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Abstract— Motor Imagery (MI) paradigm is critical in
neural rehabilitation and gaming. Advances in brain-
computer interface (BCI) technology have facilitated the
detection of MI from electroencephalogram (EEG). Previous
studies have proposed various EEG-based classification
algorithms to identify the MI, however, the performance of
prior models was limited due to the cross-subject hetero-
geneity in EEG data and the shortage of EEG data for train-
ing. Therefore, inspired by generative adversarial network
(GAN), this study aims to propose an improved domain
adaption network based on Wasserstein distance, which
utilizes existing labeled data from multiple subjects (source
domain) to improve the performance of MI classification on
a single subject (target domain). Specifically, our proposed
framework consists of three components, including a
feature extractor, a domain discriminator, and a classifier.
The feature extractor employs an attention mechanism and
a variance layer to improve the discrimination of features
extracted from different MI classes. Next, the domain
discriminator adopts the Wasserstein matrix to measure the
distance between source domain and target domain, and
aligns the data distributions of source and target domain
via adversarial learning strategy. Finally, the classifier
uses the knowledge acquired from the source domain
to predict the labels in the target domain. The proposed
EEG-based MI classification framework was evaluated
by two open-source datasets, the BCI Competition IV
Datasets 2a and 2b. Our results demonstrated that the
proposed framework could enhance the performance of
EEG-based MI detection, achieving better classification
results compared with several state-of-the-art algorithms.
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In conclusion, this study is promising in helping the neural
rehabilitation of different neuropsychiatric diseases.
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I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCI) enable users to
manipulate external devices by decoding their own

neuronal activities into specific commands directly. Currently,
BCI has been widely utilized in various areas such as
exoskeleton rehabilitation robot, fatigue detection as well
as intelligent furniture [1], [2], [3]. Electroencephalogram
(EEG) is one of the most common neuroimaging technologies
that acquire brain information as input for BCI systems.
With greater portability, convenience and lower costs, EEG
has several advantages over other neuroimaging modalities
such as magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and positron emission tomography
(PET) [4], [5], [6]. Recently, EEG-based BCI systems have
been employed for the classification of motor imagery (MI)
signals for neurological rehabilitation of various diseases such
as stroke. For example, Lee et al. [7] proposed a novel network
based on the weighted phase lag index (wPLI) and directed
transfer function (DTF) to calculate the predictor of motor
impairments in stroke rehabilitation. However, due to the high
signal variance in temporal dimension, low signal-to-noise
ratio (SNR) as well as the heterogeneity between different
subjects, it is difficult to accurately distinguish features of
different motor imagery tasks.

Machine learning approaches have been employed to
decode MI-EEG signals. For example, previous study utilized
common spatial pattern (CSP) strategy [8], which can compute
the optimal spatial filter and maximize (or minimize) the
ratio of filtered variance between different categories to
extract the spatial features from EEG signals, then, different
classifiers such as linear discrimination analysis (LDA),
support vector machine (SVM) and nonlinear Bayesian were
applied to classify different MI-EEG signals [9]. Afterwards,
the CSP-based classification methods were developed into
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filter bank CSP (FBCSP) [10], discriminative filter band CSP
(DFBCSP) [11], and sub-band CSP (SBCSP) [12]. Taking
FBCSP as an example, it decomposes the original frequency
into several sub-bands without overlap, and employs CSP to
extract features in each band.

Although the aforementioned machine learning methods
have made certain progress in MI-EEG classification, owing
to the non-stationary nature of EEG signals, these methods
cannot precisely extract the complex non-linear features from
signals. Therefore, deep learning (DL) strategies were then
utilized to improve the extraction of the non-linear features
in EEG signals. For instance, Tabar et al. [13] applied
short time Fourier transform (STFT) to convert the MI-EEG
time series into two-dimensional (2D) images, and then
transferred the images into a convolutional neural network
(CNN) or a stacked autoencoder (SAE) to classify MI-EEG
signals. Schirrmeister et al. [14] proposed deep neural network
structures, namely shallow CNN and deep CNN, which can
be directly utilized for MI-EEG classification and substantially
outperform traditional methods. Sakhavi et al. [15] developed a
deep learning model, which can learn envelope representations
for MI-EEG classification, and they also fine-tuned the
model, enhancing the classification accuracy by 7% on BCI
competition dataset IV 2a. In addition, Liu et al. [16] achieved
better performance in identifying four-class MI-EEG signals
by employing a parallel spatial-temporal self-attention-based
CNN approach.

