL REGIONS DURING ACTIVE AND

PASSIVE WORKLOAD TASKS

computed to identify the changes caused across temporal and
spectral domains during the two conditions. Afterward, the
power series for two frequency bands—theta (4–7 Hz) and
alpha (8–13 Hz) —were calculated.

3) Functional Connectivity: The functional connectivity
between different brain regions was also estimated by
computing the wavelet phase lag index (PLI) across trials,
reflecting the substantial temporal variation for each frequency
band. The PLI aims to obtain phase synchronization estimates
that are insensitive to volume conduction [59]. It measures the
asymmetry of the phase difference distribution between two-
time series, in this case, the signal of a pair of EEG electrodes:

PLI(t, ω) =

∣∣∣∣∣ 1
N

N∑
n=1

sgn
(

I m
[
e j (φ1(t,ω)−φ2(t,ω))

])∣∣∣∣∣ (1)

where φ1 and φ2 are the phase values of electrodes 1 and 2 at
time t and frequency ω, N refers to the total number of trials.
The Im is the imaginary part of phase difference, || denotes the
absolute values, and the sign stands for the signum function
(returns −1, 0, or +1). The PLI values range from zero to one,
where a value of one indicates maximum coupling strength,
and zero means no coupling strength.

4) Brain Network Analysis: Using graph theoretical
approaches, which portray brain connections as nodes and
edges, we could evaluate regional brain network variations.
The fixed average degree is the most fundamental measure
for describing the connectivity matrix [60]. It quantifies the
number of connections that are above a predefined threshold
value. We set the average degree threshold to 12. All edges
with a degree of 12 or higher were preserved, while edges
with a degree less than 12 were set to 0. More specifically,
nodes in the subgraph with an average degree of 12 are
connected to at least 41% of the entire network (29 nodes).
This percentage was selected to ensure the least number of
nodes were connected when averaging the cortical networks
for each participant across frontal, central, temporal, parietal,
and occipital.

Regional connectivity differences for active versus passive
operator tasks were assessed as follows: PLI values for
active versus passive operator tasks were compared for each
frequency band at each time point from 0 to 1000 ms using
a two-tailed paired t-test. Condition differences in regional
connectivity were assumed to be statistically significant if
the p-value was lower than 0.05. The global, inter-, and
intra-regional networks of specific electrode connections that
induced regional connectivity effects were visualized by
plotting the strongest connections (PLI values averaged within
the significant window). To observe cortical reproducibility
and patterns, 15 cortical networks, including 5 local networks
(connections within the frontal, for example) and 10 global
networks (between regions), were constructed from the
connectivity values of the 30 individual channels. For
each network, a symmetric square matrix representing the
maximum connection values between the two regions was
generated and averaged. The obtained networks are distributed
across frontal (channels F7, F3, Fz, F4, F8), central (channel
FC5, FC6, FC1, FC2, C3, Cz, C4), temporal (channel CP5,
CP6, T7, T8, P7, P8), parietal (channel CP1, CP2, P3, P4, Pz),
and occipital sites (channel O1, Oz, O2).

G. Statistical Analysis
Statistical analyses were conducted using MATLAB (Math-

works, Inc., Natick, MA, USA) and jamovi ver. 2.2.5. For
ERP and ERSP measures, we calculated linear mixed-effects
(LME) models to examine the impacts of condition and block
differences for different ERP components and frequency bands
in brain regions. The variables included in the model were
between-subject (subjects), within-subject variables (condition
and blocks), and interactions of predictors. LME allows for
modeling between-participant variations in a random factor
term while investigating the effect of independent factors. The
model specification was as follows:

Amplitudes|Bands ∼ 1 + Condition + Trial
+Condition:Trial + (1|Subject) (2)

where amplitudes represent the ERP component amplitudes,
and Bands denote theta and alpha frequency power in dB.
The model was adapted with restricted maximum likelihood
(REML), which results in less biased estimates of the random
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Fig. 2. Grand averaged event-related blink evoked potentials for the three blocks obtained at frontal (FC1, Fz, FC2), parietal (CP1, Pz, CP2), and
occipital (O1, O2) sites. The ERP waves are shown for both active (red) and passive (blue) conditions. ERP peak amplitudes were calculated by
performing peak detection on each epoch within a predetermined time window (frontal, P1: 50-150 ms, P2: 150-250 ms, N2: 200-280 ms, SFN:
300-500 ms; parietal/occipital, N1: 40-100 ms, P3: 300-500 ms). The data were then averaged within an interval of 40 ms window around the
epoch-based peaks.

variance components. REML has been proposed for assessing
fixed effects on small sample sizes [61]. The degrees of
freedom were computed using the Satterthwaite approach [62]
to produce p-values. For the connectivity analysis, the PLI
data were transformed using the Fisher z-transformation
(atanh, MATLAB function) to approximate the data to a
normal distribution. Then, two-tailed paired t-tests with false
discovery rate (FDR) correction [63] were calculated to
compare connections across active and passive groups. The
results were only deemed significant when the adjusted p-value
was lower than the significance level of 0.05.

III. RESULTS

A. ERPs

An LME was conducted on single-block mean amplitudes at
the individual observation level to investigate ERP responses
to conditions over the frontal, parietal and occipital regions
(see Fig. 2 and 3). In the frontal region, the LME revealed
significant main effects of operator task condition (active vs.
passive) on frontal ERPs at P1(t (1, 65) = 3.318, p = 0.001),
P2 (t (1, 65) = 4.118, p <.001), N2 (t (1, 65) = 4.297,
p <.001) and SFN (t (1, 65) = 5.117, p <.001). There was
no linear trend for the factor time, which was indicated by
the insignificant differences in amplitudes of all ERPs across
blocks, P1(t (2, 65) = −1.184, p = 0.241), P2 (t (2, 65) =

−0.955, p = 0.343), N2 (t (2, 65) = −1.440, p = 0.155) and
SFN (t (2, 65) = −1.416, p = 0.161). Also, the interaction
of condition and block revealed no significant difference in
frontal ERPs, P1(t (2, 65) = 0.305, p = 0.761), P2 (t (2,
65) = 0.098, p = 0.922), N2 (t (2, 65) = 0.050, p = 0.961)
and SFN (t (2, 65) = −0.043, p = 0.966).

Fig. 3. The mean and standard deviation of blink-related EEG potential
amplitudes at frontal (P1, P2, N2, and SFN), parietal (N1 and P3), and
occipital sites (N1 and P3) during active and passive conditions. The
amplitude of N1 and P3 in parietal and occipital areas increased during
the active conditions. Frontal ERPs (P1, P2, N2, and SFN) exhibited an
inverse effect.

Several substantial amplitude differences were also observ-
able in parietal and occipital ERPs. The main effect of the
condition was found to be significant for N1 amplitudes in
parietal (t (1, 65) = −2.42, p = 0.018) and occipital areas
(t (1, 65) = −2.634, p = 0.011). Additionally, P3 amplitude
was significantly changed by operator task conditions occipital
(t (1, 65) = −5.187, p <.001) but not parietal areas
(t (1, 65) = −1.156, p = 0.252). The main factor block
and its interaction with the condition were not statistically
significant parietal (N1: block, t (2, 65) = 0.37, p = 0.713,



ALYAN et al.: OPERATOR STATE IN A WORKPLACE SIMULATION MODULATES EYE-BLINK RELATED EEG ACTIVITY 1173

TABLE III
ESTIMATED FIXED EFFECTS FROM LME FOR THE ALPHA AND THETA FREQUENCY BANDS IN THE FRONTAL, CENTRAL, PARIETAL, AND OCCIPITAL

AREAS DURING ACTIVE AND PASSIVE TASKS

TABLE IV
STATISTICAL COMPARISON OF BRAIN CONNECTIVITY VALUES OF THE

FIVE REGIONS UNDER ACTIVE AND PASSIVE WORKLOAD CONDITIONS

interaction, t (2, 65) = −0.727, p = 0.47; P3: block, t (2,
65) = 1.848, p = 0.069, interaction, t (2, 65) = −0.778,
p = 0.44) and occipital areas (N1: block, t (2, 65) = 0.815,

p = 0.418, interaction, t (2, 65) = −1.616, p = 0.111; P3:
block, t (2, 65) = 0.799, p = 0.427, interaction, t (2, 65) =

−1.005, p = 0.318), reflecting that the amplitude of ERP
components did not significantly change over time. All LME
results are summarized in Table II.