Nevertheless, the results obtained by these deep learning
models were still limited because of the lack of annotated
data and the heterogeneity of MI-EEG signals collected from
different subjects. To tackle this issue, transfer learning, which
utilizes the knowledge learned from the source domain to help
target domain learning [17], has been employed by some BCI
studies. Specifically, Raza et. al [18] adopted a novel covariate
shift-detection and adaptation method, which can reduce the
difference between two feature spaces. Zanini et al. [19]
utilized a Riemannian alignment method to minimize the
distance between different domains in Riemannian space, and
achieved good MI-EEG classification performance in cross-
subject transfer situation. Azab et al. [20] applied a new
similarity measure based on the Kullback-Leibler divergence
(KL) to the logistic regression classifier, measuring the
similarity between two feature spaces and realizing weighted
transfer learning. He and Wu [21] explored a Euclidean
alignment (EA) approach which can transform and align MI-
EEG signals of different trials in the Euclidean space. Apart
from these traditional transfer learning methods, some studies
have also combined transfer learning approach with deep
learning models. Dose et al. [22] utilized transfer learning to
adapt the global classifier to single individuals, thus improving
the classification performance on specific subjects. Besides,
based on GAN [23], Zhao et al. [24] utilized an end-to-end
deep domain adaptation method for MI-EEG classification,
which can reduce the calibration time for the use of BCI and
increase the classification accuracy by 3% in the two BCI
competition IV datasets. Phunruangsakao et al. [25] integrated
few-shot learning strategy into the deep domain adaptation
model to reduce cross-subject variance, thus leveraging the

knowledge acquired from several source subjects to further
enhance the classification performance on a single target
subject.

Even though prior studies have combined the domain
adaptation approach with deep neural networks and obtained
good performance in MI-EEG classification, these strategies
still shared some specific limitations. First, previous models
merely considered improving the structure of neural network
utilized to extract feature from raw MI-EEG signals, impairing
its effectiveness in handling the spatial and temporal non-
stationarity of the signals. Therefore, the features extracted by
previous neural networks might omit some useful information,
and the discrimination of features from different motor
imagery tasks might be reduced, which would negatively
affect the performance of the following domain adaptation and
classification. Second, existing models adopted the adversarial
loss to realize adversarial domain adaptation, which has
problems such as gradient vanish or model collapse that will
degrade the efficacy of domain adaptation.

To solve the issues abovementioned, in this study, we were
motivated to propose an improved domain adaptation network
based on the Wasserstein distance matrix by combining an
improved feature extractor with an adversarial domain adap-
tation model. In the feature extractor, an attention mechanism
called convolutional block attention model (CBAM) was
integrated into the model to enhance the discrimination of
spatial features. Meanwhile, a variance layer was employed
to extract temporal features, replacing the convolutional layer
which only has a fixed-size kernel. In the adversarial domain
adaptation, instead of the original adversarial loss function,
the Wasserstein distance matrix was utilized. Through the
adversarial training between the feature extractor and the
domain discriminator, the data distributions of the source
and target domains can be aligned, and the domain invariant
representations can be obtained. In this way, the cross-subject
discrepancy was reduced, so that the labeled data from source
subjects can be applied to enlarge the amount of data for
training, which helped make the classifier more reliable in
classifying the target data. This approach has provided a better
solution for classifying new subjects’ MI-EEG data when the
labels of data are totally unknown during the training process,
contributing to the deployment of BCI in more practical
scenarios.

II. MATERIAL AND METHODS

A. Data Description
The Dataset 2a and 2b from BCI Competition IV were

utilized in this study. In Dataset 2a, EEG signals were collected
from 22 channels in two recording sessions from nine healthy
participants (A01 to A09) with a sampling rate of 250 Hz. The
participants were instructed to perform four motor imagery
tasks, including the movement of left hand, right hand, feet,
and tongue, respectively. Each recording session contains
288 trials of EEG data (72 trials for each task), the first session
contains the class labels for all trials, whereas the second
session are used to test the classifier and hence to evaluate
the performance [26]. Each trial of EEG data is segmented
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Fig. 1. Comparison between previous domain adaptation and our work.

Fig. 2. Architecture of the proposed model.

from the 2nd second to 6th second. In this paper, we used all
the trials in our experiments, regarding EEG data in the first
session for training and that in the second session for the test.

In Dataset 2b, EEG signals were collected from 3 channels
(C3, Cz, and C4) in five recording sessions from nine
participants (B1 to B9) with a sampling rate of 250 Hz. The
participants were instructed to perform two motor imagery
tasks, including the movement of left hand and right hand,
respectively. Each of the first two sessions contains 120 trials,
and each of the other three sessions has 160 trials. Meanwhile,
the first three sessions contain the class labels for all trials,
whereas the remaining two sessions are used to test the
classifier and hence to evaluate the performance [27]. Each
trial of EEG data is segmented from the 3rd second to
7th second. In this paper, we utilized all the trials in our
experiments, so each subject has a total of 400 trials and
320 trials for training and test, respectively.

B. Data Preprocessing

The EEG signals in the aforementioned datasets were first
filtered using a Fourth-order Butterworth band-pass filter with
the frequency ranging from 8 Hz to 32 Hz.

The exponential moving standardization method was then
utilized to eliminate occasional noises, which helped to obtain
motor imagery signals with high signal-to-noise ratio (SNR),
thus enhancing the classification performance.

C. Domain Adaptation
The EEG data collected in a session is defined as
{(xi , yi )}

n
i=1, where n is the total number of samples,

xi ∈ RC×T denotes an EEG trial with C electrodes and T
sampling points, and yi ∈ RN is the corresponding label
of N categories. Thereby, the labeled source domain can be
expressed as Ds = {x s

i , ys
i }

ns
i=1, while the unlabeled target

domain can be expressed as Dt = {x t
j }

nt
j=1. In the context

of EEG data, domain adaptation aims to make good use of
the labeled data in the source domain, extracting important
information and training the classifier adapted to the target
domain, where the labels are not sufficient [28], [29]. In this
way, the trained classifier can perform better in classifying the
data in target domain.

D. Network Architecture
Different from previous domain adaptation network, the

framework proposed in this study utilizes the attention
mechanism and the variance layer in the feature extractor
to increase the discrimination of motor imagery features.
Then, based on the Wasserstein distance matrix instead
of the adversarial loss function, the framework conducts
domain adaptation to decrease the cross-subject discrepancy.
Comparison between previous domain adaptation work and
the framework in this study is presented in Fig. 1. In our
framework, not only the features of different motor imagery
tasks can be more discriminative, but also the distributions
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of different participants’ MI-EEG data can be better aligned.
In this way, the MI-EEG data from multiple participants can be
utilized to help classify a single participant’s data, solving the
data shortage problem and improving the classification results.

As is shown in Fig. 2, there are three main modules in
the proposed model, including a feature extractor, a classifier,
and a domain discriminator. During the training process of our
model, the source and target EEG signals were first sent to the
feature extractor, where a sub-band filter and a convolutional

layer combined with CBAM were utilized to extract
spatial information. A variance layer was then employed to
extract temporal information. Subsequently, the source and
target features can be obtained, defined as source domain
Ds and target domain Dt respectively. Through minimizing
the Wasserstein distance between the two domains in an
adversarial manner, the data distribution discrepancy between
the two domains can be reduced, so that the data distributions
of two domains were aligned and domain invariant feature
representations were learned simultaneously. As such, the
labeled data from multiple subjects (source domain) can be
leveraged to help enhance the classification performance on
the single subject (target domain).

1) Feature Extractor: To extract task-related features from
raw EEG signals more effectively, the feature extractor
contains a spatial convolutional module and a variance layer
to extract spatial features and temporal features, respectively.

In the spatial convolutional module, given that when
subjects performed different motor imagery tasks, their
corresponding body parts stimulated different functional
regions of their brains [30], if all the channels were equally
treated, the channels having a stronger connection with motor
imagery tasks would not be assigned with higher weights,
which could negatively impact the quality of the extracted
spatial features, eventually resulting in poor classification
performance. Therefore, inspired by attention mechanism
that has been successfully applied in computer vision field,
we integrated CBAM [31], an effective attention mechanism
for feed-forward convolutional neural networks, into the
spatial convolutional module, which can help increase the
discrimination of the extracted spatial features by assigning
higher weights to MI-related channels and lower weights to
MI-unrelated channels.

The attention mechanism CBAM consists of a channel
attention module and a space channel attention module. The
channel attention module performs average-pooling and max-
pooling operations, mainly focusing on the inter-channel
relationship of the input. The input is f ∈ R1×C×T , the output
is a channel attention map Mc( f ). The computation is:

Mc( f ) = σ(M L P(AvgPool( f ))+ M L P(MaxPool( f )))

= σ(W1(W0( f c
avg))+W1(W0( f c

max))) (1)

where σ represents the sigmoid function. MLP is a multi-layer
perceptron (MLP) with a single hidden layer. W0, W1 ∈ R1×1

are the shared MLP weights for inputs. f c
avg and f c

max denote
average-pooled features and max-pooled features respectively.

The spatial attention module is complementary to the
channel attention module, focusing on the locations of

informative parts. In EEG-based BCI, this module is useful in
recognizing which brain regions were active when the subject
was performing motor imagery tasks. The module operates
average-pooling and max-pooling along the channel axis, and
then concatenates the pooled results to create a spatial attention
map Ms( f ) ∈ RC×T . The computation is given as follows:

Ms( f ) = σ( f n×n([AvgPool( f );MaxPool( f )]))

= σ( f n×n([ f s
avg; f s

max])) (2)

where σ represents the sigmoid function, f n×n represents the
filter size n × n. f s

avg and f s
max denote average-pooled features

and max-pooled features respectively. In this work, n = 1,
which can not only reduce the computation parameters and
simplify the model, but also can maintain the original size
of the input signal, thus preserving the spatial and temporal
information for the following feature extraction.