B. ERSPs
The results of the LME on theta power showed that the main

effect of the condition immediately after the blink maximum
(L1: 0-200 ms) and at the L2 interval (200-500 ms) was
significant at frontal (L1: t (1, 65) = −3.795, p <.001; L2: t
(1, 65) = −3.428, p = 0.001), central (L1: t (1, 65) = −4.424,
p <.001; L2: t (1, 65) = −3.433, p = 0.001), parietal (L1: t
(1, 65) = −4.310, p <.001; L2: t (1, 65) = −3.952, p <.001),
and occipital regions(L1: t (1, 65) = -8.008, p <.001; L2: t
(1, 65) = -8.826, p <.001). In contrast to early intervals, the
condition effect in theta power was less pronounced at the late
interval (L3: 500–1000 ms), although a statistically significant
effect was observed in frontal t (1, 65) = −2.186, p = 0.032),
central t (1, 65) = −2.207, p = 0.031) and occipital areas
(t (1, 65) = −5.790, p <.001).

Alpha power, on the other hand, demonstrated highly
significant condition effects during the late interval (500-
1000 ms) in the parietal region (t (1, 78) = 3.866,
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Fig. 4. a) ERSPs in response to blink-related activity during active and passive operator conditions. The ERSP plots are shown at frontal (FC1, Fz,
FC2), central (Cz), parietal (CP1, Pz, CP2), and occipital sites (O1, O2) for EEG frequencies ranging from 4–14 Hz. b) Topography maps depict the
changes in spectral power (in decibels) within the theta and alpha bands for the latency windows of 0-200ms, 200-500 ms, and 500-1000ms after
the blink maximum.

p <.001), indicating elevated alpha during the passive task.
No significant trends were observed for the main effect of
condition in frontal (L1: t (1, 78) = −0.283, p = 0.778; L2:
t (1, 65) = −0.086, p = 0.932; L3: t (1, 78) = 1.882, p =

0.064), and central sites (L1: t (1, 65) = −0.905, p = 0.369;
L2: t (1, 65) = −1.010, p = 0.316; L3: t (1, 78) = 1.328,
p = 0.188). Also, there were no effects of condition during
the early intervals in parietal areas (L1: t (1, 13) = 0.524,
p = 0.609; L2: t (1, 65) = 1.178, p = 0.243). Occipital
alpha power showed a significant effect of condition in all
intervals (L1: t (1, 65) = −9.176, p <.001; L2: t (1, 65)
= −7.370, p <.001; L3: t (1, 65) = −4.830, p <.001).
However, the main effect of the block and interaction effect
did not reach significance in the theta or alpha frequency range
in either model. The statistics of LME fixed effects for ERSPs
are shown in Table III, while scalp maps and time-frequency
plots are shown in Fig. 4.

C. Functional Connectivity
Fig. 5 shows the average PLI values of active and passive

conditions across all electrodes during a time window starting

at eyeblink maximum and ending 1000 ms after the onset
for theta and alpha bands. Notable strong connections were
reported between the onset and 400 ms (Fig. 5a). Three
significant time windows of 100 ms were consecutively seen
across the theta band (Fig. 5b) from 100-400 ms. However,
connectivity values between conditions in the alpha range
(8-13 Hz) remained insignificant (p > 0.05) at any given time
window. Though the average degree threshold was set to 12,
the global, inter-, and intra-networks were displayed with a
threshold of 0.12 to better visualize the difference between
conditions (see Fig. 6). After thresholding, the number of
strong connections in all networks of the active condition
group appeared to be high. Specifically, the changes in global
connectivity networks mainly occurred in the left hemisphere,
right frontocentral, and frontoparietal networks.

For the inter-hemispheric networks, the connectivity
changes were primarily dominated in the left frontal-temporal
to the right parietal-occipital networks, as well as within
occipital networks and between parietal to temporal and
left frontal to right parietal. For the intra-hemispheric
networks, the changes were mainly located within the left
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Fig. 5. Phase-lag index in active and passive operator task conditions.
a) The time-frequency distribution maps of PLI are averaged for all
electrodes. The horizontal axis shows the time (in milliseconds), which
starts with zero (blink maximum) and ends at 1000 ms. The vertical
axis reflects the frequency of the oscillations (Hz). b) The time series of
averaged PLI values of all electrodes in the theta and alpha frequency
band from zero ms (blink maximum) to 1000 ms. A two-tailed paired
t-test was conducted to compare PLI values for active versus passive
conditions within each 100 ms time window. Significant time windows (p
< 0.05) are highlighted, reaching from black (highly significant) through
red and yellow to white color (not significant). The results revealed
significant PLI values within the theta band between 100-400 ms, while
alpha did not reach significance at any time point.

Fig. 6. Comparison of PLI values under active and passive
conditions in the theta (100–400ms) band. The connectivity matrix
shows strong connections between frontal leads and other leads
over the scalp in the active group. The brain networks revealed
significantly decreased connectivity (PLI values) in the passive group.
The decreased connectivity was categorized into global, inter-, and
intra-hemispheric networks. The dots represent measurement channels
and are colored according to cortical location.

hemisphere networks and prefrontal to parietal in the right
hemisphere.