After the attention mechanism, EEG signals were filtered
into multiple non-overlapping sub-bands. Since the majority
of MI-related information exists in the mu (8-12 Hz) and
beta (12-32 Hz) bands, this procedure aimed to localize the
discriminative information of MI-EEG signals. According to
the experimental results in [32], the 8-30 Hz frequency band
achieved a better classification performance compared with
4-40 Hz frequency band. Therefore, in this work, the 8-30 Hz
frequency band was adopted. With the bandwidth of 4 Hz,
the frequency band was divided into six sub-bands, namely
8-12 Hz, 12 − 16 Hz, . . . , 28 − 32 Hz, and the parameter m
was equal to the number of non-overlapping frequency bands.
Next, a depthwise convolutional layer [33] was utilized to
extract spatial information, the kernel size was (C ,1), wherein
the parameter C was the number of electrodes and the depth
parameter d was set to control the number of spatial filters
per frequency band. As such, the spatial information from all
electrodes can be fused together to one single electrode.

In the extraction of temporal information, a variance
layer [34] was employed. It obtains the features of a time
series by computing the variance v, which can be expressed
as:

v = V ar(s(t)) =
1
L

L−1∑
t=0

(s(t)− µ)2 (3)

where s(t) is the input signal, L is the total number of time
samplings and µ is the mean of s(t).

The output of spatial convolutional module was sent to
the variance layer, and in this procedure, the size of non-
overlapping temporal window was set as w, thereby the
computation can be expressed as follows:

xV (k) =
1
w

(k+1)∗w−1∑
t=w∗k

(x(t)− µ(k))2 (4)

where µ(k) is the temporal mean of x(t) within the kth

window.
Since the window size is a crucial factor determining the

quality of the extracted temporal features, a too big or too
small size will eventually affect the classification results,
the impact of its size on the classification performance will
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TABLE I
PARAMETERS OF THE PROPOSED FEATURE EXTRACTOR

be discussed in the following experiment section. TABLE I
presents the parameters of the proposed feature extractor.

2) Domain Discriminator: According to WGAN [35], the
adversarial training mechanism contains a feature extraction
and a domain discriminator. In our adversarial training,
the feature extractor learned the domain invariant feature
representations from source and target domains in order to
make the domain discriminator struggle to distinguish which
domain the feature came from, while the domain discriminator
measured the Wasserstein distance between data distributions
of source domain and target domain, trying to figure out the
domain to which the data belonged. Finally, the learned feature
representations can fool the domain discriminator, which
meant that the Wasserstein distance between two domains was
minimized, in other words, the discrepancy between the two
domains was reduced. As such, the marginal data distributions
of two domains were aligned, making it possible to utilize the
knowledge acquired from the source domain to help classify
the data in the target domain.

For the domain discriminator, the Wasserstein distance
between source and target domains can be evaluated by
maximizing the domain discriminator loss Lwd with respect
to parameter θd :

Lwd(x s, x t ) =
1
ns

∑
xs∈Ds

fw( fg(x s))−
1
nt

∑
x t∈Dt

fw( fg(x t ))

(5)

where x s and x t are the data samples coming from source
domain and target domain, respectively. fg is a function
learned by the feature extractor, which maps samples to a
representation with the corresponding parameter θ f . fw is
a function learned by domain discriminator, which maps the
feature representation to a real number with parameter θd .

Meanwhile, extra attention should be paid to satisfying
the Lipschitz constraint condition of Wasserstein distance,
otherwise problems such as capacity underuse and gradient
vanishing or exploding could occur, degrading the domain
adaptation performance. Gulrajani et al. [36] proposed a
method to realize the constraint by using a penalty Lgrad on
the gradient norm for the domain discriminator parameter θd ,
the expression is:

Lgrad(
∼

h) = (||∇∼
h

fw(
∼

h)||2 − 1)2 (6)

where
∼

h is feature representations extracted from source
domain and target domain.

Due to the better differentiation and continuum of the
Wasserstein distance, the domain discriminator was trained to
optimality first, maximizing the Wasserstein distance between
source and target domains. Then, the parameter of domain
discriminator was fixed and at the same time, the Wasserstein
distance was minimized through training the feature extractor
regarding to the parameter θ f . The whole process can be
expressed as follows:

min
θ f

max
θd
{Lwd − λLgrad} (7)

where λ is the balancing coefficient, which is equal to 0 when
optimizing the minimum operation so that the influence of
the gradient penalty on the representation learning process
can be avoided. Finally, through adversarial learning, the
Wasserstein distance converges to zero, and the domain
invariant representations can be learned.

3) Classifier: The classifier was designed to predict the
labels of representations learned from the feature extractor. It is
composed of two fully connected (FC) layers and a softmax
function which can transform the network predictions into
class labels. In this work, labels of target features were not
used to train the classifier. Instead, the classifier was trained
only with labeled MI-EEG data from the source domain. Then,
the trained classifier was directly applied to target domain data
prediction. The classifier used a cross-entropy loss, which is
calculated as:

Lcls = −Ex∼D

cls∑
k=1

I(y==k)log(M(x)) (8)

where I is the indicator function, if y is equal to k, its result
is 1, if not, its result is 0; M is the proposed model.

Now the final objective function can be expressed as
follows:

min
θ f ,θc

{
Lcls + µmax

θd

[
Lwd − λLgrad

]}
(9)

where θc is the parameter of softmax prediction. µ is the
parameter maintaining the balance between the discrimination
and transferability of features. λ is zero when optimizing the
minimum operation.

The pseudocode of the proposed framework is shown in
Algorithm 1. The algorithm of the proposed method was
trained by the standard back-propagation. All the parameters
were optimized through updating gradient. Firstly, the feature
extractor was fixed, with a minibatch containing labeled source
data and unlabeled target data. The domain discriminator with
the parameter θd was updated via gradient ascent, maximizing
the empirical Wasserstein distance in (7). Secondly, after
optimizing the parameters θc and θ f simultaneously via
gradient descent, the classification loss and the maximum
Wasserstein distance in (9) were both minimized, so that
the feature extractor can be updated. Finally, after the three
parameters aforementioned converged, the training process
ended and the domain invariant features can be obtained.
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E. Comparison Between Our Proposed Model and
State-of-the-Art Models

To illustrate the advantages of the proposed method,
several state-of-the-art algorithms were chosen for comparison,
including traditional method (FBCSP [10]), traditional transfer
learning methods (TLCSD [18], RA-MDRM [19], WTLT [20],
EA-CSP-LDA [21]), deep learning models (EEGNet [33],
ConvNet [14], C2CM [15]), and deep transfer learning models
(MI-CNN [22], DRDA [24], DAFS [25]). These algorithms are
introduced as follows.

1) FBCSP: A traditional method that performs autonomous
selection of frequency bands and corresponding CSP feature.

2) TLCSD: An adaptive transfer learning method which
initiates an adaptation based on covariate shift-detection of
each subject to update the classifier.

3) RA-MDRM: A transfer learning approach based
on Riemannian geometry to affine transform the spatial
covariance matrices of different subjects’ EEG signals, making
the data more comparable.

4) WTLT: A weighted transfer learning method employing
KL-divergence to measure similarity between different
subjects’ feature spaces and assigning weights to the classifier
according to the similarity.

5) EA-CSP-LDA: A transfer learning approach aligning
EEG trials from different subjects in the Euclidean
space.

6) EEGNet: A compact CNN framework designed for
EEG signals decoding, containing a 2D convolutional filter,
a depthwise convolutional spatial filter, and a second block
with a separable convolutional operation.

7) ConvNet: A shallow convolutional neural network
designed to decode different band-power features, which
contains a temporal convolutional layer, a spatial convolutional
layer, a max pooling layer, and three blocks, each of which
has a convolutional layer and a max-pooling layer.

8) C2CM: A classification framework for MI-EEG data
which employs a temporal representation of the data and a
convolutional neural network (CNN) architecture.

9) MI-CNN: A deep transfer learning approach based on
CNN, which introduces subject-specific adaptation to improve
the performance of a single subject.

10) DRDA: An end-to-end deep domain adaptation method
which learns deep feature representations by reducing
the marginal and conditional data distribution discrepancy
between source and target domains.

11) DAFS: A model integrating deep domain adaptation
with few-shot learning to leverage the knowledge from multi-
ple source subjects to improve the classification performance
of a single target subject’s MI-EEG data.

For both datasets, EEG signals from all electrodes were
utilized for classification and the three electrooculography
(EOG) channels were discarded without any artifact removing
operation. The model was trained with Adam optimizer, the
learning rate α was set to 0.0005, and the batch size was
set to 64. The programming language adopted in this paper
was Python. All the methods were implemented based on the
TensorFlow framework.

Algorithm 1 Domain Adaptation Based on Wasserstein
Distance

Require: source data Ds , target data Dt , minibatch size m, domain
discriminator training step n, learning rate of domain discriminator α1,
learning rate of feature extractor and classifier α2, balancing coefficient
µ and λ.
1: Initialize feature extractor, domain discriminator, classifier with

random weights θ f , θd and θc.
2: while θf, θd and θc have not converged do
3: Sample {x s

i , ys
i }

ns
i=1, a batch from source data Ds

4: Sample {x t
j }

nt
j=1, a batch from source data Dt

5: for i = 1 . . . n do
6: hs

← fg(x s), ht
← fg(x t )

7: Sample h is the random points between hs and ht pairs
8:
∼

h ← {hs , ht , h}
9: θd ← θd + α1∇θd [Lwd (x s , x t )− λLgrad (

∼

h)]

10: end for
11: θc ← θc − α2∇θcLcls(x s , ys)

12: θ f ← θ f − α2∇θ f [Lcls(x s , ys)+ Lwd (x s , x t )]

13: end while

In our experiments, leave-one-out validation was conudcted
on each dataset. Specifically, one subject was chosen as the
target subject while the remaining subjects were selected
as the source subjects. For instance, in Dataset 2a, when
we tested our model on Subject A01, the EEG data in
A01’s second session was set as the target domain, and
the data in the remaining eight subjects’ first session was
merged as the source domain. In Dataset 2b, when we
tested our model on Subject B01, the EEG data of B01’s
last two sessions was set as the target domain, and the
data in the remaining eight subjects’ first three sessions
was merged as the source domain. This was the same for
other subjects in BCI Competition IV Dataset 2a and 2b,
respectively.