The significance of the 15 networks derived from five
primary brain areas of interest (frontal, central, temporal,
parietal, and occipital) was then statistically evaluated using
two-tailed paired t-tests with FDR correction. The results
depicted in Fig. 7 and Table IV reveal that the connectivity

Fig. 7. Significantly increased connectivity in 13 networks of the active
group. The dots represent cortical regions, and two neighboring dots
of the same color denote connections within a cortical region. The
heat map indicates the t-values of statistical difference between both
conditions, color-coded from white (t = 0) through yellow to red (high).

of the active group was significantly higher (p < 0.05) in
13 networks. For instance, visual and attentional networks at
occipital (t(1,13) = 4.137, p = 0.018) and parietal (t(1,13) =

3.767, p = 0.018) regions, respectively, exhibited a significant
(p < 0.05) increased local connectivity in the active compared
to the passive group. The difference was also found to be
significant (p < 0.05) over temporal regions. Additionally, the
increased operator activity (active task) demonstrated large-
dispersed networks incorporating other significant regional
connections (p < 0.05) such as frontal-occipital, frontal-
parietal, frontal-central, frontal-temporal, occipital-temporal,
occipital-parietal, occipital-central, parietal-central, parietal-
temporal, and central-temporal. This may reflect an increase
in cognitive control provided by the (frontally situated) central
executive areas.

IV. DISCUSSION

The investigation of operator state conditions poses a real
challenge for ecologically valid neuroscientific studies when
trying to gain a comprehensive understanding of cognitive
states without introducing additional visual stimuli or sec-
ondary tasks. To overcome this drawback, we used eye blink
activity (inherent to the subjects’ behavior) to measure the
participants’ event-related EEG activity while operating (active
condition) or observing (passive condition) a steam engine
power plant simulation. The spontaneous but information-
processing-related occurrences of blink events could be used
to segment the continuous flow of visual information into
time-locked activity [64]. Here, electrophysiological data
were recorded using a mobile EEG device to demonstrate
the influence of two operator task conditions on cognitive
processes.

Different impacts were observed in several ERP components
across cortical regions. For instance, the N1 amplitude in
parietal and occipital areas was significantly affected by the
operator state, indicating that the brain is more attuned to
selective adjustment of visual demands induced by actively
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operating the system. We also argue that the positivity for
occipital and parietal electrodes at the eyeblink maximum
could be related to the strength of brain oscillations resulting
from visual processes that are still ongoing after the eyes close.
Hohaia et al. [65] found that motion-sensitive visual processes
can still take place even when the eyes are shut, which can
lead to an increase in occipital alpha-band power. Despite the
fact that there is other evidence that suggests neural activity
following a blink is not necessarily of visual origin [66], the
offset of visual stimuli during active and passive conditions
created a potential for increased brain activity.

Additionally, the rise in the occipital P3 amplitude in
active conditions most likely reflected resource allocation and
updating processes due to being demanding. [67]. Moreover,
frontal P1 and P2 appeared to be significantly decreased
during the active condition. The P1 possibly indicated the
increased involvement of filter functions of visual inputs
during active conditions [68], [69], whereas the decreased
P2 was related to higher-level perceptual processes [70],
facilitating targeted information processing and identification
relating to the manipulation of steam engine pressure. The
frontal N2 and SFN also significantly decreased during active
system manipulation, which may be attributed to attentional
narrowing during processing complex information, leading to
reduced information processing demands [71].

Furthermore, the high consistency of the bERP and bERSP
responses was observed across condition blocks, indicating
that mental fatigue did not develop over time. In support of
that, complex tasks performed in natural environments were
claimed to maintain people’s motivation or engagement [14].
They found a high consistency of blink-evoked responses
across ERPs and ERSPs experimental blocks of different
cognitive efforts while standing, walking, and navigating an
obstacle course in a natural situation. However, the main
effects of the operator condition showed a significant increase
in frontal theta power after blink-onset from 0-1000 ms in
the active compared to the passive condition. Comparable to
frontal regions, theta power was also significantly increased
throughout the trial (0-1000ms) for central and occipital
regions and in the interval 0-500 ms for the parietal
regions during the active condition. This could indicate that
attentional tasks necessitate a greater degree of cognitive
control [64]; consequently, more effort was required to
select pertinent information [72]. Additionally, the parietal
site showed a regional decrease in alpha power in the
active condition, most likely because of its function in
action regulation. Recent research also reported an inverse
correlation between increased task complexity levels and
alpha power in posterior regions [44], which is consistent
with our findings. They observed alpha reduction during the
turning motion correlated with increased visual-attentional
processing demand. Similarly, Wascher et al [14] revealed a
decline in Alpha power as the demands of the walking task
increased.