The evaluation results were presented in terms of
classification accuracy and Cohen’s kappa value, which are
two of the most common evaluation matrices. The kappa value
can estimate the possibility of generating accidental results,
it is calculated as follows:

k =
p0 − pe

1− pe
(10)

where p0 is the classification accuracy and pe is the random
classification accuracy.

III. RESULTS

A. Comparison of Classification Performances Using the
Proposed Method With Baseline Models

The method proposed in this paper was evaluated and
compared with other state-of-the-art algorithms on two
datasets. In BCI Competition IV dataset 2a, the classification
accuracy of each subject (in percentage %), average accuracy
(Average Acc), standard deviation (Std), and kappa value were
presented in Table II. The highest accuracy and kappa value
were highlighted. Our results showed that the performance
of our method was superior than other algorithms. Compared
with traditional transfer learning methods such as RA-
MDRM, EA-CSP-LDA, and WTLT, our method obtained
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TABLE II
CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON BCI COMPETITION IV DATASET 2A

TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON BCI COMPETITION IV DATASET 2B

significantly higher average accuracy and kappa value.
Compared with deep transfer learning methods such as
DRDA and DAFS, our model can improve by around 2%
and 0.02 in average accuracy and kappa value, respectively.
Meanwhile, a paired t-test showed a significant difference
between our method and most compared methods (p <

0.05), indicating the superiority of our method. Although the
statistical difference between C2CM and our method was not
significant (p = 0.1675), it should be noted that C2CM did
not overcome cross-subject dicrepancy. Besides, in terms of
standard deviation, our method was relatively lower than other
methods, demonstrating the stability of our model in MI-EEG
classification.

The same experiment was conducted on BCI Compe-
tition IV dataset 2b, the classification accuracy of each
subject (in percentage %), average accuracy (Average Acc),
standard deviation (Std), and kappa value were reported
in Table III. Compared with other deep learning models
and deep transfer learning methods, our method achieved
a greater performance with higher average accuracy and
kappa value. Although no statistical difference was observed
between our proposed method and EEGNet (p = 0.3911),
DRDA (p = 0.3321) as well as DAFS (p = 0.8246),
compared with the three models, our method still had higher
average accuracy and kappa value. Meanwhile, DRDA and
DAFS methods required the source MI-EEG data to have
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Fig. 3. t-SNE feature distribution visualization of subject A07. (a) features extracted by the feature extractor used in DRDA. (b) features extracted
by the proposed feature extractor.

Fig. 4. t-SNE feature distribution visualization of subject B08. (a) features extracted by the feature extractor used in DRDA. (b) features extracted
by the proposed feature extractor.

Fig. 5. The average accuracy under different window lengths.

higher signal-to-noise ratio (SNR), which would be more
time-consuming and unpractical for real time online BCI
application.

B. Comparison of Feature Distributions Achieved by the
Proposed Feature Extractor With Baseline Feature
Extractor

The proposed feature extractor aimed at increasing the
discrimination of the extracted features to improve the clas-
sification results. To demonstrate its effectiveness, the t-SNE
method [37] was employed to visualize the extracted features
of different motor imagery tasks. Subject A07 and Subject
B08 were taken as the examples. The proposed feature
extractor was compared with that applied in DRDA, which
mainly consisted of a simple spatial convolution layer and
a temporal convolution layer. The visualization results of
the features extracted by the two feature extractors were
presented in Fig. 3 and Fig. 4, respectively. The meaning
of x-axis and y-axis is the corresponding values when

high-dimensional MI-EEG features are projected to the two-
dimensional space through t-SNE. The details of this process
were depicted in [37]. In Fig. 3 and Fig. 4, it can be
seen that the conventional feature extraction approach used
in DRDA cannot clearly group the features of different
motor imagery tasks into discriminative clusters (Fig. 3(a)
and Fig. 4(a)), whereas the feature extractor proposed in this
study can achieve the expected the performance (Fig. 3(b) and
Fig. 4(b)), as the boundaries between different motor imagery
tasks are much clearer.

C. Effect of Window Size
In the variance layer, the window size plays a crucial role as

it affects the extraction of temporal features, determining the
quantity and quality of the extracted features. To illustrate its
efficacy, the classification accuracies under different window
lengths were presented in Fig. 5.

In both datasets, a too large or too small window size would
degrade the classification performance. When the window
size was set to 1, the classification accuracies were the
highest in both datasets (77.60% and 85.06% in BCI IV
dataset 2a and 2b, respectively), making it the most suitable
value for the window size. However, with the window size
increasing, the average accuracies in both datasets decreased.
When the window length was set to 2.0, the accuracies
for dataset 2a and 2b were only 69.83% and 77.24%
respectively, almost 10% lower than the best ones. The same
decreasing trend could also be observed when the window
length was becoming smaller, as the average accuracies were
approximately 5% lower than the best ones in both datasets
when the window length equaled to 0.5.
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Fig. 6. t-SNE feature distribution visualization of subject A03 and other eight subjects in BCI Competition IV dataset 2a. (a) before domain
adaptation. (b) after domain adaptation.

Fig. 7. t-SNE feature distribution visualization of subject B04 and other eight subjects in BCI Competition IV dataset 2b. (a) before domain
adaptation. (b) after domain adaptation.

D. Visualization of Domain Adaptation Based on
Wasserstein Distance

To illustrate the effectiveness of Wasserstein distance in
domain adaptation, t-SNE method [37] was used to visualize
the feature distributions. A03 and other eight subjects in
Dataset 2a, as well as B04 and other eight subjects in Dataset
2b before and after domain adaptation were set as examples.
The results were presented in Fig. 6 and Fig. 7. In the two
images, the red points represent features from source subjects
while the blue points represent features from the target subject.
It can be observed that before domain adaptation, the features
of different subjects were sparse in the space. However, after
domain adaptation, the features were grouped into clusters and
the distance between different clusters became much shorter.

The features from source domain and target domain
overlapped each other, which meant that different subjects
shared a similar data distribution in the space.

E. Comparison Between Wasserstein Distance and
Adversarial Loss

In this study, Wasserstein distance was utilized to conduct
the adversarial training instead of adversarial loss [23].

To show the superiority of Wasserstein distance, we made a
comparison between Wasserstein distance and adversarial loss
under the same feature extractor and classifier proposed in this
work. The results in BCI IV Competition dataset 2a and 2b
were exhibited in Fig. 8 and Fig. 9, respectively.

It can be observed from the two figures that under the same
condition, in terms of classification accuracy, Wasserstein
distance outperformed adversarial loss in most subjects,
achieving an average improvement of 2.9% and 2.68% on
BCI IV Competition dataset 2a and 2b respectively. For
subject A05, the improving margin was 5.46%, the highest in
Dataset 2a, as opposed to 5.11% for subject B04, the highest
in Dataset 2b.

IV. DISCUSSION

In this study, we developed an improved domain adaptation
network based on the Wasserstein distance matrix. The
proposed model can increase the discrimination of the
extracted features, and reduce the cross-subject discrepancy
to make it possible to utilize labeled MI-EEG data of multiple
subjects to help classify the data of one target subject, thus
solving the EEG data shortage problem and enhancing the
MI-EEG data classification results. Specifically, the CBAM
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and the variance layer were utilized to improve the extraction
of spatial and temporal features, respectively. The Wasserstein
distance matrix was then applied to implement adversarial
training. Our results based on the two public datasets showed
that the proposed method was feasible in achieving better
classification results under both four-class and two-class
situations.

Recently, machine learning and deep learning have been
extensively employed to decode EEG-based MI signals, mak-
ing promising progress in the field of BCI-MI classification.
However, most of these previous studies trained and tested
their models on the data from the same subject, scarcely
considering the situation where the training data and testing
data comes from different subjects. In practical scenarios,
it is challenging to own the labeled MI data of a new
subject for training in advance, only the labeled data of
some existing subjects is available. Therefore, due to the lack
of new subjects’ labeled MI-EEG data and the discrepancy
between different subjects’ data, the performances of previous
models were limited. Even though some latest studies, such
as DRDA [24] and DAFS [25], have tried to reduce cross-
subject discrepancy via domain adaptation, most of these
strategies neglected increasing the discrimination of extracted
spatial and temporal features, and focused on minimizing the
adversarial loss to realize the domain adaptation, which has
some problems such as gradient vanish or model collapse that
will degrade the performance of domain adaptation. Therefore,
our model was proposed to solve the above limitations.

A. The Role of Feature Extractor
In Fig. 3 and Fig. 4, the features extracted by the proposed

feature extractor are more task-discriminative than those
extracted by the feature extractor in DRDA. This phenomenon
can be explained by the utilization of the attention mechanism
CBAM and the variance layer, the former assigning a much
more suitable weight to each channel and the latter extracting
temporal information based on computing the variance in the
given time series, which increases the discrimination of the
extracted spatial and temporal features, respectively.

When a person is performing different motor imagery
tasks, the power of the mu (8-12 Hz) and beta (16-26 Hz)
rhythms varies in the sensorimotor region of the contralateral
and ipsilateral hemispheres [38]. According to this principle,
among all the electrode channels used in the collection
of MI-EEG signals, some are more task-related, but some
are less. Therefore, it is of necessity to select channels
located in the brain regions that have stronger links to
motor imagery tasks and assign them with higher weights.
In our work, the attention mechanism CBAM employed the
channel attention module to focus on channels having a strong
connection with motor imagery tasks, and the spatial attention
module to recognize which brain region was active when
the subject was performing motor imagery tasks. In this
way, different channels were assigned with different weights
according to the contribution they made to the subjects’
performance of motor imagery tasks. We also drew the
brain active correlation map of two subjects from BCI IV
dataset 2a to illustrate the importance of CBAM. In Fig. 10,

the red color represents positive correlation of the event-related
synchronization (ERS), and the blue color indicates negative
correlation of the event-related desynchronization (ERD). It is
noticeable that when the subject was performing different
motor imagery tasks, the active regions of brain varied, some
showing ERS whereas some showing ERD. Therefore, it made
sense for us to employ CBAM to assign different weights
to channels located in different brain regions, which was
conducive to increasing the discrimination of spatial features.