Besides that, functional connectivity measures seemed more
sensitive to the change in operator task in the theta than
the alpha band, indicating significantly increased connectivity
over most brain regions between 100 ms to 400 ms after

blink-onset. An increase in the inter- and intra-regional
connectivity was observed in the active condition, supporting
the assumption that cortical connectivity increases in response
to high levels of complexity [73], [74]. According to the
literature, a positive correlation was found between the task
difficulty and the connectivity (EEG coherence) in all bands,
including theta, between premotor and other regions such
as execution, sensory, and motor during a cognitive-motor
task [74]. Remarkably, the higher theta functional connectivity
seen in all cortical regions may be linked to enhanced cognitive
capabilities and heightened states of awareness due to better
information exchange across brain areas when participants
engaged in the active task [75], [76]. For instance, the notable
coupling of the frontal to the central, temporal, and parietal
regions highlights its crucial role in regulating the interaction
of sensory and cognitive resources [77], [78]. Increased
fronto-parietal theta connection considerably synchronizes
sensorimotor inputs, while both regions are important for
attentional control, indicating greater sensory processing
required to handle response/action situations. This is also in
line with a study by Popov et al. [79], who found a strong
theta connection across the frontal and parietal regions when
the working memory load increases. Reiser et al. [80] also
demonstrated that higher cognitive load had greater Theta
connectivity in the frontal and right parietal regions in response
to switch trials regarding the used motor scheme compared to
no-switch trials.

In conclusion, blink-related EEG activity provides valuable
information regarding mental and visual processing during
active versus passive working conditions. Different blink-
related EEG measures such as ERPs, ERSPs, and functional
connectivities demonstrate a strong sensitivity to changes
in operator state, indicating that individuals allocate more
attentional resources during active segments in a workplace
simulation task. In support of that, the P3 component
amplitudes revealed alterations relating to the narrowing
of attention, while posterior N1 amplitudes adapted to
visual demands. Similarly, ERSPs in the theta band showed
functionally feasible activation patterns that corresponded to
the demands of the two tasks. In contrast, parietal alpha power
significantly decreased within the late time interval, reflecting
increased task involvement in the case of active compared to
passive conditions. Additionally, functional connectivity in the
occipital, parietal, central, temporal, frontal, and associated
networks was significantly stronger in the active state than
in the passive state. These connectivity measures can shed
light on the cognitive-motor processes underlying the level
of cognitive demands required for various cognitive-motor
tasks.

While our findings show significant differences between
cognitive states, some limitations need to be mentioned. For
once, the sample was limited to students of a specific study
program who knew how to handle the steam machine in
advance of the experiment. Therefore, all subjects had the
same base knowledge about the system, but the number of
participants was rather limited. Though we found high effect
sizes, a larger sample would be needed in future investigations
to increase the power of the study. Additionally, a further
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improvement in the algorithm employed for blink-related
EEG events is required to prevent variations in the blink-
on- and offset of short and long blinks from introducing
latency differences in the neural response after the blink.
Furthermore, the conditions were not adequately controlled
with regard to workload, motor output, and visual input, which
could have had an impact on the results. Further research
should be conducted to ensure that these factors are more
closely matched. Additionally, this study does not provide
sufficient evidence to draw a definitive conclusion regarding
the neural activity; rather, it is an indication of the neural
modulations associated with the two real-life conditions. Also,
the EEG system we used was limited to 32 electrodes back
then. Future studies looking into blink-related EEG activity
should take advantage of the technical advances and use
at least 64 electrode set-ups to improve ICA decomposition
for better blink detection and distinction between blinks and
saccades.

V. CONCLUSION

In this study, it was shown that an event-related analysis
of a real-world task could be achieved using events that are
inherent to human information processing, namely eyeblink
activity. Our results suggest that eye blink-related EEG activity
can provide a comprehensive understanding of neuro-cognitive
processing while working in realistic environments. This study
provides evidence that eye blink-related EEG activity can be
used to measure cognitive effort and engagement in naturalistic
tasks. Future studies should further investigate the potential of
eye blink-related EEG activity to assess cognitive demands in
more complex environments.
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