As time series, raw EEG signals contain a large quantity
of features in temporal domain, along with huge intra-
class variance and high noise content. Previous studies have
employed various methods to extract temporal information
from EEG signals such as the max or average pooling
strategy, a fixed-size temporal convolution kernel [15], and
the temporal attention mechanism [16]. However, when a
subject is performing motor imagery tasks, due to the delay of
human brain’s reaction and the subject’s fatigue or distraction
during the collection of MI-EEG signals, the real duration of
motor imagery process may last longer or shorter than the
experimental requirements. Therefore, the time slices during
which the subject performs motor imagery tasks are likely to
be irregular. Compared with a fixed convolution kernel or a
temporal attention mechanism, a variance layer, which reflects
the spectral power in a fixed time series, can extract MI-
relevant temporal features in MI-EEG signals more flexibly
without missing task-related time slices, thus making the
temporal features more discriminative.

Meanwhile, the results in [34] proved that it is necessary
to choose the best window size to make each window cover
the whole duration of a motor imagery task, a too big
or too small window size would degrade the classification
performance. The results in Fig. 5 also showed the same
trend. This phenomenon can be attributed to the factor that
when the window size was too large, each window unit
contained too much information and some of it was irrelevant
to motor imagery tasks, so that the calculated variance cannot
reflect the feature of each task precisely. Conversely, when the
window size was too small, each window size contained too
little information, which cannot cover the complete duration
of a task, thus affecting the integrality and discrimination
of the extracted temporal features. According to Fig. 5, the
window size equaling to 1 suited the MI-EEG signal best as
it contributed to the highest classification accuracy.

With the application of CBAM and the variance layer,
in Fig. 3 and Fig. 4, features of different motor imagery tasks
were more discriminative than those extracted by the feature
extractor in DRDA, which indicated the superiority of the
method proposed in this study.

B. The Role of Domain Adaptation Based on
Wasserstein Distance

In Fig. 8 and Fig. 9, the model based on Wasserstein
distance outperformed that based on adversarial loss in
terms of classification accuracy. This phenomenon can be
explained by the gradient superiority, better differentiation and
continuum of Wasserstein distance [36], which can better adapt
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Fig. 8. Comparison between domain discriminator with Wasserstein
distance and adversarial loss on Dataset 2a.

Fig. 9. Comparison between domain discriminator with Wasserstein
distance and adversarial loss on Dataset 2b.

Fig. 10. Brain active correlation maps.

to the nonlinear traits of the extracted MI-EEG features than
the adversarial loss, avoiding gradient vanish or model collapse
that would degrade the performance of domain adaptation.
Therefore, Wasserstein distance has a better ability to reduce
data distribution discrepancy across different domains, thus
more effectively leveraging knowledge learned from source
domain to improve the classification performance on target
domain.

C. Limitations and Future Works
Even though the proposed study has provided a novel

and improved framework that can outperform other previous
methods in classifying EEG-based MI signals, it still has
some specific limitations. First, the source subjects were
selected without considering the quality of their MI-EEG
signals, such as the signal-to-noise ratio (SNR). However,
due to some factors such as subjects’ distractions, brain
sensitivity, or external interferences, the MI-EEG data of
some subjects might contain too much noise, which could
make the information gained from it useless in improving
the classification performance of the target subject’s data.
Therefore, in our future work, it is necessary to explore some
effective methods to measure the quality of each subjects’
MI-EEG data and evaluate the transferability, which would
be helpful in improving the data alignment and classification
performance.

Furthermore, recently, domain generalization (DG) has
achieved great success in computer vision field, the goal of
which is to learn a model from one or several different but
related domains that can generalize well on unseen testing
domains [39]. Therefore, in our future work, DG approaches
could be utilized in MI-EEG classification, so the model
trained on existing annotated data can directly be applied
to test new data, omitting the process of aligning data
distributions of source and target domain, which would be
less time-consuming and more practical in BCI applications.

V. CONCLUSION

In this study, an improved domain adaptation network
based on Wasserstein distance has been proposed to improve
the performance of classifying EEG-based MI signals. The
proposed framework enhances the performance by increasing
the discrimination of MI features and reducing the cross-
subject discrepancy, which can solve the problem of EEG data
shortage. The CBAM and the variance layer were combined
to improve the performance of spatial and temporal feature
extraction, and the Wasserstein distance was then applied to
implement the adversarial training. Our results demonstrated
that the framework proposed in this study was capable of
enhancing the classification performance of EEG-based MI
signals. This study has provided a novel algorithm to detect
the EEG-based MI signals for helping the neural rehabilitation
of different neuropsychiatric diseases based on BCI systems.
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